# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062308150 -0.0029356838  0.0366064856  0.052132890  4.992337e-02
## 2013-02-28  0.0058911696 -0.0231051198 -0.0129696594  0.016175778  1.267792e-02
## 2013-03-28  0.0009845151 -0.0102350096  0.0129696594  0.040258198  3.726780e-02
## 2013-04-30  0.0096392466  0.0120845638  0.0489674502  0.001222264  1.903030e-02
## 2013-05-31 -0.0202141935 -0.0494835016 -0.0306555106  0.041976583  2.333550e-02
## 2013-06-28 -0.0157781565 -0.0547283983 -0.0271445640 -0.001402752 -1.343458e-02
## 2013-07-31  0.0026880972  0.0131599494  0.0518604391  0.063541155  5.038611e-02
## 2013-08-30 -0.0082982869 -0.0257058023 -0.0197463768 -0.034743747 -3.045114e-02
## 2013-09-30  0.0111438890  0.0695890311  0.0753385871  0.063873757  3.115621e-02
## 2013-10-31  0.0082916556  0.0408612969  0.0320816361  0.034234287  4.526635e-02
## 2013-11-29 -0.0025095664 -0.0025941415  0.0054497013  0.041661174  2.920682e-02
## 2013-12-31 -0.0055829968 -0.0040743618  0.0215279768  0.012892044  2.559627e-02
## 2014-01-31  0.0152918009 -0.0903222466 -0.0534131431 -0.035775325 -3.588464e-02
## 2014-02-28  0.0037566419  0.0332201044  0.0595050034  0.045257415  4.451020e-02
## 2014-03-31 -0.0014813658  0.0380219391 -0.0046027210  0.013315354  8.261416e-03
## 2014-04-30  0.0081830887  0.0077723946  0.0165293717 -0.023184439  6.927372e-03
## 2014-05-30  0.0117212684  0.0290915352  0.0158286510  0.006205304  2.294138e-02
## 2014-06-30 -0.0005749634  0.0237339410  0.0091652585  0.037718882  2.043469e-02
## 2014-07-31 -0.0025125663  0.0135554632 -0.0263796293 -0.052009446 -1.352883e-02
## 2014-08-29  0.0114307684  0.0279043677  0.0018003463  0.043657812  3.870465e-02
## 2014-09-30 -0.0061680562 -0.0808564801 -0.0395986488 -0.061260380 -1.389201e-02
## 2014-10-31  0.0105853723  0.0140966785 -0.0026548115  0.068874663  2.327733e-02
## 2014-11-28  0.0065482529 -0.0155410658  0.0006253893  0.004773795  2.710176e-02
## 2014-12-31  0.0014749170 -0.0404426885 -0.0407467308  0.025295755 -2.539661e-03
## 2015-01-30  0.0203157151 -0.0068957375  0.0062265051 -0.054627975 -3.007725e-02
## 2015-02-27 -0.0089882748  0.0431364883  0.0614506173  0.056914793  5.468198e-02
## 2015-03-31  0.0037403336 -0.0150865983 -0.0143887061  0.010156313 -1.583054e-02
## 2015-04-30 -0.0032330288  0.0662815314  0.0358166550 -0.018417668  9.786040e-03
## 2015-05-29 -0.0043834705 -0.0419111291  0.0019524968  0.007509799  1.277405e-02
## 2015-06-30 -0.0108260735 -0.0297464970 -0.0316788276  0.004171521 -2.052110e-02
## 2015-07-31  0.0085847517 -0.0651780006  0.0201145601 -0.027375593  2.233772e-02
## 2015-08-31 -0.0033635524 -0.0925125919 -0.0771523212 -0.047268429 -6.288643e-02
## 2015-09-30  0.0080812015 -0.0318251356 -0.0451950615 -0.038464387 -2.584714e-02
## 2015-10-30  0.0006857377  0.0618086496  0.0640261348  0.063589469  8.163487e-02
## 2015-11-30 -0.0038985160 -0.0255606045 -0.0075560418  0.024415265  3.648363e-03
## 2015-12-31 -0.0019186283 -0.0389470337 -0.0235950294 -0.052156831 -1.743339e-02
## 2016-01-29  0.0123292138 -0.0516366758 -0.0567578198 -0.060307199 -5.106857e-02
## 2016-02-29  0.0088321046 -0.0082117558 -0.0339140842  0.020605378 -8.263021e-04
## 2016-03-31  0.0087092146  0.1218790692  0.0637457852  0.089910414  6.510006e-02
## 2016-04-29  0.0025461994  0.0040792829  0.0219751842  0.021044310  3.933565e-03
## 2016-05-31  0.0001355718 -0.0376284413 -0.0008560460  0.004397040  1.686846e-02
## 2016-06-30  0.0191662449  0.0445822695 -0.0244914502  0.008292326  3.469884e-03
## 2016-07-29  0.0054296978  0.0524420968  0.0390001108  0.049348375  3.582190e-02
## 2016-08-31 -0.0021560111  0.0087987255  0.0053270274  0.011260969  1.196574e-03
## 2016-09-30  0.0005158887  0.0248727521  0.0132791564  0.008614737  5.837816e-05
## 2016-10-31 -0.0082053141 -0.0083120694 -0.0224039124 -0.038135003 -1.748913e-02
## 2016-11-30 -0.0259897901 -0.0451618964 -0.0179745681  0.125246573  3.617606e-02
## 2016-12-30  0.0025385905 -0.0025301383  0.0267031121  0.031491677  2.006893e-02
## 2017-01-31  0.0021259009  0.0644317677  0.0323817944 -0.012143909  1.773654e-02
## 2017-02-28  0.0064379319  0.0172576588  0.0118363924  0.013428932  3.853926e-02
## 2017-03-31 -0.0005532178  0.0361893278  0.0318057133 -0.006533142  1.249013e-03
## 2017-04-28  0.0090296803  0.0168660577  0.0239522905  0.005107835  9.877237e-03
## 2017-05-31  0.0068470954  0.0280599865  0.0348102570 -0.022862750  1.401409e-02
## 2017-06-30 -0.0001826117  0.0092237649  0.0029558545  0.029151874  6.354976e-03
## 2017-07-31  0.0033343006  0.0565943378  0.0261877980  0.007481616  2.034593e-02
## 2017-08-31  0.0093693306  0.0232440751 -0.0004483634 -0.027564920  2.913308e-03
## 2017-09-29 -0.0057320856 -0.0004463953  0.0233428466  0.082321963  1.994921e-02
## 2017-10-31  0.0009774187  0.0322786679  0.0166537315  0.005915972  2.329061e-02
## 2017-11-30 -0.0014838915 -0.0038971454  0.0068699050  0.036913066  3.010800e-02
## 2017-12-29  0.0047403713  0.0369254897  0.0133984695 -0.003731026  1.205500e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398441e-05 0.0001042113 4.178471e-05 -7.811614e-05 -9.029980e-06
## EEM  1.042113e-04 0.0017547136 1.039019e-03  6.437730e-04  6.795431e-04
## EFA  4.178471e-05 0.0010390188 1.064239e-03  6.490295e-04  6.975410e-04
## IJS -7.811614e-05 0.0006437730 6.490295e-04  1.565452e-03  8.290244e-04
## SPY -9.029980e-06 0.0006795431 6.975410e-04  8.290244e-04  7.408279e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347494
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA        IJS         SPY
## [1,] 0.0003874308 0.009257149 0.005815638 0.00568447 0.002330248
rowSums(component_contribution)
## [1] 0.02347494
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%
    
    pivot_wider(names_from = asset, values_from = returns) %>%
    
    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062308150 -0.0029356838  0.0366064856  0.052132890  4.992337e-02
## 2013-02-28  0.0058911696 -0.0231051198 -0.0129696594  0.016175778  1.267792e-02
## 2013-03-28  0.0009845151 -0.0102350096  0.0129696594  0.040258198  3.726780e-02
## 2013-04-30  0.0096392466  0.0120845638  0.0489674502  0.001222264  1.903030e-02
## 2013-05-31 -0.0202141935 -0.0494835016 -0.0306555106  0.041976583  2.333550e-02
## 2013-06-28 -0.0157781565 -0.0547283983 -0.0271445640 -0.001402752 -1.343458e-02
## 2013-07-31  0.0026880972  0.0131599494  0.0518604391  0.063541155  5.038611e-02
## 2013-08-30 -0.0082982869 -0.0257058023 -0.0197463768 -0.034743747 -3.045114e-02
## 2013-09-30  0.0111438890  0.0695890311  0.0753385871  0.063873757  3.115621e-02
## 2013-10-31  0.0082916556  0.0408612969  0.0320816361  0.034234287  4.526635e-02
## 2013-11-29 -0.0025095664 -0.0025941415  0.0054497013  0.041661174  2.920682e-02
## 2013-12-31 -0.0055829968 -0.0040743618  0.0215279768  0.012892044  2.559627e-02
## 2014-01-31  0.0152918009 -0.0903222466 -0.0534131431 -0.035775325 -3.588464e-02
## 2014-02-28  0.0037566419  0.0332201044  0.0595050034  0.045257415  4.451020e-02
## 2014-03-31 -0.0014813658  0.0380219391 -0.0046027210  0.013315354  8.261416e-03
## 2014-04-30  0.0081830887  0.0077723946  0.0165293717 -0.023184439  6.927372e-03
## 2014-05-30  0.0117212684  0.0290915352  0.0158286510  0.006205304  2.294138e-02
## 2014-06-30 -0.0005749634  0.0237339410  0.0091652585  0.037718882  2.043469e-02
## 2014-07-31 -0.0025125663  0.0135554632 -0.0263796293 -0.052009446 -1.352883e-02
## 2014-08-29  0.0114307684  0.0279043677  0.0018003463  0.043657812  3.870465e-02
## 2014-09-30 -0.0061680562 -0.0808564801 -0.0395986488 -0.061260380 -1.389201e-02
## 2014-10-31  0.0105853723  0.0140966785 -0.0026548115  0.068874663  2.327733e-02
## 2014-11-28  0.0065482529 -0.0155410658  0.0006253893  0.004773795  2.710176e-02
## 2014-12-31  0.0014749170 -0.0404426885 -0.0407467308  0.025295755 -2.539661e-03
## 2015-01-30  0.0203157151 -0.0068957375  0.0062265051 -0.054627975 -3.007725e-02
## 2015-02-27 -0.0089882748  0.0431364883  0.0614506173  0.056914793  5.468198e-02
## 2015-03-31  0.0037403336 -0.0150865983 -0.0143887061  0.010156313 -1.583054e-02
## 2015-04-30 -0.0032330288  0.0662815314  0.0358166550 -0.018417668  9.786040e-03
## 2015-05-29 -0.0043834705 -0.0419111291  0.0019524968  0.007509799  1.277405e-02
## 2015-06-30 -0.0108260735 -0.0297464970 -0.0316788276  0.004171521 -2.052110e-02
## 2015-07-31  0.0085847517 -0.0651780006  0.0201145601 -0.027375593  2.233772e-02
## 2015-08-31 -0.0033635524 -0.0925125919 -0.0771523212 -0.047268429 -6.288643e-02
## 2015-09-30  0.0080812015 -0.0318251356 -0.0451950615 -0.038464387 -2.584714e-02
## 2015-10-30  0.0006857377  0.0618086496  0.0640261348  0.063589469  8.163487e-02
## 2015-11-30 -0.0038985160 -0.0255606045 -0.0075560418  0.024415265  3.648363e-03
## 2015-12-31 -0.0019186283 -0.0389470337 -0.0235950294 -0.052156831 -1.743339e-02
## 2016-01-29  0.0123292138 -0.0516366758 -0.0567578198 -0.060307199 -5.106857e-02
## 2016-02-29  0.0088321046 -0.0082117558 -0.0339140842  0.020605378 -8.263021e-04
## 2016-03-31  0.0087092146  0.1218790692  0.0637457852  0.089910414  6.510006e-02
## 2016-04-29  0.0025461994  0.0040792829  0.0219751842  0.021044310  3.933565e-03
## 2016-05-31  0.0001355718 -0.0376284413 -0.0008560460  0.004397040  1.686846e-02
## 2016-06-30  0.0191662449  0.0445822695 -0.0244914502  0.008292326  3.469884e-03
## 2016-07-29  0.0054296978  0.0524420968  0.0390001108  0.049348375  3.582190e-02
## 2016-08-31 -0.0021560111  0.0087987255  0.0053270274  0.011260969  1.196574e-03
## 2016-09-30  0.0005158887  0.0248727521  0.0132791564  0.008614737  5.837816e-05
## 2016-10-31 -0.0082053141 -0.0083120694 -0.0224039124 -0.038135003 -1.748913e-02
## 2016-11-30 -0.0259897901 -0.0451618964 -0.0179745681  0.125246573  3.617606e-02
## 2016-12-30  0.0025385905 -0.0025301383  0.0267031121  0.031491677  2.006893e-02
## 2017-01-31  0.0021259009  0.0644317677  0.0323817944 -0.012143909  1.773654e-02
## 2017-02-28  0.0064379319  0.0172576588  0.0118363924  0.013428932  3.853926e-02
## 2017-03-31 -0.0005532178  0.0361893278  0.0318057133 -0.006533142  1.249013e-03
## 2017-04-28  0.0090296803  0.0168660577  0.0239522905  0.005107835  9.877237e-03
## 2017-05-31  0.0068470954  0.0280599865  0.0348102570 -0.022862750  1.401409e-02
## 2017-06-30 -0.0001826117  0.0092237649  0.0029558545  0.029151874  6.354976e-03
## 2017-07-31  0.0033343006  0.0565943378  0.0261877980  0.007481616  2.034593e-02
## 2017-08-31  0.0093693306  0.0232440751 -0.0004483634 -0.027564920  2.913308e-03
## 2017-09-29 -0.0057320856 -0.0004463953  0.0233428466  0.082321963  1.994921e-02
## 2017-10-31  0.0009774187  0.0322786679  0.0166537315  0.005915972  2.329061e-02
## 2017-11-30 -0.0014838915 -0.0038971454  0.0068699050  0.036913066  3.010800e-02
## 2017-12-29  0.0047403713  0.0369254897  0.0133984695 -0.003731026  1.205500e-02
calculate_component_contribution <- function(.data, w) {
    
        covariance_matrix <- cov(.data)
    
    # Standard deviation of portfolio
    # Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
   
    
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
    
    # Component contribution
    # Similar to the formula for sd_portfolio
    # Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
    
    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    return(component_percentages)
    
}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .2, .2, .1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

column chart of component contribution

plot_data <- asset_returns_wide_tbl %>%
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long form
    pivot_longer(cols = everything(), names_to = "asset", values_to = "contribution") %>%
    
    # Add Weights
    add_column(weight = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long 
    pivot_longer(cols = c(contribution, weight), names_to = "type", values_to = "value")

plot_data %>%
    
    ggplot(aes(x = asset, y = value, fill = type)) +
    geom_col(position = "dodge") +
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    scale_fill_tq() +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme_tq()

     labs(title = "Percent Contribution to Portfolio Volatility",
          y = "Percent",
          x = NULL) 
## $y
## [1] "Percent"
## 
## $x
## NULL
## 
## $title
## [1] "Percent Contribution to Portfolio Volatility"
## 
## attr(,"class")
## [1] "labels"

6 Rolling Component Contribution

Column C