# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062310302 -0.0029357944  0.0366061226  0.052132974  4.992330e-02
## 2013-02-28  0.0058912506 -0.0231051224 -0.0129692964  0.016175033  1.267804e-02
## 2013-03-28  0.0009847176 -0.0102348964  0.0129692964  0.040258510  3.726785e-02
## 2013-04-30  0.0096393918  0.0120846767  0.0489679861  0.001222466  1.903006e-02
## 2013-05-31 -0.0202140267 -0.0494833772 -0.0306557725  0.041976280  2.333539e-02
## 2013-06-28 -0.0157785582 -0.0547284477 -0.0271442001 -0.001403043 -1.343435e-02
## 2013-07-31  0.0026881351  0.0131596377  0.0518602514  0.063541264  5.038611e-02
## 2013-08-30 -0.0082982987 -0.0257054247 -0.0197464637 -0.034743377 -3.045137e-02
## 2013-09-30  0.0111438853  0.0695886588  0.0753388338  0.063873833  3.115588e-02
## 2013-10-31  0.0082921216  0.0408614153  0.0320815486  0.034233936  4.526648e-02
## 2013-11-29 -0.0025102685 -0.0025940275  0.0054495420  0.041661342  2.920745e-02
## 2013-12-31 -0.0055823267 -0.0040742469  0.0215279768  0.012891881  2.559577e-02
## 2014-01-31  0.0152911372 -0.0903229138 -0.0534133066 -0.035775161 -3.588454e-02
## 2014-02-28  0.0037575014  0.0332209062  0.0595049358  0.045257171  4.451040e-02
## 2014-03-31 -0.0014820946  0.0380214590 -0.0046026447  0.013315435  8.261317e-03
## 2014-04-30  0.0081835703  0.0077728584  0.0165296788 -0.023184441  6.927763e-03
## 2014-05-30  0.0117212260  0.0290910756  0.0158281240  0.006205867  2.294099e-02
## 2014-06-30 -0.0005755764  0.0237339436  0.0091656332  0.037718555  2.043469e-02
## 2014-07-31 -0.0025124754  0.0135556813 -0.0263800106 -0.052009682 -1.352873e-02
## 2014-08-29  0.0114309519  0.0279047860  0.0018005753  0.043657972  3.870455e-02
## 2014-09-30 -0.0061678396 -0.0808572351 -0.0395982591 -0.061260541 -1.389192e-02
## 2014-10-31  0.0105850727  0.0140967943 -0.0026548903  0.068874978  2.327751e-02
## 2014-11-28  0.0065486274 -0.0155412963  0.0006253098  0.004773794  2.710140e-02
## 2014-12-31  0.0014755964 -0.0404421073 -0.0407467275  0.025295825 -2.539750e-03
## 2015-01-30  0.0203150420 -0.0068959157  0.0062264224 -0.054628117 -3.007699e-02
## 2015-02-27 -0.0089884231  0.0431363135  0.0614505401  0.056914634  5.468163e-02
## 2015-03-31  0.0037400416 -0.0150863669 -0.0143887072  0.010156461 -1.583011e-02
## 2015-04-30 -0.0032326512  0.0662816331  0.0358165822 -0.018417967  9.785865e-03
## 2015-05-29 -0.0043836431 -0.0419113473  0.0019525726  0.007510025  1.277439e-02
## 2015-06-30 -0.0108256963 -0.0297464970 -0.0316787522  0.004171520 -2.052118e-02
## 2015-07-31  0.0085844664 -0.0651779380  0.0201147128 -0.027375361  2.233763e-02
## 2015-08-31 -0.0033636570 -0.0925126544 -0.0771527212 -0.047268737 -6.288669e-02
## 2015-09-30  0.0080814315 -0.0318249940 -0.0451949005 -0.038464554 -2.584686e-02
## 2015-10-30  0.0006857602  0.0618084413  0.0640259784  0.063589794  8.163460e-02
## 2015-11-30 -0.0038984862 -0.0255605379 -0.0075557990  0.024415184  3.648876e-03
## 2015-12-31 -0.0019189447 -0.0389469627 -0.0235948625 -0.052156908 -1.743408e-02
## 2016-01-29  0.0123299537 -0.0516368964 -0.0567581634 -0.060306942 -5.106849e-02
## 2016-02-29  0.0088317452 -0.0082113800 -0.0339135419  0.020604953 -8.263023e-04
## 2016-03-31  0.0087088917  0.1218789097  0.0637455054  0.089910582  6.510024e-02
## 2016-04-29  0.0025456310  0.0040792162  0.0219750146  0.021044159  3.933565e-03
## 2016-05-31  0.0001356518 -0.0376285104 -0.0008560461  0.004397266  1.686863e-02
## 2016-06-30  0.0191668683  0.0445823386 -0.0244915383  0.008292177  3.469632e-03
## 2016-07-29  0.0054297554  0.0524423474  0.0390003656  0.049348308  3.582191e-02
## 2016-08-31 -0.0021560291  0.0087984749  0.0053267801  0.011261181  1.196978e-03
## 2016-09-30  0.0005157352  0.0248729944  0.0132790773  0.008614667  5.781295e-05
## 2016-10-31 -0.0082053034 -0.0083124950 -0.0224035026 -0.038134715 -1.748897e-02
## 2016-11-30 -0.0259897210 -0.0451617770 -0.0179744805  0.125246158  3.617590e-02
## 2016-12-30  0.0025381854 -0.0025298182  0.0267029407  0.031491742  2.006909e-02
## 2017-01-31  0.0021261333  0.0644313313  0.0323816323 -0.012143535  1.773662e-02
## 2017-02-28  0.0064377760  0.0172579571  0.0118365508  0.013428559  3.853934e-02
## 2017-03-31 -0.0005523639  0.0361887542  0.0318057108 -0.006533266  1.249160e-03
## 2017-04-28  0.0090289412  0.0168665132  0.0239520652  0.005108021  9.877162e-03
## 2017-05-31  0.0068475871  0.0280598776  0.0348102620 -0.022862561  1.401416e-02
## 2017-06-30 -0.0001827592  0.0092238738  0.0029559267  0.029151379  6.354832e-03
## 2017-07-31  0.0033343179  0.0565945416  0.0261879397  0.007481983  2.034572e-02
## 2017-08-31  0.0093691971  0.0232437716 -0.0004481536 -0.027564793  2.913448e-03
## 2017-09-29 -0.0057320477 -0.0004462957  0.0233427719  0.082321891  1.994894e-02
## 2017-10-31  0.0009778673  0.0322784749  0.0166535266  0.005916086  2.329089e-02
## 2017-11-30 -0.0014840711 -0.0038967587  0.0068699718  0.036912838  3.010800e-02
## 2017-12-29  0.0047404056  0.0369252960  0.0133984028 -0.003730915  1.205500e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398424e-05 0.0001042128 4.178514e-05 -7.811683e-05 -9.029307e-06
## EEM  1.042128e-04 0.0017547145 1.039018e-03  6.437774e-04  6.795432e-04
## EFA  4.178514e-05 0.0010390181 1.064238e-03  6.490305e-04  6.975397e-04
## IJS -7.811683e-05 0.0006437774 6.490305e-04  1.565450e-03  8.290242e-04
## SPY -9.029307e-06 0.0006795432 6.975397e-04  8.290242e-04  7.408266e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347495
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS         SPY
## [1,] 0.0003874343 0.009257159 0.005815634 0.005684474 0.002330246
rowSums(component_contribution)
## [1] 0.02347495
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062310302 -0.0029357944  0.0366061226  0.052132974  4.992330e-02
## 2013-02-28  0.0058912506 -0.0231051224 -0.0129692964  0.016175033  1.267804e-02
## 2013-03-28  0.0009847176 -0.0102348964  0.0129692964  0.040258510  3.726785e-02
## 2013-04-30  0.0096393918  0.0120846767  0.0489679861  0.001222466  1.903006e-02
## 2013-05-31 -0.0202140267 -0.0494833772 -0.0306557725  0.041976280  2.333539e-02
## 2013-06-28 -0.0157785582 -0.0547284477 -0.0271442001 -0.001403043 -1.343435e-02
## 2013-07-31  0.0026881351  0.0131596377  0.0518602514  0.063541264  5.038611e-02
## 2013-08-30 -0.0082982987 -0.0257054247 -0.0197464637 -0.034743377 -3.045137e-02
## 2013-09-30  0.0111438853  0.0695886588  0.0753388338  0.063873833  3.115588e-02
## 2013-10-31  0.0082921216  0.0408614153  0.0320815486  0.034233936  4.526648e-02
## 2013-11-29 -0.0025102685 -0.0025940275  0.0054495420  0.041661342  2.920745e-02
## 2013-12-31 -0.0055823267 -0.0040742469  0.0215279768  0.012891881  2.559577e-02
## 2014-01-31  0.0152911372 -0.0903229138 -0.0534133066 -0.035775161 -3.588454e-02
## 2014-02-28  0.0037575014  0.0332209062  0.0595049358  0.045257171  4.451040e-02
## 2014-03-31 -0.0014820946  0.0380214590 -0.0046026447  0.013315435  8.261317e-03
## 2014-04-30  0.0081835703  0.0077728584  0.0165296788 -0.023184441  6.927763e-03
## 2014-05-30  0.0117212260  0.0290910756  0.0158281240  0.006205867  2.294099e-02
## 2014-06-30 -0.0005755764  0.0237339436  0.0091656332  0.037718555  2.043469e-02
## 2014-07-31 -0.0025124754  0.0135556813 -0.0263800106 -0.052009682 -1.352873e-02
## 2014-08-29  0.0114309519  0.0279047860  0.0018005753  0.043657972  3.870455e-02
## 2014-09-30 -0.0061678396 -0.0808572351 -0.0395982591 -0.061260541 -1.389192e-02
## 2014-10-31  0.0105850727  0.0140967943 -0.0026548903  0.068874978  2.327751e-02
## 2014-11-28  0.0065486274 -0.0155412963  0.0006253098  0.004773794  2.710140e-02
## 2014-12-31  0.0014755964 -0.0404421073 -0.0407467275  0.025295825 -2.539750e-03
## 2015-01-30  0.0203150420 -0.0068959157  0.0062264224 -0.054628117 -3.007699e-02
## 2015-02-27 -0.0089884231  0.0431363135  0.0614505401  0.056914634  5.468163e-02
## 2015-03-31  0.0037400416 -0.0150863669 -0.0143887072  0.010156461 -1.583011e-02
## 2015-04-30 -0.0032326512  0.0662816331  0.0358165822 -0.018417967  9.785865e-03
## 2015-05-29 -0.0043836431 -0.0419113473  0.0019525726  0.007510025  1.277439e-02
## 2015-06-30 -0.0108256963 -0.0297464970 -0.0316787522  0.004171520 -2.052118e-02
## 2015-07-31  0.0085844664 -0.0651779380  0.0201147128 -0.027375361  2.233763e-02
## 2015-08-31 -0.0033636570 -0.0925126544 -0.0771527212 -0.047268737 -6.288669e-02
## 2015-09-30  0.0080814315 -0.0318249940 -0.0451949005 -0.038464554 -2.584686e-02
## 2015-10-30  0.0006857602  0.0618084413  0.0640259784  0.063589794  8.163460e-02
## 2015-11-30 -0.0038984862 -0.0255605379 -0.0075557990  0.024415184  3.648876e-03
## 2015-12-31 -0.0019189447 -0.0389469627 -0.0235948625 -0.052156908 -1.743408e-02
## 2016-01-29  0.0123299537 -0.0516368964 -0.0567581634 -0.060306942 -5.106849e-02
## 2016-02-29  0.0088317452 -0.0082113800 -0.0339135419  0.020604953 -8.263023e-04
## 2016-03-31  0.0087088917  0.1218789097  0.0637455054  0.089910582  6.510024e-02
## 2016-04-29  0.0025456310  0.0040792162  0.0219750146  0.021044159  3.933565e-03
## 2016-05-31  0.0001356518 -0.0376285104 -0.0008560461  0.004397266  1.686863e-02
## 2016-06-30  0.0191668683  0.0445823386 -0.0244915383  0.008292177  3.469632e-03
## 2016-07-29  0.0054297554  0.0524423474  0.0390003656  0.049348308  3.582191e-02
## 2016-08-31 -0.0021560291  0.0087984749  0.0053267801  0.011261181  1.196978e-03
## 2016-09-30  0.0005157352  0.0248729944  0.0132790773  0.008614667  5.781295e-05
## 2016-10-31 -0.0082053034 -0.0083124950 -0.0224035026 -0.038134715 -1.748897e-02
## 2016-11-30 -0.0259897210 -0.0451617770 -0.0179744805  0.125246158  3.617590e-02
## 2016-12-30  0.0025381854 -0.0025298182  0.0267029407  0.031491742  2.006909e-02
## 2017-01-31  0.0021261333  0.0644313313  0.0323816323 -0.012143535  1.773662e-02
## 2017-02-28  0.0064377760  0.0172579571  0.0118365508  0.013428559  3.853934e-02
## 2017-03-31 -0.0005523639  0.0361887542  0.0318057108 -0.006533266  1.249160e-03
## 2017-04-28  0.0090289412  0.0168665132  0.0239520652  0.005108021  9.877162e-03
## 2017-05-31  0.0068475871  0.0280598776  0.0348102620 -0.022862561  1.401416e-02
## 2017-06-30 -0.0001827592  0.0092238738  0.0029559267  0.029151379  6.354832e-03
## 2017-07-31  0.0033343179  0.0565945416  0.0261879397  0.007481983  2.034572e-02
## 2017-08-31  0.0093691971  0.0232437716 -0.0004481536 -0.027564793  2.913448e-03
## 2017-09-29 -0.0057320477 -0.0004462957  0.0233427719  0.082321891  1.994894e-02
## 2017-10-31  0.0009778673  0.0322784749  0.0166535266  0.005916086  2.329089e-02
## 2017-11-30 -0.0014840711 -0.0038967587  0.0068699718  0.036912838  3.010800e-02
## 2017-12-29  0.0047404056  0.0369252960  0.0133984028 -0.003730915  1.205500e-02
calculate_component_contribution <- function(.data, w) {
    
    # Covariance of asset returns
covariance_matrix <- cov(.data)

# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)

# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]

# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

return(component_percentages)
}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .2, .2, .1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

plot_data <- asset_returns_wide_tbl %>%
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long form
    pivot_longer(cols = everything() ,names_to = "Asset", values_to = "Contribution")

plot_data %>%
    
    ggplot(aes(x = Asset, y = Contribution)) +
    geom_col(fill = "cornflowerblue") +
    
    scale_y_continuous(labels = scales:: percent_format(accuracy = 1)) +
    theme(plot.title = element_text(hjust = 0.5)) +
    labs(title = "Percent Contribution to Portfolio Volatility")

plot_data <- asset_returns_wide_tbl %>%
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long form
    pivot_longer(cols = everything() ,names_to = "Asset", values_to = "Contribution") %>%
    
    # Add weights
    add_column(weight = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long
    pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")

plot_data %>%
    
    ggplot(aes(x = Asset, y = value, fill = type)) +
    geom_col(position = "dodge") +
    
    scale_y_continuous(labels = scales:: percent_format(accuracy = 1)) +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme_tq() +
    
    
    labs(title = "Percent Contribution to Portfolio Volatility and Weight", y = "Percent",
         x = NULL)

6 Rolling Component Contribution