1 PREPARATION

data1=import("AIReflectionBW.NoMissingS1.sav")%>%data.table
data2=import("AIReflectionBW.NoMissingS2.sav")%>%data.table #%>%
data2$W.dX=as.factor(data2$W.X)
data2 <- data2 %>%
  mutate(
    W.X10 = ifelse(W.X == 1, 1, 0),
    W.X01 = ifelse(W.X == 2, 1, 0)
  )
data2=data2[, W.CheckDummyX := paste(W.Intervention_new,W.X,W.X10,W.X01, sep = "_")]
Freq(data2$W.CheckDummyX)
## Frequency Statistics:
## ───────────────────────────
##                      N    %
## ───────────────────────────
## AI_0_0_0           328 33.3
## No_1_1_0           328 33.3
## Traditional_2_0_1  328 33.3
## ───────────────────────────
## Total N = 984
#data2=import("AIReflectionBW.NoMissingS2.sav")%>%data.table #%>%
#  mutate(
#    W.X1 = ifelse(W.X == 1, 1, 0),
#    W.X2 = ifelse(W.X == 2, 1, 0)
#  )
#head(data2[,.(W.X,W.X1,W.X2)],10)%>%print_table()
# 假设 data 是一个 data.table
# 筛选出列名包含 "V.GroC" 的列
selected_columns <- grep("V\\.GroC", names(data1), value = TRUE)

# 提取包含这些列的数据
filtered_data <- data1[, ..selected_columns]

# 查看筛选出的列
print(selected_columns)
##  [1] "WA.WorkReflectionForManipulationCheckV.GroC"                 
##  [2] "WA.PositiveWorkReflectionForManipulationCheckV.GroC"         
##  [3] "WA.NegativeWorkReflectionForManipulationCheckV.GroC"         
##  [4] "WA.ProblemSolvingPonderingV.GroC"                            
##  [5] "WA.LearningFromOperationalFailureV.GroC"                     
##  [6] "WA.SelfReflectionForManipulationCheckV.GroC"                 
##  [7] "WA.RealizingTheNeedForReworkV.GroC"                          
##  [8] "WA.TemperoalReflectionForManipulationCheckV.GroC"            
##  [9] "WA.LearningFromErrorsV.GroC"                                 
## [10] "WA.ThrivingInLearningV.GroC"                                 
## [11] "WA.CognitiveJobEngagementV.GroC"                             
## [12] "WA.ErrorStrainV.GroC"                                        
## [13] "WA.ThinkingAboutErrorsV.GroC"                                
## [14] "WA.AffectiveRuminationV.GroC"                                
## [15] "WA.DetachmentV.GroC"                                         
## [16] "WA.AffectiveCommitmentForWorkImprovmentV.GroC"               
## [17] "WA.DetachmentBasedRecoveryFromWorkV.GroC"                    
## [18] "WA.GratitudeV.GroC"                                          
## [19] "WA.SegmentationFromWorkV.GroC"                               
## [20] "WP.TakingChargeBehaviorsForSystemImprovementV.GroC"          
## [21] "WP.VoiceForSystemImprovmentV.GroC"                           
## [22] "WP.AIUsageForFacilitatingWorkV.GroC"                         
## [23] "WP.LearningBehaviorV.GroC"                                   
## [24] "WP.SystemPerformanceImprovementBehaviorV.GroC"               
## [25] "WP.AIEnabledInnovationBehaviorV.GroC"                        
## [26] "WP.SocialLearningV.GroC"                                     
## [27] "WP.IndependentObservationBasedSocialLearningV.GroC"          
## [28] "WP.AdviceThinkingBasedSocialLearningV.GroC"                  
## [29] "WP.FeedbackSeekingForSystemImprovementV.GroC"                
## [30] "WP.ConstructiveChallengingBehaviorForSystemImprovementV.GroC"
## [31] "WP.AIEnabledCreativityV.GroC"                                
## [32] "WP.EmployeeWorkWellBeingV.GroC"                              
## [33] "WP.PerceivedWorkGrowthV.GroC"                                
## [34] "WP.TaskPerformanceImprovementV.GroC"                         
## [35] "WP.CreativeProcessEngagmentV.GroC"                           
## [36] "WP.SleepQuantityV.GroC"                                      
## [37] "WP.FamilyMemberUndermingV.GroC"                              
## [38] "WP.FamilyMemberConflictV.GroC"
# 查看筛选后的数据
#print(filtered_data)

# 假设 data 是一个 data.table
# 筛选出列名包含 "V.GroC" 的列
selected_columns <- grep("V\\.GroC", names(data2), value = TRUE)

# 提取包含这些列的数据
filtered_data <- data2[, ..selected_columns]

# 查看筛选出的列
print(selected_columns)
##  [1] "WA.WorkReflectionForManipulationCheckV.GroC"                 
##  [2] "WA.PositiveWorkReflectionForManipulationCheckV.GroC"         
##  [3] "WA.NegativeWorkReflectionForManipulationCheckV.GroC"         
##  [4] "WA.ProblemSolvingPonderingV.GroC"                            
##  [5] "WA.LearningFromOperationalFailureV.GroC"                     
##  [6] "WA.SelfReflectionForManipulationCheckV.GroC"                 
##  [7] "WA.RealizingTheNeedForReworkV.GroC"                          
##  [8] "WA.TemperoalReflectionForManipulationCheckV.GroC"            
##  [9] "WA.LearningFromErrorsV.GroC"                                 
## [10] "WA.ThrivingInLearningV.GroC"                                 
## [11] "WA.CognitiveJobEngagementV.GroC"                             
## [12] "WA.ErrorStrainV.GroC"                                        
## [13] "WA.ThinkingAboutErrorsV.GroC"                                
## [14] "WA.AffectiveRuminationV.GroC"                                
## [15] "WA.DetachmentV.GroC"                                         
## [16] "WA.AffectiveCommitmentForWorkImprovmentV.GroC"               
## [17] "WA.DetachmentBasedRecoveryFromWorkV.GroC"                    
## [18] "WA.GratitudeV.GroC"                                          
## [19] "WA.SegmentationFromWorkV.GroC"                               
## [20] "WP.TakingChargeBehaviorsForSystemImprovementV.GroC"          
## [21] "WP.VoiceForSystemImprovmentV.GroC"                           
## [22] "WP.AIUsageForFacilitatingWorkV.GroC"                         
## [23] "WP.LearningBehaviorV.GroC"                                   
## [24] "WP.SystemPerformanceImprovementBehaviorV.GroC"               
## [25] "WP.AIEnabledInnovationBehaviorV.GroC"                        
## [26] "WP.SocialLearningV.GroC"                                     
## [27] "WP.IndependentObservationBasedSocialLearningV.GroC"          
## [28] "WP.AdviceThinkingBasedSocialLearningV.GroC"                  
## [29] "WP.FeedbackSeekingForSystemImprovementV.GroC"                
## [30] "WP.ConstructiveChallengingBehaviorForSystemImprovementV.GroC"
## [31] "WP.AIEnabledCreativityV.GroC"                                
## [32] "WP.EmployeeWorkWellBeingV.GroC"                              
## [33] "WP.PerceivedWorkGrowthV.GroC"                                
## [34] "WP.TaskPerformanceImprovementV.GroC"                         
## [35] "WP.CreativeProcessEngagmentV.GroC"                           
## [36] "WP.SleepQuantityV.GroC"                                      
## [37] "WP.FamilyMemberUndermingV.GroC"                              
## [38] "WP.FamilyMemberConflictV.GroC"
# 查看筛选后的数据
#print(filtered_data)

2 STUDY 1 MAIN EFFECT

2.1 Analysis

WA.WorkReflectionForManipulationCheck.Main=lmer(WA.WorkReflectionForManipulationCheckV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WA.PositiveWorkReflectionForManipulationCheck.Main=lmer(WA.PositiveWorkReflectionForManipulationCheckV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WA.NegativeWorkReflectionForManipulationCheck.Main=lmer(WA.NegativeWorkReflectionForManipulationCheckV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WA.ProblemSolvingPondering.Main=lmer(WA.ProblemSolvingPonderingV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WA.LearningFromOperationalFailure.Main=lmer(WA.LearningFromOperationalFailureV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WA.SelfReflectionForManipulationCheck.Main=lmer(WA.SelfReflectionForManipulationCheckV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WA.RealizingTheNeedForRework.Main=lmer(WA.RealizingTheNeedForReworkV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WA.TemperoalReflectionForManipulationCheck.Main=lmer(WA.TemperoalReflectionForManipulationCheckV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WA.LearningFromErrors.Main=lmer(WA.LearningFromErrorsV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WA.ThrivingInLearning.Main=lmer(WA.ThrivingInLearningV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WA.CognitiveJobEngagement.Main=lmer(WA.CognitiveJobEngagementV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WA.ErrorStrain.Main=lmer(WA.ErrorStrainV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WA.ThinkingAboutErrors.Main=lmer(WA.ThinkingAboutErrorsV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WA.AffectiveRumination.Main=lmer(WA.AffectiveRuminationV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WA.Detachment.Main=lmer(WA.DetachmentV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WA.AffectiveCommitmentForWorkImprovment.Main=lmer(WA.AffectiveCommitmentForWorkImprovmentV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WA.DetachmentBasedRecoveryFromWork.Main=lmer(WA.DetachmentBasedRecoveryFromWorkV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WA.Gratitude.Main=lmer(WA.GratitudeV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WA.SegmentationFromWork.Main=lmer(WA.SegmentationFromWorkV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WP.TakingChargeBehaviorsForSystemImprovement.Main=lmer(WP.TakingChargeBehaviorsForSystemImprovementV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WP.VoiceForSystemImprovment.Main=lmer(WP.VoiceForSystemImprovmentV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WP.AIUsageForFacilitatingWork.Main=lmer(WP.AIUsageForFacilitatingWorkV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WP.LearningBehavior.Main=lmer(WP.LearningBehaviorV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WP.SystemPerformanceImprovementBehavior.Main=lmer(WP.SystemPerformanceImprovementBehaviorV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WP.AIEnabledInnovationBehavior.Main=lmer(WP.AIEnabledInnovationBehaviorV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WP.SocialLearning.Main=lmer(WP.SocialLearningV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WP.IndependentObservationBasedSocialLearning.Main=lmer(WP.IndependentObservationBasedSocialLearningV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WP.AdviceThinkingBasedSocialLearning.Main=lmer(WP.AdviceThinkingBasedSocialLearningV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WP.FeedbackSeekingForSystemImprovement.Main=lmer(WP.FeedbackSeekingForSystemImprovementV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WP.ConstructiveChallengingBehaviorForSystemImprovement.Main=lmer(WP.ConstructiveChallengingBehaviorForSystemImprovementV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WP.AIEnabledCreativity.Main=lmer(WP.AIEnabledCreativityV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WP.EmployeeWorkWellBeing.Main=lmer(WP.EmployeeWorkWellBeingV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WP.PerceivedWorkGrowth.Main=lmer(WP.PerceivedWorkGrowthV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WP.TaskPerformanceImprovement.Main=lmer(WP.TaskPerformanceImprovementV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WP.CreativeProcessEngagment.Main=lmer(WP.CreativeProcessEngagmentV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WP.SleepQuantity.Main=lmer(WP.SleepQuantityV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WP.FamilyMemberUnderming.Main=lmer(WP.FamilyMemberUndermingV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))
WP.FamilyMemberConflict.Main=lmer(WP.FamilyMemberConflictV.GroC~W.X + (W.X|B.ID), na.action = na.exclude, data = data1, control=lmerControl(optimizer="bobyqa"))

2.2 Results

print_table(WA.WorkReflectionForManipulationCheck.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.055 (0.039) 304.813  1.398  .163    
## W.X            -0.110 (0.061) 170.000 -1.816  .071 .  
## ──────────────────────────────────────────────────────
print_table(WA.PositiveWorkReflectionForManipulationCheck.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.047 (0.042) 313.001  1.113  .266    
## W.X            -0.095 (0.065) 170.000 -1.454  .148    
## ──────────────────────────────────────────────────────
print_table(WA.NegativeWorkReflectionForManipulationCheck.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.063 (0.055) 323.497  1.143  .254    
## W.X            -0.126 (0.084) 170.000 -1.503  .135    
## ──────────────────────────────────────────────────────
print_table(WA.ProblemSolvingPondering.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)    -0.060 (0.041) 380.643 -1.459  .145    
## W.X             0.120 (0.061) 170.000  1.977  .050 *  
## ──────────────────────────────────────────────────────
print_table(WA.LearningFromOperationalFailure.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)    -0.069 (0.044) 459.107 -1.576  .116    
## W.X             0.139 (0.063) 170.000  2.197  .029 *  
## ──────────────────────────────────────────────────────
print_table(WA.SelfReflectionForManipulationCheck.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.019 (0.044) 409.133  0.438  .662    
## W.X            -0.039 (0.065) 170.000 -0.600  .549    
## ──────────────────────────────────────────────────────
print_table(WA.RealizingTheNeedForRework.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.013 (0.045) 682.000  0.279  .780    
## W.X            -0.025 (0.064) 682.000 -0.395  .693    
## ──────────────────────────────────────────────────────
print_table(WA.TemperoalReflectionForManipulationCheck.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)    -0.004 (0.047) 682.000 -0.094  .925    
## W.X             0.009 (0.066) 682.000  0.133  .894    
## ──────────────────────────────────────────────────────
print_table(WA.LearningFromErrors.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)    -0.022 (0.047) 271.020 -0.471  .638    
## W.X             0.044 (0.074) 170.000  0.596  .552    
## ──────────────────────────────────────────────────────
print_table(WA.ThrivingInLearning.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.034 (0.040) 333.163  0.845  .399    
## W.X            -0.067 (0.060) 170.000 -1.118  .265    
## ──────────────────────────────────────────────────────
print_table(WA.CognitiveJobEngagement.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.010 (0.050) 302.587  0.203  .839    
## W.X            -0.020 (0.078) 170.000 -0.264  .792    
## ──────────────────────────────────────────────────────
print_table(WA.ErrorStrain.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)    -0.003 (0.046) 337.567 -0.064  .949    
## W.X             0.006 (0.069) 170.000  0.085  .932    
## ──────────────────────────────────────────────────────
print_table(WA.ThinkingAboutErrors.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)    -0.059 (0.047) 495.039 -1.248  .213    
## W.X             0.118 (0.067) 170.000  1.758  .081 .  
## ──────────────────────────────────────────────────────
print_table(WA.AffectiveRumination.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)    -0.017 (0.047) 285.710 -0.362  .718    
## W.X             0.034 (0.073) 170.000  0.463  .644    
## ──────────────────────────────────────────────────────
print_table(WA.Detachment.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.044 (0.047) 275.288  0.945  .346    
## W.X            -0.088 (0.074) 170.000 -1.199  .232    
## ──────────────────────────────────────────────────────
print_table(WA.AffectiveCommitmentForWorkImprovment.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.019 (0.042) 393.710  0.440  .660    
## W.X            -0.037 (0.062) 170.000 -0.600  .549    
## ──────────────────────────────────────────────────────
print_table(WA.DetachmentBasedRecoveryFromWork.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)    -0.013 (0.045) 266.277 -0.278  .781    
## W.X             0.025 (0.072) 170.000  0.350  .727    
## ──────────────────────────────────────────────────────
print_table(WA.Gratitude.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)    -0.059 (0.044) 469.133 -1.351  .177    
## W.X             0.119 (0.063) 170.001  1.889  .061 .  
## ──────────────────────────────────────────────────────
print_table(WA.SegmentationFromWork.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.042 (0.051) 354.775  0.821  .412    
## W.X            -0.083 (0.076) 170.000 -1.098  .274    
## ──────────────────────────────────────────────────────
print_table(WP.TakingChargeBehaviorsForSystemImprovement.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.072 (0.049) 682.000  1.461  .144    
## W.X            -0.144 (0.070) 682.000 -2.067  .039 *  
## ──────────────────────────────────────────────────────
print_table(WP.VoiceForSystemImprovment.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.075 (0.048) 682.000  1.564  .118    
## W.X            -0.150 (0.068) 682.000 -2.211  .027 *  
## ──────────────────────────────────────────────────────
print_table(WP.AIUsageForFacilitatingWork.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.079 (0.057) 286.118  1.375  .170    
## W.X            -0.158 (0.090) 170.000 -1.761  .080 .  
## ──────────────────────────────────────────────────────
print_table(WP.LearningBehavior.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.019 (0.057) 471.958  0.343  .732    
## W.X            -0.039 (0.081) 170.000 -0.480  .632    
## ──────────────────────────────────────────────────────
print_table(WP.SystemPerformanceImprovementBehavior.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.063 (0.049) 474.888  1.279  .201    
## W.X            -0.126 (0.070) 170.000 -1.792  .075 .  
## ──────────────────────────────────────────────────────
print_table(WP.AIEnabledInnovationBehavior.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.136 (0.052) 682.000  2.615  .009 ** 
## W.X            -0.273 (0.074) 682.000 -3.699 <.001 ***
## ──────────────────────────────────────────────────────
print_table(WP.SocialLearning.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.083 (0.048) 682.000  1.745  .081 .  
## W.X            -0.166 (0.067) 682.000 -2.467  .014 *  
## ──────────────────────────────────────────────────────
print_table(WP.IndependentObservationBasedSocialLearning.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.077 (0.057) 487.953  1.369  .172    
## W.X            -0.155 (0.081) 170.000 -1.924  .056 .  
## ──────────────────────────────────────────────────────
print_table(WP.AdviceThinkingBasedSocialLearning.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.088 (0.055) 482.651  1.617  .107    
## W.X            -0.177 (0.078) 170.000 -2.270  .024 *  
## ──────────────────────────────────────────────────────
print_table(WP.FeedbackSeekingForSystemImprovement.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.071 (0.052) 362.780  1.358  .175    
## W.X            -0.142 (0.078) 170.000 -1.825  .070 .  
## ──────────────────────────────────────────────────────
print_table(WP.ConstructiveChallengingBehaviorForSystemImprovement.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.051 (0.047) 328.710  1.077  .282    
## W.X            -0.101 (0.071) 170.000 -1.420  .157    
## ──────────────────────────────────────────────────────
print_table(WP.AIEnabledCreativity.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.109 (0.052) 682.000  2.094  .037 *  
## W.X            -0.219 (0.074) 682.000 -2.962  .003 ** 
## ──────────────────────────────────────────────────────
print_table(WP.EmployeeWorkWellBeing.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.045 (0.050) 452.818  0.895  .371    
## W.X            -0.089 (0.072) 170.000 -1.246  .214    
## ──────────────────────────────────────────────────────
print_table(WP.PerceivedWorkGrowth.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.084 (0.051) 468.117  1.660  .098 .  
## W.X            -0.168 (0.072) 170.000 -2.321  .021 *  
## ──────────────────────────────────────────────────────
print_table(WP.TaskPerformanceImprovement.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.066 (0.047) 682.000  1.415  .157    
## W.X            -0.133 (0.066) 682.000 -2.001  .046 *  
## ──────────────────────────────────────────────────────
print_table(WP.CreativeProcessEngagment.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.009 (0.049) 682.000  0.179  .858    
## W.X            -0.018 (0.069) 682.000 -0.254  .800    
## ──────────────────────────────────────────────────────
print_table(WP.SleepQuantity.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)     0.105 (0.086) 649.000  1.229  .220    
## W.X            -0.212 (0.121) 649.000 -1.745  .082 .  
## ──────────────────────────────────────────────────────
print_table(WP.FamilyMemberUnderming.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)    -0.042 (0.038) 472.042 -1.120  .263    
## W.X             0.085 (0.054) 170.000  1.568  .119    
## ──────────────────────────────────────────────────────
print_table(WP.FamilyMemberConflict.Main)
## ──────────────────────────────────────────────────────
##              Estimate    S.E.      df      t     p    
## ──────────────────────────────────────────────────────
## (Intercept)    -0.015 (0.038) 338.084 -0.386  .700    
## W.X             0.029 (0.057) 170.000  0.512  .609    
## ──────────────────────────────────────────────────────

3 STUDY 2 MAIN EFFECTS

3.1 Analysis

WA.WorkReflectionForManipulationCheck.Main=lmer(WA.WorkReflectionForManipulationCheckV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WA.PositiveWorkReflectionForManipulationCheck.Main=lmer(WA.PositiveWorkReflectionForManipulationCheckV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WA.NegativeWorkReflectionForManipulationCheck.Main=lmer(WA.NegativeWorkReflectionForManipulationCheckV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WA.ProblemSolvingPondering.Main=lmer(WA.ProblemSolvingPonderingV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WA.LearningFromOperationalFailure.Main=lmer(WA.LearningFromOperationalFailureV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WA.SelfReflectionForManipulationCheck.Main=lmer(WA.SelfReflectionForManipulationCheckV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WA.RealizingTheNeedForRework.Main=lmer(WA.RealizingTheNeedForReworkV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WA.TemperoalReflectionForManipulationCheck.Main=lmer(WA.TemperoalReflectionForManipulationCheckV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WA.LearningFromErrors.Main=lmer(WA.LearningFromErrorsV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WA.ThrivingInLearning.Main=lmer(WA.ThrivingInLearningV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WA.CognitiveJobEngagement.Main=lmer(WA.CognitiveJobEngagementV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WA.ErrorStrain.Main=lmer(WA.ErrorStrainV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WA.ThinkingAboutErrors.Main=lmer(WA.ThinkingAboutErrorsV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WA.AffectiveRumination.Main=lmer(WA.AffectiveRuminationV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WA.Detachment.Main=lmer(WA.DetachmentV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WA.AffectiveCommitmentForWorkImprovment.Main=lmer(WA.AffectiveCommitmentForWorkImprovmentV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WA.DetachmentBasedRecoveryFromWork.Main=lmer(WA.DetachmentBasedRecoveryFromWorkV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WA.Gratitude.Main=lmer(WA.GratitudeV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WA.SegmentationFromWork.Main=lmer(WA.SegmentationFromWorkV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WP.TakingChargeBehaviorsForSystemImprovement.Main=lmer(WP.TakingChargeBehaviorsForSystemImprovementV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WP.VoiceForSystemImprovment.Main=lmer(WP.VoiceForSystemImprovmentV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WP.AIUsageForFacilitatingWork.Main=lmer(WP.AIUsageForFacilitatingWorkV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WP.LearningBehavior.Main=lmer(WP.LearningBehaviorV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WP.SystemPerformanceImprovementBehavior.Main=lmer(WP.SystemPerformanceImprovementBehaviorV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WP.AIEnabledInnovationBehavior.Main=lmer(WP.AIEnabledInnovationBehaviorV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WP.SocialLearning.Main=lmer(WP.SocialLearningV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WP.IndependentObservationBasedSocialLearning.Main=lmer(WP.IndependentObservationBasedSocialLearningV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WP.AdviceThinkingBasedSocialLearning.Main=lmer(WP.AdviceThinkingBasedSocialLearningV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WP.FeedbackSeekingForSystemImprovement.Main=lmer(WP.FeedbackSeekingForSystemImprovementV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WP.ConstructiveChallengingBehaviorForSystemImprovement.Main=lmer(WP.ConstructiveChallengingBehaviorForSystemImprovementV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WP.AIEnabledCreativity.Main=lmer(WP.AIEnabledCreativityV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WP.EmployeeWorkWellBeing.Main=lmer(WP.EmployeeWorkWellBeingV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WP.PerceivedWorkGrowth.Main=lmer(WP.PerceivedWorkGrowthV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WP.TaskPerformanceImprovement.Main=lmer(WP.TaskPerformanceImprovementV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WP.CreativeProcessEngagment.Main=lmer(WP.CreativeProcessEngagmentV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WP.SleepQuantity.Main=lmer(WP.SleepQuantityV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WP.FamilyMemberUnderming.Main=lmer(WP.FamilyMemberUndermingV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))
WP.FamilyMemberConflict.Main=lmer(WP.FamilyMemberConflictV.GroC~factor(W.X) + (factor(W.X)|B.ID), na.action = na.exclude, data = data2, control=lmerControl(optimizer="bobyqa"))

3.2 Results

print_table(WA.WorkReflectionForManipulationCheck.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.043 (0.034) 817.764 -1.250  .212    
## factor(W.X)1     0.028 (0.050) 678.788  0.573  .567    
## factor(W.X)2     0.099 (0.050) 631.648  1.982  .048 *  
## ───────────────────────────────────────────────────────
print_table(WA.PositiveWorkReflectionForManipulationCheck.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.032 (0.038) 818.000 -0.846  .398    
## factor(W.X)1    -0.001 (0.055) 457.142 -0.019  .985    
## factor(W.X)2     0.097 (0.055) 456.696  1.766  .078 .  
## ───────────────────────────────────────────────────────
print_table(WA.NegativeWorkReflectionForManipulationCheck.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.053 (0.046) 268.840 -1.153  .250    
## factor(W.X)1     0.058 (0.068) 163.000  0.853  .395    
## factor(W.X)2     0.102 (0.072) 163.000  1.406  .162    
## ───────────────────────────────────────────────────────
print_table(WA.ProblemSolvingPondering.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.020 (0.041) 602.084 -0.482  .630    
## factor(W.X)1     0.071 (0.061) 195.326  1.156  .249    
## factor(W.X)2    -0.011 (0.058) 618.607 -0.188  .851    
## ───────────────────────────────────────────────────────
print_table(WA.LearningFromOperationalFailure.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.086 (0.046) 981.000 -1.871  .062 .  
## factor(W.X)1     0.112 (0.065) 981.000  1.716  .086 .  
## factor(W.X)2     0.147 (0.065) 981.000  2.253  .024 *  
## ───────────────────────────────────────────────────────
print_table(WA.SelfReflectionForManipulationCheck.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.017 (0.041) 439.661 -0.405  .686    
## factor(W.X)1     0.041 (0.056) 783.901  0.734  .463    
## factor(W.X)2     0.008 (0.064) 175.620  0.130  .897    
## ───────────────────────────────────────────────────────
print_table(WA.RealizingTheNeedForRework.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)      0.022 (0.043) 806.192  0.506  .613    
## factor(W.X)1     0.050 (0.064) 453.496  0.775  .439    
## factor(W.X)2    -0.116 (0.067) 360.951 -1.741  .083 .  
## ───────────────────────────────────────────────────────
print_table(WA.TemperoalReflectionForManipulationCheck.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)      0.006 (0.045) 327.415  0.137  .891    
## factor(W.X)1     0.045 (0.060) 716.335  0.749  .454    
## factor(W.X)2    -0.063 (0.071) 165.485 -0.882  .379    
## ───────────────────────────────────────────────────────
print_table(WA.LearningFromErrors.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.019 (0.043) 816.383 -0.453  .651    
## factor(W.X)1     0.037 (0.063) 287.468  0.592  .554    
## factor(W.X)2     0.021 (0.063) 271.246  0.324  .746    
## ───────────────────────────────────────────────────────
print_table(WA.ThrivingInLearning.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)      0.005 (0.039) 807.934  0.134  .893    
## factor(W.X)1    -0.025 (0.058) 565.387 -0.434  .664    
## factor(W.X)2     0.009 (0.060) 427.064  0.153  .878    
## ───────────────────────────────────────────────────────
print_table(WA.CognitiveJobEngagement.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.029 (0.047) 374.114 -0.623  .534    
## factor(W.X)1     0.028 (0.064) 777.017  0.446  .655    
## factor(W.X)2     0.060 (0.075) 172.497  0.795  .427    
## ───────────────────────────────────────────────────────
print_table(WA.ErrorStrain.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)      0.048 (0.050) 295.724  0.962  .337    
## factor(W.X)1     0.029 (0.072) 163.000  0.400  .689    
## factor(W.X)2    -0.174 (0.075) 163.000 -2.319  .022 *  
## ───────────────────────────────────────────────────────
print_table(WA.ThinkingAboutErrors.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.015 (0.052) 299.763 -0.287  .774    
## factor(W.X)1     0.018 (0.076) 163.000  0.232  .817    
## factor(W.X)2     0.027 (0.079) 163.000  0.347  .729    
## ───────────────────────────────────────────────────────
print_table(WA.AffectiveRumination.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.049 (0.045) 331.482 -1.109  .268    
## factor(W.X)1     0.093 (0.066) 163.002  1.420  .158    
## factor(W.X)2     0.055 (0.067) 162.999  0.816  .415    
## ───────────────────────────────────────────────────────
print_table(WA.Detachment.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)      0.001 (0.046) 816.482  0.018  .986    
## factor(W.X)1     0.017 (0.067) 284.811  0.255  .799    
## factor(W.X)2    -0.020 (0.067) 269.221 -0.291  .772    
## ───────────────────────────────────────────────────────
print_table(WA.AffectiveCommitmentForWorkImprovment.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)      0.004 (0.049) 265.159  0.083  .934    
## factor(W.X)1    -0.041 (0.069) 163.000 -0.592  .554    
## factor(W.X)2     0.028 (0.074) 163.000  0.383  .702    
## ───────────────────────────────────────────────────────
print_table(WA.DetachmentBasedRecoveryFromWork.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.038 (0.044) 817.997 -0.873  .383    
## factor(W.X)1     0.093 (0.064) 676.220  1.462  .144    
## factor(W.X)2     0.021 (0.063) 757.806  0.328  .743    
## ───────────────────────────────────────────────────────
print_table(WA.Gratitude.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)      0.015 (0.046) 294.483  0.328  .743    
## factor(W.X)1    -0.005 (0.067) 163.000 -0.076  .940    
## factor(W.X)2    -0.041 (0.067) 163.000 -0.609  .543    
## ───────────────────────────────────────────────────────
print_table(WA.SegmentationFromWork.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.002 (0.050) 275.945 -0.036  .972    
## factor(W.X)1     0.021 (0.071) 163.000  0.300  .765    
## factor(W.X)2    -0.016 (0.073) 163.000 -0.219  .827    
## ───────────────────────────────────────────────────────
print_table(WP.TakingChargeBehaviorsForSystemImprovement.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.048 (0.042) 789.317 -1.146  .252    
## factor(W.X)1     0.104 (0.061) 519.546  1.711  .088 .  
## factor(W.X)2     0.040 (0.063) 361.035  0.629  .530    
## ───────────────────────────────────────────────────────
print_table(WP.VoiceForSystemImprovment.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.021 (0.040) 747.993 -0.517  .605    
## factor(W.X)1     0.057 (0.059) 329.456  0.970  .333    
## factor(W.X)2     0.005 (0.064) 240.137  0.076  .940    
## ───────────────────────────────────────────────────────
print_table(WP.AIUsageForFacilitatingWork.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.053 (0.045) 279.943 -1.182  .238    
## factor(W.X)1     0.129 (0.067) 163.000  1.913  .057 .  
## factor(W.X)2     0.029 (0.069) 163.000  0.430  .668    
## ───────────────────────────────────────────────────────
print_table(WP.LearningBehavior.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.048 (0.043) 550.586 -1.111  .267    
## factor(W.X)1     0.125 (0.061) 635.464  2.050  .041 *  
## factor(W.X)2     0.020 (0.066) 187.145  0.298  .766    
## ───────────────────────────────────────────────────────
print_table(WP.SystemPerformanceImprovementBehavior.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.026 (0.042) 817.997 -0.635  .525    
## factor(W.X)1     0.039 (0.065) 439.910  0.604  .546    
## factor(W.X)2     0.040 (0.065) 437.311  0.622  .534    
## ───────────────────────────────────────────────────────
print_table(WP.AIEnabledInnovationBehavior.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.016 (0.043) 800.195 -0.365  .715    
## factor(W.X)1     0.098 (0.062) 599.027  1.589  .113    
## factor(W.X)2    -0.051 (0.063) 359.974 -0.806  .421    
## ───────────────────────────────────────────────────────
print_table(WP.SocialLearning.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.063 (0.042) 774.527 -1.483  .139    
## factor(W.X)1     0.117 (0.064) 226.343  1.821  .070 .  
## factor(W.X)2     0.072 (0.062) 328.031  1.169  .243    
## ───────────────────────────────────────────────────────
print_table(WP.IndependentObservationBasedSocialLearning.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.083 (0.051) 817.946 -1.649  .099 .  
## factor(W.X)1     0.172 (0.074) 687.220  2.332  .020 *  
## factor(W.X)2     0.078 (0.073) 791.568  1.064  .288    
## ───────────────────────────────────────────────────────
print_table(WP.AdviceThinkingBasedSocialLearning.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.043 (0.054) 254.983 -0.788  .431    
## factor(W.X)1     0.061 (0.081) 163.000  0.751  .453    
## factor(W.X)2     0.067 (0.082) 163.000  0.821  .413    
## ───────────────────────────────────────────────────────
print_table(WP.FeedbackSeekingForSystemImprovement.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.054 (0.043) 663.490 -1.260  .208    
## factor(W.X)1     0.106 (0.060) 568.205  1.757  .079 .  
## factor(W.X)2     0.055 (0.065) 222.221  0.851  .396    
## ───────────────────────────────────────────────────────
print_table(WP.ConstructiveChallengingBehaviorForSystemImprovement.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.028 (0.042) 322.451 -0.666  .506    
## factor(W.X)1     0.074 (0.062) 163.000  1.208  .229    
## factor(W.X)2     0.009 (0.064) 163.000  0.143  .886    
## ───────────────────────────────────────────────────────
print_table(WP.AIEnabledCreativity.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)      0.020 (0.043) 715.877  0.457  .648    
## factor(W.X)1     0.006 (0.062) 394.777  0.099  .921    
## factor(W.X)2    -0.065 (0.065) 212.034 -1.000  .319    
## ───────────────────────────────────────────────────────
print_table(WP.EmployeeWorkWellBeing.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.066 (0.042) 753.374 -1.549  .122    
## factor(W.X)1     0.129 (0.062) 272.990  2.083  .038 *  
## factor(W.X)2     0.068 (0.064) 196.168  1.053  .293    
## ───────────────────────────────────────────────────────
print_table(WP.PerceivedWorkGrowth.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.058 (0.042) 815.784 -1.398  .163    
## factor(W.X)1     0.124 (0.062) 573.872  1.987  .047 *  
## factor(W.X)2     0.051 (0.065) 456.131  0.780  .436    
## ───────────────────────────────────────────────────────
print_table(WP.TaskPerformanceImprovement.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)     -0.016 (0.040) 799.812 -0.405  .686    
## factor(W.X)1     0.046 (0.059) 287.502  0.773  .440    
## factor(W.X)2     0.003 (0.060) 238.424  0.051  .960    
## ───────────────────────────────────────────────────────
print_table(WP.CreativeProcessEngagment.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)      0.012 (0.040) 806.735  0.305  .761    
## factor(W.X)1    -0.001 (0.059) 302.461 -0.017  .986    
## factor(W.X)2    -0.036 (0.060) 259.750 -0.589  .556    
## ───────────────────────────────────────────────────────
print_table(WP.SleepQuantity.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)      0.041 (0.075) 430.408  0.549  .583    
## factor(W.X)1     0.002 (0.103) 777.185  0.021  .984    
## factor(W.X)2    -0.128 (0.116) 172.328 -1.099  .273    
## ───────────────────────────────────────────────────────
print_table(WP.FamilyMemberUnderming.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)      0.011 (0.032) 817.997  0.360  .719    
## factor(W.X)1    -0.019 (0.046) 250.728 -0.415  .679    
## factor(W.X)2    -0.015 (0.046) 250.101 -0.332  .740    
## ───────────────────────────────────────────────────────
print_table(WP.FamilyMemberConflict.Main)
## ───────────────────────────────────────────────────────
##               Estimate    S.E.      df      t     p    
## ───────────────────────────────────────────────────────
## (Intercept)      0.019 (0.030) 307.037  0.626  .532    
## factor(W.X)1    -0.043 (0.043) 162.999 -1.001  .318    
## factor(W.X)2    -0.014 (0.045) 163.000 -0.308  .758    
## ───────────────────────────────────────────────────────