library(dplyr)#funktsioonid: select, filter,
library(reshape2)#functions: dcast()
library(ggplot2)
library(plyr)#funktsioon ddply
library(htmlTable) #htmlTable()
library(psych)#describeBy
library(reshape2) #melt
library(plotly)#plotlyga ühenduse loomiseks
setwd("C:/Users/Martin/Documents/Bitbucket/MIDIATAnalysis/AffectGrid")
data_subjects <- read.csv("subjects.csv", header=TRUE, sep=";")
data_All_Wtrials <- read.csv("subjects_trials.csv", header=TRUE, sep=",")
data_All_words <- read.csv("affect_results.csv", header=TRUE, sep=",")
data_trials <- read.csv("selectedWords.csv", header=TRUE, sep=",")
data_words <- read.csv("selectedWordsResults.csv", header=TRUE, sep=",")
Words
levels(droplevels(filter(data_words, trial == "High")$stimuli))
## [1] "äike" "kiskja" "raev" "süstal" "terav" "torm" "tung" "võimas"
levels(droplevels(filter(data_words, trial == "Low")$stimuli))
## [1] "madal" "nööp" "pliiats" "põõsas" "sokk" "sulg" "tigu"
## [8] "tolm"
levels(droplevels(filter(data_words, trial == "Positive")$stimuli))
## [1] "ilus" "kaunis" "lemmik" "mõnus" "päike" "parim" "rahu"
## [8] "unistus"
levels(droplevels(filter(data_words, trial == "Negative")$stimuli))
## [1] "haigus" "kaklus" "kaotus" "mürk" "pettus" "pomm" "valus" "varas"
describe(data_subjects$age)
## vars n mean sd median trimmed mad min max range skew kurtosis se
## 1 1 68 28.97 9.16 27 27.39 5.19 19 66 47 2.15 5.18 1.11
summary(data_subjects$gender)
## M N
## 19 49
summary(data_subjects$education)
## kesk- või kutseharidus kõrgharidus
## 5 63
summary(data_subjects$language)
## eesti vene
## 67 1
summary(data_subjects$skill)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.000 5.000 6.000 5.794 6.000 7.000
## Kasutatud andmestik - hinnangute keskmised
vtable <- describeBy(data_words[,8:9],data_words$trial)
vmat <- as.matrix(round((do.call(rbind.data.frame, vtable)), digits = 2))
htmlTable(vmat, caption="HINNANGUD",col.columns = c("none", "#F7F7F7"), css.cell = "padding-left: .7em; padding-right: .7em;", tfoot="† V - valents; I - intensiivsus; Z - standardiseeritud tulemustega arvutatud")
| HINNANGUD | |||||||||||||
| vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| High.ZVkeskmine | 1 | 8 | -0.22 | 0.67 | -0.16 | -0.22 | 0.48 | -1.28 | 0.86 | 2.14 | -0.07 | -1.2 | 0.24 |
| High.ZIkeskmine | 2 | 8 | 0.35 | 0.32 | 0.25 | 0.35 | 0.33 | -0.03 | 0.82 | 0.85 | 0.33 | -1.71 | 0.11 |
| Low.ZVkeskmine | 1 | 8 | -0.05 | 0.34 | 0.06 | -0.05 | 0.16 | -0.8 | 0.26 | 1.06 | -1.12 | -0.16 | 0.12 |
| Low.ZIkeskmine | 2 | 8 | -0.89 | 0.1 | -0.89 | -0.89 | 0.08 | -1.02 | -0.71 | 0.3 | 0.29 | -1.08 | 0.03 |
| Negative.ZVkeskmine | 1 | 8 | -1.31 | 0.05 | -1.3 | -1.31 | 0.06 | -1.4 | -1.26 | 0.14 | -0.42 | -1.61 | 0.02 |
| Negative.ZIkeskmine | 2 | 8 | 0.32 | 0.12 | 0.37 | 0.32 | 0.13 | 0.15 | 0.46 | 0.31 | -0.25 | -1.93 | 0.04 |
| Positive.ZVkeskmine | 1 | 8 | 1.05 | 0.07 | 1.06 | 1.05 | 0.06 | 0.92 | 1.12 | 0.21 | -0.77 | -0.51 | 0.02 |
| Positive.ZIkeskmine | 2 | 8 | 0.45 | 0.13 | 0.43 | 0.45 | 0.11 | 0.28 | 0.7 | 0.42 | 0.58 | -0.86 | 0.05 |
| †V - valents; I - intensiivsus; Z - standardiseeritud tulemustega arvutatud | |||||||||||||
## Using stimuli, trial as id variables
VALENCE
# One Way ANOVA - valents
aov_val <- aov(Vkeskmine~trial, data = data_words)
summary(aov_val)
## Df Sum Sq Mean Sq F value Pr(>F)
## trial 3 66969 22323 51.4 1.64e-11 ***
## Residuals 28 12160 434
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Millised grupid erinevad valnetsi poolest:
tkV <- TukeyHSD(aov_val)
tkV
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Vkeskmine ~ trial, data = data_words)
##
## $trial
## diff lwr upr p adj
## Low-High 9.801751 -18.64719 38.25069 0.7833670
## Negative-High -59.681025 -88.12996 -31.23208 0.0000218
## Positive-High 69.338743 40.88980 97.78768 0.0000019
## Negative-Low -69.482776 -97.93172 -41.03384 0.0000018
## Positive-Low 59.536992 31.08805 87.98593 0.0000226
## Positive-Negative 129.019767 100.57083 157.46871 0.0000000
plot(tkV, las = 1,cex.axis = 0.5)
# One Way ANOVA - intensiivsus
aov_int<- aov(Ikeskmine~trial, data = data_words)
summary(aov_int)
## Df Sum Sq Mean Sq F value Pr(>F)
## trial 3 6923 2308 96.25 7.39e-15 ***
## Residuals 28 671 24
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Millised grupid erinevad intensiivsuse poolest:
tkI <- TukeyHSD(aov_int)
tkI
## Tukey multiple comparisons of means
## 95% family-wise confidence level
##
## Fit: aov(formula = Ikeskmine ~ trial, data = data_words)
##
## $trial
## diff lwr upr p adj
## Low-High -33.797566 -40.482270 -27.112862 0.0000000
## Negative-High -1.224822 -7.909526 5.459882 0.9583292
## Positive-High 1.515681 -5.169023 8.200385 0.9251204
## Negative-Low 32.572744 25.888040 39.257448 0.0000000
## Positive-Low 35.313247 28.628543 41.997951 0.0000000
## Positive-Negative 2.740503 -3.944201 9.425207 0.6808881
plot(tkI, las = 1,cex.axis = 0.5)