library(nycflights13)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
1. Join + Filter - Which airplanes fly LGA to XNA
lga_to_xna <- flights %>%
filter(origin == "LGA", dest == "XNA") %>%
select(tailnum) %>%
distinct()
lga_to_xna
## # A tibble: 70 × 1
## tailnum
## <chr>
## 1 N722MQ
## 2 N719MQ
## 3 N739MQ
## 4 N711MQ
## 5 N723MQ
## 6 N730MQ
## 7 N734MQ
## 8 N725MQ
## 9 N736MQ
## 10 N737MQ
## # ℹ 60 more rows
2. Join - Add the airline name to the flights table
flights_with_airlines <- flights %>%
left_join(airlines, by = "carrier")
flights_with_airlines
## # A tibble: 336,776 × 20
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # ℹ 336,766 more rows
## # ℹ 12 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
## # hour <dbl>, minute <dbl>, time_hour <dttm>, name <chr>
3. Join + Select + Distinct() - Which airports have no commercial
flights
commercial_flight_airports <- flights %>%
select(origin, dest) %>%
pivot_longer(cols = c(origin, dest), names_to = "type", values_to = "faa") %>%
distinct(faa)
airports_with_no_commercial_flights <- airports %>%
anti_join(commercial_flight_airports, by = "faa") %>%
select(faa, name)
airports_with_no_commercial_flights
## # A tibble: 1,355 × 2
## faa name
## <chr> <chr>
## 1 04G Lansdowne Airport
## 2 06A Moton Field Municipal Airport
## 3 06C Schaumburg Regional
## 4 06N Randall Airport
## 5 09J Jekyll Island Airport
## 6 0A9 Elizabethton Municipal Airport
## 7 0G6 Williams County Airport
## 8 0G7 Finger Lakes Regional Airport
## 9 0P2 Shoestring Aviation Airfield
## 10 0S9 Jefferson County Intl
## # ℹ 1,345 more rows