library(sf)
## Linking to GEOS 3.11.0, GDAL 3.5.3, PROJ 9.1.0; sf_use_s2() is TRUE
library(tmap)
## Breaking News: tmap 3.x is retiring. Please test v4, e.g. with
## remotes::install_github('r-tmap/tmap')
library(tigris)
## To enable caching of data, set `options(tigris_use_cache = TRUE)`
## in your R script or .Rprofile.
storm_channels <-st_read("/users/jayjay/Downloads/StormChannels/StormChannels.shp")
## Reading layer `StormChannels' from data source
## `/Users/jayjay/Downloads/StormChannels/StormChannels.shp' using driver `ESRI Shapefile'
## Simple feature collection with 12042 features and 17 fields
## Geometry type: MULTILINESTRING
## Dimension: XY
## Bounding box: xmin: 2024999 ymin: 13600410 xmax: 2249487 ymax: 13824430
## Projected CRS: NAD83 / Texas South Central (ftUS)
corridor_plan <-st_read("/users/jayjay/Downloads/CorridorPlans/CorridorPlans.shp")
## Reading layer `CorridorPlans' from data source
## `/Users/jayjay/Downloads/CorridorPlans/CorridorPlans.shp' using driver `ESRI Shapefile'
## Simple feature collection with 12 features and 4 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: 2058688 ymin: 13665110 xmax: 2178301 ymax: 13793820
## Projected CRS: NAD83 / Texas South Central (ftUS)
storm_channels <-st_transform(storm_channels, crs = 4326)
corridor_plan <-st_transform(corridor_plan, crs = 4326)
#Q2
intersected_channels <-st_intersection(storm_channels, corridor_plan)
## Warning: attribute variables are assumed to be spatially constant throughout
## all geometries
#Q3
bexar_ct <-tracts(state = "tx", county= "Bexar", cb=T)
## Retrieving data for the year 2022
## | | | 0% | |= | 1% | |= | 2% | |== | 2% | |== | 3% | |=== | 4% | |=== | 5% | |==== | 5% | |==== | 6% | |===== | 7% | |===== | 8% | |====== | 8% | |====== | 9% | |======= | 9% | |======= | 10% | |======= | 11% | |======== | 11% | |======== | 12% | |========= | 12% | |========= | 13% | |========== | 14% | |========== | 15% | |=========== | 15% | |=========== | 16% | |============ | 17% | |============= | 18% | |============= | 19% | |============== | 19% | |============== | 20% | |=============== | 21% | |=============== | 22% | |================ | 22% | |================ | 23% | |================= | 24% | |================= | 25% | |================== | 25% | |================== | 26% | |=================== | 27% | |=================== | 28% | |==================== | 28% | |==================== | 29% | |===================== | 30% | |===================== | 31% | |====================== | 31% | |====================== | 32% | |======================= | 32% | |======================= | 33% | |======================== | 34% | |======================== | 35% | |========================= | 35% | |========================= | 36% | |========================== | 37% | |========================== | 38% | |=========================== | 38% | |=========================== | 39% | |============================ | 39% | |============================ | 40% | |============================ | 41% | |============================= | 41% | |============================= | 42% | |============================== | 42% | |============================== | 43% | |=============================== | 44% | |=============================== | 45% | |================================ | 45% | |================================ | 46% | |================================= | 46% | |================================= | 47% | |================================== | 48% | |================================== | 49% | |=================================== | 49% | |=================================== | 50% | |==================================== | 51% | |==================================== | 52% | |===================================== | 52% | |===================================== | 53% | |====================================== | 54% | |====================================== | 55% | |======================================= | 55% | |======================================= | 56% | |======================================== | 57% | |======================================== | 58% | |========================================= | 58% | |========================================= | 59% | |========================================== | 60% | |========================================== | 61% | |=========================================== | 61% | |=========================================== | 62% | |============================================ | 62% | |============================================ | 63% | |============================================= | 64% | |============================================= | 65% | |============================================== | 65% | |============================================== | 66% | |=============================================== | 67% | |=============================================== | 68% | |================================================ | 68% | |================================================ | 69% | |================================================= | 69% | |================================================= | 70% | |================================================= | 71% | |================================================== | 71% | |================================================== | 72% | |=================================================== | 72% | |=================================================== | 73% | |==================================================== | 74% | |==================================================== | 75% | |===================================================== | 75% | |===================================================== | 76% | |====================================================== | 77% | |====================================================== | 78% | |======================================================= | 78% | |======================================================= | 79% | |======================================================== | 79% | |======================================================== | 80% | |========================================================= | 81% | |========================================================= | 82% | |========================================================== | 82% | |========================================================== | 83% | |=========================================================== | 84% | |=========================================================== | 85% | |============================================================ | 85% | |============================================================ | 86% | |============================================================= | 87% | |============================================================= | 88% | |============================================================== | 88% | |============================================================== | 89% | |=============================================================== | 90% | |=============================================================== | 91% | |================================================================ | 91% | |================================================================ | 92% | |================================================================= | 92% | |================================================================= | 93% | |================================================================== | 94% | |================================================================== | 95% | |=================================================================== | 95% | |=================================================================== | 96% | |==================================================================== | 97% | |==================================================================== | 98% | |===================================================================== | 98% | |===================================================================== | 99% | |======================================================================| 99% | |======================================================================| 100%
tm_shape(bexar_ct)+
tm_borders()+
tm_shape(intersected_channels)+
tm_lines(col = "blue")
#Q4
library(raster)
## Loading required package: sp
LST <- raster("/users/jayjay/Downloads/LC09_028040_20230826.tif")
#Q5
LST <-setMinMax(LST)
LST <-LST - 273.15
cellStats(LST,max)
## [1] 61.28771
plot(LST, main="Land Surface Temperature of Dallas")
#Q6
plot(LST > 40, main= "LST40",
col = c("#ffffff", "#0000ff"))