TireRatings show survey Purchase Model

Project Objective

To investigate the relationship between the Wet and Noise performance ratings and their impact on Purchase

Step 1: Load the required libraries

library(readxl) #allows us to import excel file
## Warning: 套件 'readxl' 是用 R 版本 4.3.3 來建造的
library(Hmisc) #allows us to call the correlation function
## Warning: 套件 'Hmisc' 是用 R 版本 4.3.3 來建造的
## 
## 載入套件:'Hmisc'
## 下列物件被遮斷自 'package:base':
## 
##     format.pval, units
library(pscl) #allows us to call the pseudo R-square package to evaluate our model
## Warning: 套件 'pscl' 是用 R 版本 4.3.3 來建造的
## Classes and Methods for R originally developed in the
## Political Science Computational Laboratory
## Department of Political Science
## Stanford University (2002-2015),
## by and under the direction of Simon Jackman.
## hurdle and zeroinfl functions by Achim Zeileis.
library(pROC)
## Warning: 套件 'pROC' 是用 R 版本 4.3.3 來建造的
## Type 'citation("pROC")' for a citation.
## 
## 載入套件:'pROC'
## 下列物件被遮斷自 'package:stats':
## 
##     cov, smooth, var

Step 2: Import and clean the data

df<-read_excel("Class Exercise 15_TireRatings.xlsx")
coll_df<- subset(df, select= -c(Buy_Again,Tire)) #drop irrelevant column

Step 3: Summarize the data

head(coll_df)
## # A tibble: 6 × 3
##     Wet Noise Purchase
##   <dbl> <dbl>    <dbl>
## 1   8     7.2        0
## 2   8     7.2        1
## 3   7.6   7.5        1
## 4   6.6   5.4        0
## 5   5.8   6.3        0
## 6   6.3   5.7        0
summary(coll_df)
##       Wet            Noise          Purchase     
##  Min.   :4.300   Min.   :3.600   Min.   :0.0000  
##  1st Qu.:6.450   1st Qu.:6.000   1st Qu.:0.0000  
##  Median :7.750   Median :7.100   Median :0.0000  
##  Mean   :7.315   Mean   :6.903   Mean   :0.4412  
##  3rd Qu.:8.225   3rd Qu.:7.925   3rd Qu.:1.0000  
##  Max.   :9.200   Max.   :8.900   Max.   :1.0000

Step 4: Feature selection (correlation analysis)

corr<- rcorr(as.matrix(coll_df))
corr
##           Wet Noise Purchase
## Wet      1.00  0.76     0.74
## Noise    0.76  1.00     0.72
## Purchase 0.74  0.72     1.00
## 
## n= 68 
## 
## 
## P
##          Wet Noise Purchase
## Wet           0     0      
## Noise     0         0      
## Purchase  0   0
Interpretation: All the predictors are significant with the target variable

Step 5: Logistic Regression Model

model<-glm(Purchase~ Wet+Noise, family=binomial, data=df)
summary(model)
## 
## Call:
## glm(formula = Purchase ~ Wet + Noise, family = binomial, data = df)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -39.4982    12.4779  -3.165  0.00155 **
## Wet           3.3745     1.2641   2.670  0.00760 **
## Noise         1.8163     0.8312   2.185  0.02887 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 93.325  on 67  degrees of freedom
## Residual deviance: 27.530  on 65  degrees of freedom
## AIC: 33.53
## 
## Number of Fisher Scoring iterations: 8

Step 6 Overall Model Significance

Pseudo-R-squared

pR2(model)
## fitting null model for pseudo-r2
##         llh     llhNull          G2    McFadden        r2ML        r2CU 
## -13.7649516 -46.6623284  65.7947536   0.7050093   0.6199946   0.8305269
McFadden is 0.71

Step 7 Predicting with New Information and the probability

newdata<-data.frame(Wet=8, Noise=8)
predicted_prob <- predict(model, newdata, type = "response")
predicted_prob*100
##        1 
## 88.36964
newdata2<-data.frame(Wet=7, Noise=7) 
predicted_prob2 <- predict(model, newdata2, type = "response")
predicted_prob2*100
##        1 
## 4.058753
Results:
predicted_prob*100=88.36964 
predicted_prob2*100=4.058753