library(dplyr)#funktsioonid: select, filter,
library(reshape2)#functions: dcast()
library(ggplot2)
library(plyr)#funktsioon ddply
library(htmlTable) #htmlTable()
library(psych)#describeBy
library(reshape2) #melt
library(plotly)#plotlyga ühenduse loomiseks
setwd("C:/Users/Martin/Documents/Bitbucket/MIDIATAnalysis/AffectGrid")
data_subjects <- read.csv("subjects.csv", header=TRUE, sep=";")
data_All_Wtrials <- read.csv("subjects_trials.csv", header=TRUE, sep=",")
data_All_words <- read.csv("affect_results.csv", header=TRUE, sep=",")
data_trials <- read.csv("selectedWords.csv", header=TRUE, sep=",")
data_words <- read.csv("selectedWordsResults.csv", header=TRUE, sep=",")

Words

levels(droplevels(filter(data_words, trial == "High")$stimuli))
##  [1] "äge"       "äike"      "erutus"    "irvitus"   "kihv"     
##  [6] "kirurg"    "kiskja"    "mõõk"      "nõel"      "nuga"     
## [11] "purustaja" "raev"      "süda"      "süstal"    "terav"    
## [16] "torm"      "tormine"   "tugev"     "tung"      "võimas"
levels(droplevels(filter(data_words, trial == "Low")$stimuli))
##  [1] "küla"     "lihtne"   "madal"    "noogutus" "nööp"     "padi"    
##  [7] "pilv"     "pliiats"  "põõsas"   "rahulik"  "sokk"     "sujuv"   
## [13] "sulg"     "tava"     "tigu"     "tolm"     "uinutaja" "ümar"    
## [19] "uni"      "unustus"
levels(droplevels(filter(data_words, trial == "Positive")$stimuli))
##  [1] "energia" "hea"     "ilus"    "ime"     "kaunis"  "kirg"    "lemmik" 
##  [8] "meeldiv" "mõnus"   "päike"   "parim"   "rahu"    "ravi"    "selgus" 
## [15] "sõber"   "soojus"  "unistus" "vabadus" "vaikus"  "võit"
levels(droplevels(filter(data_words, trial == "Negative")$stimuli))
##  [1] "ehmatus" "haigus"  "halvem"  "igav"    "kaebus"  "kaklus"  "kaotus" 
##  [8] "kohutav" "kole"    "mürk"    "nohu"    "nõrkus"  "ohtlik"  "paha"   
## [15] "pettus"  "pomm"    "relv"    "surve"   "valus"   "varas"

VALIM

describe(data_subjects$age)
##   vars  n  mean   sd median trimmed  mad min max range skew kurtosis   se
## 1    1 68 28.97 9.16     27   27.39 5.19  19  66    47 2.15     5.18 1.11
summary(data_subjects$gender)
##  M  N 
## 19 49
summary(data_subjects$education)
## kesk- või kutseharidus            kõrgharidus 
##                      5                     63
summary(data_subjects$language)
## eesti  vene 
##    67     1
summary(data_subjects$skill)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.000   5.000   6.000   5.794   6.000   7.000
## Kasutatud andmestik - hinnangute keskmised
vtable <- describeBy(data_words[,8:9],data_words$trial)
vmat <- as.matrix(round((do.call(rbind.data.frame, vtable)), digits = 2))
htmlTable(vmat, caption="HINNANGUD",col.columns = c("none", "#F7F7F7"),  css.cell = "padding-left: .7em; padding-right: .7em;", tfoot="&dagger; V - valents; I - intensiivsus; Z - standardiseeritud tulemustega arvutatud")
HINNANGUD
vars n mean sd median trimmed mad min max range skew kurtosis se
High.ZVkeskmine 1 20 -0.11 0.61 -0.16 -0.1 0.49 -1.28 0.86 2.14 -0.03 -0.98 0.14
High.ZIkeskmine 2 20 0.17 0.39 0.16 0.17 0.51 -0.44 0.82 1.26 0.03 -1.3 0.09
Low.ZVkeskmine 1 20 0.24 0.47 0.2 0.24 0.32 -0.8 1.06 1.85 -0.04 -0.4 0.1
Low.ZIkeskmine 2 20 -0.57 0.32 -0.56 -0.58 0.41 -1.02 0 1.02 0.33 -1.21 0.07
Negative.ZVkeskmine 1 20 -1.11 0.22 -1.19 -1.12 0.25 -1.4 -0.79 0.61 0.22 -1.73 0.05
Negative.ZIkeskmine 2 20 0.06 0.36 0.14 0.09 0.38 -0.77 0.52 1.29 -0.61 -0.76 0.08
Positive.ZVkeskmine 1 20 0.99 0.25 1.03 1.03 0.1 0.03 1.25 1.22 -2.63 7.44 0.06
Positive.ZIkeskmine 2 20 0.48 0.34 0.47 0.48 0.41 -0.11 1.08 1.19 0.05 -1.03 0.08
† V - valents; I - intensiivsus; Z - standardiseeritud tulemustega arvutatud

Graafikud

## Using stimuli, trial as id variables

ANOVA

VALENCE

# One Way ANOVA - valents
aov_val <- aov(Vkeskmine~trial, data = data_words)
summary(aov_val)
##             Df Sum Sq Mean Sq F value Pr(>F)    
## trial        3 135963   45321   88.36 <2e-16 ***
## Residuals   76  38982     513                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Millised grupid erinevad valnetsi poolest:
tkV <- TukeyHSD(aov_val)
tkV
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Vkeskmine ~ trial, data = data_words)
## 
## $trial
##                        diff         lwr       upr     p adj
## Low-High           19.56016   0.7475161  38.37281 0.0384372
## Negative-High     -54.45746 -73.2701034 -35.64481 0.0000000
## Positive-High      60.06957  41.2569274  78.88222 0.0000000
## Negative-Low      -74.01762 -92.8302640 -55.20497 0.0000000
## Positive-Low       40.50941  21.6967668  59.32206 0.0000015
## Positive-Negative 114.52703  95.7143862 133.33968 0.0000000
plot(tkV, las = 1,cex.axis = 0.5)

AROUSAL

# One Way ANOVA - intensiivsus
aov_int<- aov(Ikeskmine~trial, data = data_words)
summary(aov_int)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## trial        3   8461    2820   32.06 1.69e-13 ***
## Residuals   76   6685      88                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#Millised grupid erinevad intensiivsuse poolest:
tkI <- TukeyHSD(aov_int)
tkI
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = Ikeskmine ~ trial, data = data_words)
## 
## $trial
##                         diff         lwr        upr     p adj
## Low-High          -20.749006 -28.5396251 -12.958387 0.0000000
## Negative-High      -3.416252 -11.2068714   4.374366 0.6587513
## Positive-High       7.242305  -0.5483139  15.032924 0.0778398
## Negative-Low       17.332754   9.5421348  25.123373 0.0000007
## Positive-Low       27.991311  20.2006923  35.781930 0.0000000
## Positive-Negative  10.658557   2.8679385  18.449176 0.0031701
plot(tkI, las = 1,cex.axis = 0.5)

Tulemuste kuvamine

LISA

Kategooria - positiivne

Kategooria - negatiivne

Kategooria - tugev

Kategooria - madal