# THÔNG TIN CODE #
# 1. CODE LỰA CHỌN BẬC ARIMA ĐƯỢC LẤY TỪ LUẬN ÁN TIẾN SĨ CỦA LÊ VĂN THỨ (2022) #
# 2. GIẢ ĐỊNH GARCH(1,1)-STD dựa theo https://ktpt.edu.vn/Uploads/Bai%20bao/2024/So%20320/1337.pdf #
library(rugarch)
## Warning: package 'rugarch' was built under R version 4.4.1
## Loading required package: parallel
## 
## Attaching package: 'rugarch'
## The following object is masked from 'package:stats':
## 
##     sigma
library(fGarch)
## Warning: package 'fGarch' was built under R version 4.4.1
## NOTE: Packages 'fBasics', 'timeDate', and 'timeSeries' are no longer
## attached to the search() path when 'fGarch' is attached.
## 
## If needed attach them yourself in your R script by e.g.,
##         require("timeSeries")
library(readxl)
library(writexl)
## Warning: package 'writexl' was built under R version 4.4.1
library(ggplot2)
Data <- read_excel("C:/Users/use/Desktop/KLTN_LPTPT.xlsx",  sheet = "RETURN")
Date <- Data$Date
ACB <- Data$ACB
BAB <- Data$BAB
BID <- Data$BID
CTG <- Data$CTG
EIB <- Data$EIB
HDB <- Data$HDB
MBB <- Data$MBB
MSB <- Data$MSB
NVB <- Data$NVB
OCB <- Data$OCB
SHB <- Data$SHB
SSB <- Data$SSB
STB <- Data$STB
TCB <- Data$TCB
TPB <- Data$TPB
VCB <- Data$VCB
VIB <- Data$VIB
VPB <- Data$VPB
# XÁC ĐỊNH BẬC AR(p) VÀ MA(q) BẰNG TIÊU CHÍ AIC #
print("ACB")
## [1] "ACB"
arima.ACB <- autoarfima(ACB, ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
arima.ACB
##        ma1        ma2      sigma 
## 0.00000000 0.02719585 1.96232176
print("BAB")
## [1] "BAB"
arima.BAB <- autoarfima(BAB, ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
arima.BAB
##          mu         ma1         ma2       sigma 
## -0.07065558 -0.06272222 -0.09801884  1.27000898
print("BID")
## [1] "BID"
arima.BID <- autoarfima(BID, ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
arima.BID
##         ar1         ar2       sigma 
## -0.07825024 -0.07689418  2.14924481
print("CTG")
## [1] "CTG"
arima.CTG <- autoarfima(CTG, ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
arima.CTG
##        ar1        ar2        ma1        ma2      sigma 
## -1.3829863 -0.9727802  1.3667086  0.9376439  2.1351100
print("EIB")
## [1] "EIB"
arima.EIB <- autoarfima(EIB, ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
arima.EIB
##        ar1        ma1      sigma 
##  0.7673825 -0.6830358  2.6020362
print("HDB")
## [1] "HDB"
arima.HDB <- autoarfima(HDB, ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
arima.HDB
##         ar1         ar2         ma1         ma2       sigma 
## -0.06586148  0.78427715  0.00000000 -0.74845462  1.97262632
print("MBB")
## [1] "MBB"
arima.MBB <- autoarfima(MBB, ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
arima.MBB
##        ar1        ar2        ma1        ma2      sigma 
## -0.2313770 -0.9321090  0.2346694  0.9736268  2.0752742
print("MSB")
## [1] "MSB"
arima.MSB <- autoarfima(MSB, ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
arima.MSB
##       ma1     sigma 
## 0.1043534 2.0746136
print("NVB")
## [1] "NVB"
arima.NVB <- autoarfima(NVB, ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
arima.NVB
##          mu         ma1         ma2       sigma 
## -0.15442229 -0.08978626 -0.05452931  2.87546130
print("OCB")
## [1] "OCB"
arima.OCB <- autoarfima(OCB, ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
arima.OCB
##        ar1        ar2        ma1        ma2      sigma 
##  1.2074828 -0.9776917 -1.2219076  1.0044619  2.6123903
print("SHB")
## [1] "SHB"
arima.SHB <- autoarfima(SHB, ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
arima.SHB
##       ar1     sigma 
## 0.1011017 2.3572149
print("SSB")
## [1] "SSB"
arima.SSB <- autoarfima(SSB, ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
arima.SSB
##         mu        ar1        ar2        ma1        ma2      sigma 
## -0.2714749  0.0761409  0.9049090 -0.1456162 -0.8779182  1.7060577
print("STB")
## [1] "STB"
arima.STB <- autoarfima(STB, ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
arima.STB
##         ma1         ma2       sigma 
##  0.00000000 -0.07291556  2.46695340
print("TCB")
## [1] "TCB"
arima.TCB <- autoarfima(TCB, ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
arima.TCB
##        ar1      sigma 
## 0.06619723 3.31603219
print("TPB")
## [1] "TPB"
arima.TPB <- autoarfima(TPB, ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
arima.TPB
##         ma1       sigma 
## -0.07090717  2.49323032
print("VCB")
## [1] "VCB"
arima.VCB <- autoarfima(VCB, ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
arima.VCB
##        ar1        ar2        ma1        ma2      sigma 
##  0.0000000 -0.9536500  0.0000000  0.9317295  1.6181925
print("VIB")
## [1] "VIB"
arima.VIB <- autoarfima(VIB, ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
arima.VIB
##          mu       sigma 
## -0.08862467  2.22145505
print("VPB")
## [1] "VPB"
arima.VPB <- autoarfima(VPB, ar.max = 2, ma.max = 2, criterion = "AIC", method = "full")$fit@fit$coef
arima.VPB
##        ar1        ar2        ma1        ma2      sigma 
##  0.7280111 -0.8569683 -0.7677599  0.8000868  2.0178712
ACB.ar_order <- sum(!is.na(arima.ACB[c("ar1", "ar2")]))
ACB.ma_order <- sum(!is.na(arima.ACB[c("ma1", "ma2")]))

BAB.ar_order <- sum(!is.na(arima.BAB[c("ar1", "ar2")]))
BAB.ma_order <- sum(!is.na(arima.BAB[c("ma1", "ma2")]))

BID.ar_order <- sum(!is.na(arima.BID[c("ar1", "ar2")]))
BID.ma_order <- sum(!is.na(arima.BID[c("ma1", "ma2")]))

CTG.ar_order <- sum(!is.na(arima.CTG[c("ar1", "ar2")]))
CTG.ma_order <- sum(!is.na(arima.CTG[c("ma1", "ma2")]))

EIB.ar_order <- sum(!is.na(arima.EIB[c("ar1", "ar2")]))
EIB.ma_order <- sum(!is.na(arima.EIB[c("ma1", "ma2")]))

HDB.ar_order <- sum(!is.na(arima.HDB[c("ar1", "ar2")]))
HDB.ma_order <- sum(!is.na(arima.HDB[c("ma1", "ma2")]))

MBB.ar_order <- sum(!is.na(arima.MBB[c("ar1", "ar2")]))
MBB.ma_order <- sum(!is.na(arima.MBB[c("ma1", "ma2")]))

MSB.ar_order <- sum(!is.na(arima.MSB[c("ar1", "ar2")]))
MSB.ma_order <- sum(!is.na(arima.MSB[c("ma1", "ma2")]))

NVB.ar_order <- sum(!is.na(arima.NVB[c("ar1", "ar2")]))
NVB.ma_order <- sum(!is.na(arima.NVB[c("ma1", "ma2")]))

OCB.ar_order <- sum(!is.na(arima.OCB[c("ar1", "ar2")]))
OCB.ma_order <- sum(!is.na(arima.OCB[c("ma1", "ma2")]))

SHB.ar_order <- sum(!is.na(arima.SHB[c("ar1", "ar2")]))
SHB.ma_order <- sum(!is.na(arima.SHB[c("ma1", "ma2")]))

SSB.ar_order <- sum(!is.na(arima.SSB[c("ar1", "ar2")]))
SSB.ma_order <- sum(!is.na(arima.SSB[c("ma1", "ma2")]))

STB.ar_order <- sum(!is.na(arima.STB[c("ar1", "ar2")]))
STB.ma_order <- sum(!is.na(arima.STB[c("ma1", "ma2")]))

TCB.ar_order <- sum(!is.na(arima.TCB[c("ar1", "ar2")]))
TCB.ma_order <- sum(!is.na(arima.TCB[c("ma1", "ma2")]))

TPB.ar_order <- sum(!is.na(arima.TPB[c("ar1", "ar2")]))
TPB.ma_order <- sum(!is.na(arima.TPB[c("ma1", "ma2")]))

VCB.ar_order <- sum(!is.na(arima.VCB[c("ar1", "ar2")]))
VCB.ma_order <- sum(!is.na(arima.VCB[c("ma1", "ma2")]))

VIB.ar_order <- sum(!is.na(arima.VIB[c("ar1", "ar2")]))
VIB.ma_order <- sum(!is.na(arima.VIB[c("ma1", "ma2")]))

VPB.ar_order <- sum(!is.na(arima.VPB[c("ar1", "ar2")]))
VPB.ma_order <- sum(!is.na(arima.VPB[c("ma1", "ma2")]))
# MÔ HÌNH HÓA BIẾN ĐỘNG: GARCH, EGARCH, GJR-GARCH, APARCH #
print("ACB")
## [1] "ACB"
ACB.s <- ugarchspec(mean.model = list(armaOrder = c(ACB.ar_order,ACB.ma_order)),variance.model= list(garchOrder=c(1,1), model="sGARCH"), distribution.model = "std")
ACB.e <- ugarchspec(mean.model = list(armaOrder = c(ACB.ar_order,ACB.ma_order)),variance.model= list(garchOrder=c(1,1), model="eGARCH"), distribution.model = "std")
ACB.g <- ugarchspec(mean.model = list(armaOrder = c(ACB.ar_order,ACB.ma_order)),variance.model= list(garchOrder=c(1,1), model="gjrGARCH"), distribution.model = "std")
ACB.a <- ugarchspec(mean.model = list(armaOrder = c(ACB.ar_order,ACB.ma_order)),variance.model= list(garchOrder=c(1,1), model="apARCH"), distribution.model = "std")
ACB.s.11 <- ugarchfit(data=ACB, spec= ACB.s)
ACB.e.11 <- ugarchfit(data=ACB, spec= ACB.e)
ACB.g.11 <- ugarchfit(data=ACB, spec= ACB.g)
ACB.a.11 <- ugarchfit(data=ACB, spec= ACB.a)
sapply(list(ACB.s.11, ACB.e.11, ACB.g.11, ACB.a.11), infocriteria)[-4,][-3,][-2,]
## [1] 3.633537 3.629933 3.635187 3.626614
print("BAB")
## [1] "BAB"
BAB.s <- ugarchspec(mean.model = list(armaOrder = c(BAB.ar_order, BAB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "sGARCH"), distribution.model = "std")
BAB.e <- ugarchspec(mean.model = list(armaOrder = c(BAB.ar_order, BAB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "eGARCH"), distribution.model = "std")
BAB.g <- ugarchspec(mean.model = list(armaOrder = c(BAB.ar_order, BAB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "gjrGARCH"), distribution.model = "std")
BAB.a <- ugarchspec(mean.model = list(armaOrder = c(BAB.ar_order, BAB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "apARCH"), distribution.model = "std")
BAB.s.11 <- ugarchfit(data = BAB, spec = BAB.s)
BAB.e.11 <- ugarchfit(data = BAB, spec = BAB.e)
BAB.g.11 <- ugarchfit(data = BAB, spec = BAB.g)
BAB.a.11 <- ugarchfit(data = BAB, spec = BAB.a)
sapply(list(BAB.s.11, BAB.e.11, BAB.g.11, BAB.a.11), infocriteria)[-4,][-3,][-2,]
## [1] 2.967204 2.978944 2.968303 2.970942
print("BID")
## [1] "BID"
BID.s <- ugarchspec(mean.model = list(armaOrder = c(BID.ar_order, BID.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "sGARCH"), distribution.model = "std")
BID.e <- ugarchspec(mean.model = list(armaOrder = c(BID.ar_order, BID.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "eGARCH"), distribution.model = "std")
BID.g <- ugarchspec(mean.model = list(armaOrder = c(BID.ar_order, BID.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "gjrGARCH"), distribution.model = "std")
BID.a <- ugarchspec(mean.model = list(armaOrder = c(BID.ar_order, BID.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "apARCH"), distribution.model = "std")
BID.s.11 <- ugarchfit(data = BID, spec = BID.s)
BID.e.11 <- ugarchfit(data = BID, spec = BID.e)
BID.g.11 <- ugarchfit(data = BID, spec = BID.g)
BID.a.11 <- ugarchfit(data = BID, spec = BID.a)
sapply(list(BID.s.11, BID.e.11, BID.g.11, BID.a.11), infocriteria)[-4,][-3,][-2,]
## [1] 4.131978 4.132072 4.131763 4.134142
print("CTG")
## [1] "CTG"
CTG.s <- ugarchspec(mean.model = list(armaOrder = c(CTG.ar_order, CTG.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "sGARCH"), distribution.model = "std")
CTG.e <- ugarchspec(mean.model = list(armaOrder = c(CTG.ar_order, CTG.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "eGARCH"), distribution.model = "std")
CTG.g <- ugarchspec(mean.model = list(armaOrder = c(CTG.ar_order, CTG.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "gjrGARCH"), distribution.model = "std")
CTG.a <- ugarchspec(mean.model = list(armaOrder = c(CTG.ar_order, CTG.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "apARCH"), distribution.model = "std")
CTG.s.11 <- ugarchfit(data = CTG, spec = CTG.s)
CTG.e.11 <- ugarchfit(data = CTG, spec = CTG.e)
CTG.g.11 <- ugarchfit(data = CTG, spec = CTG.g)
CTG.a.11 <- ugarchfit(data = CTG, spec = CTG.a)
sapply(list(CTG.s.11, CTG.e.11, CTG.g.11, CTG.a.11), infocriteria)[-4,][-3,][-2,]
## [1] 4.089352 4.081613 4.083732 4.082293
print("EIB")
## [1] "EIB"
EIB.s <- ugarchspec(mean.model = list(armaOrder = c(EIB.ar_order, EIB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "sGARCH"), distribution.model = "std")
EIB.e <- ugarchspec(mean.model = list(armaOrder = c(EIB.ar_order, EIB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "eGARCH"), distribution.model = "std")
EIB.g <- ugarchspec(mean.model = list(armaOrder = c(EIB.ar_order, EIB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "gjrGARCH"), distribution.model = "std")
EIB.a <- ugarchspec(mean.model = list(armaOrder = c(EIB.ar_order, EIB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "apARCH"), distribution.model = "std")
EIB.s.11 <- ugarchfit(data = EIB, spec = EIB.s)
EIB.e.11 <- ugarchfit(data = EIB, spec = EIB.e)
EIB.g.11 <- ugarchfit(data = EIB, spec = EIB.g)
EIB.a.11 <- ugarchfit(data = EIB, spec = EIB.a)
sapply(list(EIB.s.11, EIB.e.11, EIB.g.11, EIB.a.11), infocriteria)[-4,][-3,][-2,]
## [1] 4.401624 4.407970 4.403810 4.405314
print("HDB")
## [1] "HDB"
HDB.s <- ugarchspec(mean.model = list(armaOrder = c(HDB.ar_order, HDB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "sGARCH"), distribution.model = "std")
HDB.e <- ugarchspec(mean.model = list(armaOrder = c(HDB.ar_order, HDB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "eGARCH"), distribution.model = "std")
HDB.g <- ugarchspec(mean.model = list(armaOrder = c(HDB.ar_order, HDB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "gjrGARCH"), distribution.model = "std")
HDB.a <- ugarchspec(mean.model = list(armaOrder = c(HDB.ar_order, HDB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "apARCH"), distribution.model = "std")
HDB.s.11 <- ugarchfit(data = HDB, spec = HDB.s)
HDB.e.11 <- ugarchfit(data = HDB, spec = HDB.e)
HDB.g.11 <- ugarchfit(data = HDB, spec = HDB.g)
HDB.a.11 <- ugarchfit(data = HDB, spec = HDB.a)
sapply(list(HDB.s.11, HDB.e.11, HDB.g.11, HDB.a.11), infocriteria)[-4,][-3,][-2,]
## [1] 3.969168 3.952978 3.965488 3.966676
print("MBB")
## [1] "MBB"
MBB.s <- ugarchspec(mean.model = list(armaOrder = c(MBB.ar_order, MBB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "sGARCH"), distribution.model = "std")
MBB.e <- ugarchspec(mean.model = list(armaOrder = c(MBB.ar_order, MBB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "eGARCH"), distribution.model = "std")
MBB.g <- ugarchspec(mean.model = list(armaOrder = c(MBB.ar_order, MBB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "gjrGARCH"), distribution.model = "std")
MBB.a <- ugarchspec(mean.model = list(armaOrder = c(MBB.ar_order, MBB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "apARCH"), distribution.model = "std")
MBB.s.11 <- ugarchfit(data = MBB, spec = MBB.s)
MBB.e.11 <- ugarchfit(data = MBB, spec = MBB.e)
MBB.g.11 <- ugarchfit(data = MBB, spec = MBB.g)
MBB.a.11 <- ugarchfit(data = MBB, spec = MBB.a)
sapply(list(MBB.s.11, MBB.e.11, MBB.g.11, MBB.a.11), infocriteria)[-4,][-3,][-2,]
## [1] 3.910550 3.900708 3.901392 3.909220
print("MSB")
## [1] "MSB"
MSB.s <- ugarchspec(mean.model = list(armaOrder = c(MSB.ar_order, MSB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "sGARCH"), distribution.model = "std")
MSB.e <- ugarchspec(mean.model = list(armaOrder = c(MSB.ar_order, MSB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "eGARCH"), distribution.model = "std")
MSB.g <- ugarchspec(mean.model = list(armaOrder = c(MSB.ar_order, MSB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "gjrGARCH"), distribution.model = "std")
MSB.a <- ugarchspec(mean.model = list(armaOrder = c(MSB.ar_order, MSB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "apARCH"), distribution.model = "std")
MSB.s.11 <- ugarchfit(data = MSB, spec = MSB.s)
MSB.e.11 <- ugarchfit(data = MSB, spec = MSB.e)
MSB.g.11 <- ugarchfit(data = MSB, spec = MSB.g)
MSB.a.11 <- ugarchfit(data = MSB, spec = MSB.a)
sapply(list(MSB.s.11, MSB.e.11, MSB.g.11, MSB.a.11), infocriteria)[-4,][-3,][-2,]
## [1] 3.957554 3.948087 3.954681 3.954276
print("NVB")
## [1] "NVB"
NVB.s <- ugarchspec(mean.model = list(armaOrder = c(NVB.ar_order, NVB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "sGARCH"), distribution.model = "std")
NVB.e <- ugarchspec(mean.model = list(armaOrder = c(NVB.ar_order, NVB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "eGARCH"), distribution.model = "std")
NVB.g <- ugarchspec(mean.model = list(armaOrder = c(NVB.ar_order, NVB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "gjrGARCH"), distribution.model = "std")
NVB.a <- ugarchspec(mean.model = list(armaOrder = c(NVB.ar_order, NVB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "apARCH"), distribution.model = "std")
NVB.s.11 <- ugarchfit(data = NVB, spec = NVB.s)
NVB.e.11 <- ugarchfit(data = NVB, spec = NVB.e)
NVB.g.11 <- ugarchfit(data = NVB, spec = NVB.g)
NVB.a.11 <- ugarchfit(data = NVB, spec = NVB.a)
sapply(list(NVB.s.11, NVB.e.11, NVB.g.11, NVB.a.11), infocriteria)[-4,][-3,][-2,]
## [1] 4.633119 4.628747 4.635963 4.637573
print("OCB")
## [1] "OCB"
OCB.s <- ugarchspec(mean.model = list(armaOrder = c(OCB.ar_order, OCB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "sGARCH"), distribution.model = "std")
OCB.e <- ugarchspec(mean.model = list(armaOrder = c(OCB.ar_order, OCB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "eGARCH"), distribution.model = "std")
OCB.g <- ugarchspec(mean.model = list(armaOrder = c(OCB.ar_order, OCB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "gjrGARCH"), distribution.model = "std")
OCB.a <- ugarchspec(mean.model = list(armaOrder = c(OCB.ar_order, OCB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "apARCH"), distribution.model = "std")
OCB.s.11 <- ugarchfit(data = OCB, spec = OCB.s)
OCB.e.11 <- ugarchfit(data = OCB, spec = OCB.e)
OCB.g.11 <- ugarchfit(data = OCB, spec = OCB.g)
OCB.a.11 <- ugarchfit(data = OCB, spec = OCB.a)
sapply(list(OCB.s.11, OCB.e.11, OCB.g.11, OCB.a.11), infocriteria)[-4,][-3,][-2,]
## [1] 4.099220 4.088762 4.094254 4.068617
print("SHB")
## [1] "SHB"
SHB.s <- ugarchspec(mean.model = list(armaOrder = c(SHB.ar_order, SHB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "sGARCH"), distribution.model = "std")
SHB.e <- ugarchspec(mean.model = list(armaOrder = c(SHB.ar_order, SHB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "eGARCH"), distribution.model = "std")
SHB.g <- ugarchspec(mean.model = list(armaOrder = c(SHB.ar_order, SHB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "gjrGARCH"), distribution.model = "std")
SHB.a <- ugarchspec(mean.model = list(armaOrder = c(SHB.ar_order, SHB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "apARCH"), distribution.model = "std")
SHB.s.11 <- ugarchfit(data = SHB, spec = SHB.s)
SHB.e.11 <- ugarchfit(data = SHB, spec = SHB.e)
SHB.g.11 <- ugarchfit(data = SHB, spec = SHB.g)
SHB.a.11 <- ugarchfit(data = SHB, spec = SHB.a)
sapply(list(SHB.s.11, SHB.e.11, SHB.g.11, SHB.a.11), infocriteria)[-4,][-3,][-2,]
## [1] 4.198206 4.185237 4.193084 4.190700
print("SSB")
## [1] "SSB"
SSB.s <- ugarchspec(mean.model = list(armaOrder = c(SSB.ar_order, SSB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "sGARCH"), distribution.model = "std")
SSB.e <- ugarchspec(mean.model = list(armaOrder = c(SSB.ar_order, SSB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "eGARCH"), distribution.model = "std")
SSB.g <- ugarchspec(mean.model = list(armaOrder = c(SSB.ar_order, SSB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "gjrGARCH"), distribution.model = "std")
SSB.a <- ugarchspec(mean.model = list(armaOrder = c(SSB.ar_order, SSB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "apARCH"), distribution.model = "std")
SSB.s.11 <- ugarchfit(data = SSB, spec = SSB.s)
SSB.e.11 <- ugarchfit(data = SSB, spec = SSB.e)
SSB.g.11 <- ugarchfit(data = SSB, spec = SSB.g)
SSB.a.11 <- ugarchfit(data = SSB, spec = SSB.a)
sapply(list(SSB.s.11, SSB.e.11, SSB.g.11, SSB.a.11), infocriteria)[-4,][-3,][-2,]
## [1] 2.905968 2.876373 2.899458 2.854939
print("STB")
## [1] "STB"
STB.s <- ugarchspec(mean.model = list(armaOrder = c(STB.ar_order, STB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "sGARCH"), distribution.model = "std")
STB.e <- ugarchspec(mean.model = list(armaOrder = c(STB.ar_order, STB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "eGARCH"), distribution.model = "std")
STB.g <- ugarchspec(mean.model = list(armaOrder = c(STB.ar_order, STB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "gjrGARCH"), distribution.model = "std")
STB.a <- ugarchspec(mean.model = list(armaOrder = c(STB.ar_order, STB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "apARCH"), distribution.model = "std")
STB.s.11 <- ugarchfit(data = STB, spec = STB.s)
STB.e.11 <- ugarchfit(data = STB, spec = STB.e)
STB.g.11 <- ugarchfit(data = STB, spec = STB.g)
STB.a.11 <- ugarchfit(data = STB, spec = STB.a)
sapply(list(STB.s.11, STB.e.11, STB.g.11, STB.a.11), infocriteria)[-4,][-3,][-2,]
## [1] 4.408756 4.397059 4.399902 4.399614
print("TCB")
## [1] "TCB"
TCB.s <- ugarchspec(mean.model = list(armaOrder = c(TCB.ar_order, TCB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "sGARCH"), distribution.model = "std")
TCB.e <- ugarchspec(mean.model = list(armaOrder = c(TCB.ar_order, TCB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "eGARCH"), distribution.model = "std")
TCB.g <- ugarchspec(mean.model = list(armaOrder = c(TCB.ar_order, TCB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "gjrGARCH"), distribution.model = "std")
TCB.a <- ugarchspec(mean.model = list(armaOrder = c(TCB.ar_order, TCB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "apARCH"), distribution.model = "std")
TCB.s.11 <- ugarchfit(data = TCB, spec = TCB.s)
TCB.e.11 <- ugarchfit(data = TCB, spec = TCB.e, solver = "lbfgs")
TCB.g.11 <- ugarchfit(data = TCB, spec = TCB.g)
TCB.a.11 <- ugarchfit(data = TCB, spec = TCB.a)
sapply(list(TCB.s.11, TCB.e.11,TCB.g.11, TCB.a.11), infocriteria)[-4,][-3,][-2,]
## [1] 4.170609 4.175192 4.173504 4.134520
print("TPB")
## [1] "TPB"
TPB.s <- ugarchspec(mean.model = list(armaOrder = c(TPB.ar_order, TPB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "sGARCH"), distribution.model = "std")
TPB.e <- ugarchspec(mean.model = list(armaOrder = c(TPB.ar_order, TPB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "eGARCH"), distribution.model = "std")
TPB.g <- ugarchspec(mean.model = list(armaOrder = c(TPB.ar_order, TPB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "gjrGARCH"), distribution.model = "std")
TPB.a <- ugarchspec(mean.model = list(armaOrder = c(TPB.ar_order, TPB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "apARCH"), distribution.model = "std")
TPB.s.11 <- ugarchfit(data = TPB, spec = TPB.s)
TPB.e.11 <- ugarchfit(data = TPB, spec = TPB.e)
TPB.g.11 <- ugarchfit(data = TPB, spec = TPB.g)
TPB.a.11 <- ugarchfit(data = TPB, spec = TPB.a)
sapply(list(TPB.s.11, TPB.e.11, TPB.g.11, TPB.a.11), infocriteria)[-4,][-3,][-2,]
## [1] 4.144284 4.140224 4.147081 4.146757
print("VCB")
## [1] "VCB"
VCB.s <- ugarchspec(mean.model = list(armaOrder = c(VCB.ar_order, VCB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "sGARCH"), distribution.model = "std")
VCB.e <- ugarchspec(mean.model = list(armaOrder = c(VCB.ar_order, VCB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "eGARCH"), distribution.model = "std")
VCB.g <- ugarchspec(mean.model = list(armaOrder = c(VCB.ar_order, VCB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "gjrGARCH"), distribution.model = "std")
VCB.a <- ugarchspec(mean.model = list(armaOrder = c(VCB.ar_order, VCB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "apARCH"), distribution.model = "std")
VCB.s.11 <- ugarchfit(data = VCB, spec = VCB.s)
VCB.e.11 <- ugarchfit(data = VCB, spec = VCB.e)
VCB.g.11 <- ugarchfit(data = VCB, spec = VCB.g)
VCB.a.11 <- ugarchfit(data = VCB, spec = VCB.a)
sapply(list(VCB.s.11, VCB.e.11, VCB.g.11, VCB.a.11), infocriteria)[-4,][-3,][-2,]
## [1] 3.516838 3.534916 3.514585 3.512524
print("VIB")
## [1] "VIB"
VIB.s <- ugarchspec(mean.model = list(armaOrder = c(VIB.ar_order, VIB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "sGARCH"), distribution.model = "std")
VIB.e <- ugarchspec(mean.model = list(armaOrder = c(VIB.ar_order, VIB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "eGARCH"), distribution.model = "std")
VIB.g <- ugarchspec(mean.model = list(armaOrder = c(VIB.ar_order, VIB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "gjrGARCH"), distribution.model = "std")
VIB.a <- ugarchspec(mean.model = list(armaOrder = c(VIB.ar_order, VIB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "apARCH"), distribution.model = "std")
VIB.s.11 <- ugarchfit(data = VIB, spec = VIB.s)
VIB.e.11 <- ugarchfit(data = VIB, spec = VIB.e)
VIB.g.11 <- ugarchfit(data = VIB, spec = VIB.g)
VIB.a.11 <- ugarchfit(data = VIB, spec = VIB.a)
sapply(list(VIB.s.11, VIB.e.11, VIB.g.11, VIB.a.11), infocriteria)[-4,][-3,][-2,]
## [1] 4.061869 4.048364 4.064562 4.018601
print("VPB")
## [1] "VPB"
VPB.s <- ugarchspec(mean.model = list(armaOrder = c(VPB.ar_order, VPB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "sGARCH"), distribution.model = "std")
VPB.e <- ugarchspec(mean.model = list(armaOrder = c(VPB.ar_order, VPB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "eGARCH"), distribution.model = "std")
VPB.g <- ugarchspec(mean.model = list(armaOrder = c(VPB.ar_order, VPB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "gjrGARCH"), distribution.model = "std")
VPB.a <- ugarchspec(mean.model = list(armaOrder = c(VPB.ar_order, VPB.ma_order)), variance.model = list(garchOrder = c(1, 1), model = "apARCH"), distribution.model = "std")
VPB.s.11 <- ugarchfit(data = VPB, spec = VPB.s)
VPB.e.11 <- ugarchfit(data = VPB, spec = VPB.e)
VPB.g.11 <- ugarchfit(data = VPB, spec = VPB.g)
VPB.a.11 <- ugarchfit(data = VPB, spec = VPB.a)
sapply(list(VPB.s.11, VPB.e.11, VPB.g.11, VPB.a.11), infocriteria)[-4,][-3,][-2,]
## [1] 4.047348 4.047418 4.049519 4.050252
# XÁC ĐỊNH MÔ HÌNH PHÙ HỢP NHẤT #
min_index <- which.min(sapply(list(ACB.s.11, ACB.e.11, ACB.g.11, ACB.a.11), infocriteria)[-4,][-3,][-2,])
models <- c("ACB.s.11", "ACB.e.11", "ACB.g.11", "ACB.a.11")
cat(models[min_index], "\n")
## ACB.a.11
min_index <- which.min(sapply(list(BAB.s.11, BAB.e.11, BAB.g.11, BAB.a.11), infocriteria)[-4,][-3,][-2,])
models <- c("BAB.s.11", "BAB.e.11", "BAB.g.11", "BAB.a.11")
cat(models[min_index], "\n")
## BAB.s.11
min_index <- which.min(sapply(list(BID.s.11, BID.e.11, BID.g.11, BID.a.11), infocriteria)[-4,][-3,][-2,])
models <- c("BID.s.11", "BID.e.11", "BID.g.11", "BID.a.11")
cat(models[min_index], "\n")
## BID.g.11
min_index <- which.min(sapply(list(CTG.s.11, CTG.e.11, CTG.g.11, CTG.a.11), infocriteria)[-4,][-3,][-2,])
models <- c("CTG.s.11", "CTG.e.11", "CTG.g.11", "CTG.a.11")
cat(models[min_index], "\n")
## CTG.e.11
min_index <- which.min(sapply(list(EIB.s.11, EIB.e.11, EIB.g.11, EIB.a.11), infocriteria)[-4,][-3,][-2,])
models <- c("EIB.s.11", "EIB.e.11", "EIB.g.11", "EIB.a.11")
cat(models[min_index], "\n")
## EIB.s.11
min_index <- which.min(sapply(list(HDB.s.11, HDB.e.11, HDB.g.11, HDB.a.11), infocriteria)[-4,][-3,][-2,])
models <- c("HDB.s.11", "HDB.e.11", "HDB.g.11", "HDB.a.11")
cat(models[min_index], "\n")
## HDB.e.11
min_index <- which.min(sapply(list(MBB.s.11, MBB.e.11, MBB.g.11, MBB.a.11), infocriteria)[-4,][-3,][-2,])
models <- c("MBB.s.11", "MBB.e.11", "MBB.g.11", "MBB.a.11")
cat(models[min_index], "\n")
## MBB.e.11
min_index <- which.min(sapply(list(MSB.s.11, MSB.e.11, MSB.g.11, MSB.a.11), infocriteria)[-4,][-3,][-2,])
models <- c("MSB.s.11", "MSB.e.11", "MSB.g.11", "MSB.a.11")
cat(models[min_index], "\n")
## MSB.e.11
min_index <- which.min(sapply(list(NVB.s.11, NVB.e.11, NVB.g.11, NVB.a.11), infocriteria)[-4,][-3,][-2,])
models <- c("NVB.s.11", "NVB.e.11", "NVB.g.11", "NVB.a.11")
cat(models[min_index], "\n")
## NVB.e.11
min_index <- which.min(sapply(list(OCB.s.11, OCB.e.11, OCB.g.11, OCB.a.11), infocriteria)[-4,][-3,][-2,])
models <- c("OCB.s.11", "OCB.e.11", "OCB.g.11", "OCB.a.11")
cat(models[min_index], "\n")
## OCB.a.11
min_index <- which.min(sapply(list(SHB.s.11, SHB.e.11, SHB.g.11, SHB.a.11), infocriteria)[-4,][-3,][-2,])
models <- c("SHB.s.11", "SHB.e.11", "SHB.g.11", "SHB.a.11")
cat(models[min_index], "\n")
## SHB.e.11
min_index <- which.min(sapply(list(SSB.s.11, SSB.e.11, SSB.g.11, SSB.a.11), infocriteria)[-4,][-3,][-2,])
models <- c("SSB.s.11", "SSB.e.11", "SSB.g.11", "SSB.a.11")
cat(models[min_index], "\n")
## SSB.a.11
min_index <- which.min(sapply(list(STB.s.11, STB.e.11, STB.g.11, STB.a.11), infocriteria)[-4,][-3,][-2,])
models <- c("STB.s.11", "STB.e.11", "STB.g.11", "STB.a.11")
cat(models[min_index], "\n")
## STB.e.11
min_index <- which.min(sapply(list(TCB.s.11, TCB.e.11, TCB.g.11, TCB.a.11), infocriteria)[-4,][-3,][-2,])
models <- c("TCB.s.11", "TCB.e.11", "TCB.g.11", "TCB.a.11")
cat(models[min_index], "\n")
## TCB.a.11
min_index <- which.min(sapply(list(TPB.s.11, TPB.e.11, TPB.g.11, TPB.a.11), infocriteria)[-4,][-3,][-2,])
models <- c("TPB.s.11", "TPB.e.11", "TPB.g.11", "TPB.a.11")
cat(models[min_index], "\n")
## TPB.e.11
min_index <- which.min(sapply(list(VCB.s.11, VCB.e.11, VCB.g.11, VCB.a.11), infocriteria)[-4,][-3,][-2,])
models <- c("VCB.s.11", "VCB.e.11", "VCB.g.11", "VCB.g.11")
cat(models[min_index], "\n")
## VCB.g.11
min_index <- which.min(sapply(list(VIB.s.11, VIB.e.11, VIB.g.11, VIB.a.11), infocriteria)[-4,][-3,][-2,])
models <- c("VIB.s.11", "VIB.e.11", "VIB.g.11", "VIB.a.11")
cat(models[min_index], "\n")
## VIB.a.11
min_index <- which.min(sapply(list(VPB.s.11, VPB.e.11, VPB.g.11, VPB.a.11), 
infocriteria)[-4,][-3,][-2,])
models <- c("VPB.s.11", "VPB.e.11", "VPB.g.11", "VPB.a.11")
cat(models[min_index], "\n")
## VPB.s.11
# MÔ HÌNH PHÂN PHỐI BIÊN PHÙ HỢP NHẤT #
ACB.a.11 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : apARCH(1,1)
## Mean Model   : ARFIMA(0,0,2)
## Distribution : std 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## mu      0.043637    0.039742  1.09801 0.272198
## ma1    -0.013589    0.036982 -0.36745 0.713284
## ma2    -0.014083    0.033822 -0.41640 0.677118
## omega   0.092247    0.044110  2.09128 0.036503
## alpha1  0.201597    0.053954  3.73647 0.000187
## beta1   0.822162    0.045247 18.17060 0.000000
## gamma1 -0.043827    0.137810 -0.31803 0.750466
## delta   0.984946    0.270693  3.63861 0.000274
## shape   3.066992    0.400569  7.65659 0.000000
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## mu      0.043637    0.039178  1.11381 0.265359
## ma1    -0.013589    0.040618 -0.33455 0.737963
## ma2    -0.014083    0.034307 -0.41051 0.681434
## omega   0.092247    0.048710  1.89379 0.058253
## alpha1  0.201597    0.057471  3.50783 0.000452
## beta1   0.822162    0.050438 16.30045 0.000000
## gamma1 -0.043827    0.175460 -0.24978 0.802754
## delta   0.984946    0.234004  4.20911 0.000026
## shape   3.066992    0.460433  6.66110 0.000000
## 
## LogLikelihood : -1236.742 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       3.6266
## Bayes        3.6860
## Shibata      3.6263
## Hannan-Quinn 3.6496
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.2083  0.6481
## Lag[2*(p+q)+(p+q)-1][5]    2.3359  0.8572
## Lag[4*(p+q)+(p+q)-1][9]    3.3997  0.8212
## d.o.f=2
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                   0.001625  0.9678
## Lag[2*(p+q)+(p+q)-1][5]  0.200220  0.9926
## Lag[4*(p+q)+(p+q)-1][9]  0.414749  0.9992
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3] 0.0001626 0.500 2.000  0.9898
## ARCH Lag[5] 0.0685213 1.440 1.667  0.9923
## ARCH Lag[7] 0.1695107 2.315 1.543  0.9980
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  2.3801
## Individual Statistics:              
## mu     0.16752
## ma1    0.05114
## ma2    0.13392
## omega  0.19802
## alpha1 0.53738
## beta1  0.38697
## gamma1 0.45824
## delta  0.20780
## shape  0.73171
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          2.1 2.32 2.82
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           1.2243 0.2213    
## Negative Sign Bias  0.2482 0.8041    
## Positive Sign Bias  0.7680 0.4427    
## Joint Effect        1.5512 0.6705    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     54.86    2.439e-05
## 2    30    100.90    7.008e-10
## 3    40     75.45    4.133e-04
## 4    50    103.17    9.839e-06
## 
## 
## Elapsed time : 2.315064
BAB.s.11 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,1)
## Mean Model   : ARFIMA(0,0,2)
## Distribution : std 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## mu     -0.067949    0.024993  -2.7187 0.006555
## ma1    -0.113370    0.040023  -2.8326 0.004617
## ma2    -0.120706    0.038966  -3.0977 0.001950
## omega   0.162890    0.061250   2.6594 0.007827
## alpha1  0.271863    0.080198   3.3899 0.000699
## beta1   0.672601    0.075487   8.9101 0.000000
## shape   3.809745    0.648895   5.8711 0.000000
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## mu     -0.067949    0.025305  -2.6852 0.007248
## ma1    -0.113370    0.037860  -2.9944 0.002749
## ma2    -0.120706    0.032962  -3.6619 0.000250
## omega   0.162890    0.059604   2.7329 0.006278
## alpha1  0.271863    0.085988   3.1617 0.001569
## beta1   0.672601    0.079029   8.5108 0.000000
## shape   3.809745    0.637763   5.9736 0.000000
## 
## LogLikelihood : -1012.234 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       2.9672
## Bayes        3.0134
## Shibata      2.9670
## Hannan-Quinn 2.9851
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic  p-value
## Lag[1]                      1.140 0.285629
## Lag[2*(p+q)+(p+q)-1][5]     4.931 0.004183
## Lag[4*(p+q)+(p+q)-1][9]     7.001 0.127977
## d.o.f=2
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.1967  0.6574
## Lag[2*(p+q)+(p+q)-1][5]    0.5368  0.9519
## Lag[4*(p+q)+(p+q)-1][9]    1.0449  0.9843
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]    0.5501 0.500 2.000  0.4583
## ARCH Lag[5]    0.5635 1.440 1.667  0.8647
## ARCH Lag[7]    0.7502 2.315 1.543  0.9505
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  2.4171
## Individual Statistics:              
## mu     0.47959
## ma1    0.44478
## ma2    0.02797
## omega  0.13414
## alpha1 0.35682
## beta1  0.26720
## shape  0.03995
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          1.69 1.9 2.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           0.8413 0.4005    
## Negative Sign Bias  0.7247 0.4689    
## Positive Sign Bias  0.8630 0.3884    
## Joint Effect        1.2874 0.7321    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     125.0    1.267e-17
## 2    30     149.6    3.490e-18
## 3    40     152.2    2.717e-15
## 4    50     169.8    3.083e-15
## 
## 
## Elapsed time : 0.4976408
BID.g.11 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : gjrGARCH(1,1)
## Mean Model   : ARFIMA(2,0,0)
## Distribution : std 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## mu     -0.004869    0.052715 -0.09237 0.926404
## ar1    -0.120762    0.037127 -3.25267 0.001143
## ar2    -0.023387    0.034849 -0.67109 0.502166
## omega   0.042135    0.032607  1.29220 0.196289
## alpha1  0.039179    0.019751  1.98363 0.047297
## beta1   0.937942    0.019178 48.90797 0.000000
## gamma1  0.035665    0.026106  1.36617 0.171885
## shape   3.935382    0.638110  6.16725 0.000000
## 
## Robust Standard Errors:
##         Estimate  Std. Error   t value Pr(>|t|)
## mu     -0.004869    0.053908 -0.090325 0.928029
## ar1    -0.120762    0.038271 -3.155401 0.001603
## ar2    -0.023387    0.033056 -0.707488 0.479263
## omega   0.042135    0.034150  1.233829 0.217267
## alpha1  0.039179    0.018080  2.167020 0.030233
## beta1   0.937942    0.020212 46.404273 0.000000
## gamma1  0.035665    0.029925  1.191791 0.233343
## shape   3.935382    0.583452  6.744996 0.000000
## 
## LogLikelihood : -1411.261 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       4.1318
## Bayes        4.1845
## Shibata      4.1315
## Hannan-Quinn 4.1522
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                      2.592 0.10743
## Lag[2*(p+q)+(p+q)-1][5]     4.000 0.06652
## Lag[4*(p+q)+(p+q)-1][9]     6.221 0.22222
## d.o.f=2
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                  0.0003576  0.9849
## Lag[2*(p+q)+(p+q)-1][5] 3.1897357  0.3735
## Lag[4*(p+q)+(p+q)-1][9] 5.4380917  0.3680
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]     1.436 0.500 2.000  0.2307
## ARCH Lag[5]     4.756 1.440 1.667  0.1170
## ARCH Lag[7]     5.576 2.315 1.543  0.1724
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  1.0049
## Individual Statistics:              
## mu     0.04392
## ar1    0.07741
## ar2    0.37992
## omega  0.10690
## alpha1 0.13773
## beta1  0.13494
## gamma1 0.22044
## shape  0.09779
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          1.89 2.11 2.59
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           0.9803 0.3273    
## Negative Sign Bias  0.6163 0.5379    
## Positive Sign Bias  0.3232 0.7466    
## Joint Effect        1.0354 0.7927    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     23.25       0.2266
## 2    30     20.29       0.8836
## 3    40     32.83       0.7464
## 4    50     38.25       0.8661
## 
## 
## Elapsed time : 1.092271
CTG.e.11 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : eGARCH(1,1)
## Mean Model   : ARFIMA(2,0,2)
## Distribution : std 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error    t value Pr(>|t|)
## mu      0.041162    0.055040    0.74787  0.45454
## ar1    -1.396818    0.001510 -925.27702  0.00000
## ar2    -0.996216    0.004325 -230.34500  0.00000
## ma1     1.392576    0.003358  414.70882  0.00000
## ma2     0.993043    0.001787  555.56822  0.00000
## omega   0.040940    0.002618   15.63570  0.00000
## alpha1 -0.071759    0.031031   -2.31251  0.02075
## beta1   0.968422    0.002380  406.95278  0.00000
## gamma1  0.223948    0.042285    5.29614  0.00000
## shape   4.093053    0.536719    7.62607  0.00000
## 
## Robust Standard Errors:
##         Estimate  Std. Error     t value Pr(>|t|)
## mu      0.041162    0.051130     0.80506 0.420785
## ar1    -1.396818    0.001390 -1004.92963 0.000000
## ar2    -0.996216    0.012813   -77.74834 0.000000
## ma1     1.392576    0.010292   135.30599 0.000000
## ma2     0.993043    0.005971   166.31616 0.000000
## omega   0.040940    0.008000     5.11737 0.000000
## alpha1 -0.071759    0.029955    -2.39553 0.016596
## beta1   0.968422    0.002326   416.26057 0.000000
## gamma1  0.223948    0.075113     2.98150 0.002868
## shape   4.093053    1.169434     3.50003 0.000465
## 
## LogLikelihood : -1392.034 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       4.0816
## Bayes        4.1476
## Shibata      4.0812
## Hannan-Quinn 4.1071
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                          statistic p-value
## Lag[1]                      0.8168  0.3661
## Lag[2*(p+q)+(p+q)-1][11]    3.2546  1.0000
## Lag[4*(p+q)+(p+q)-1][19]    7.0868  0.9005
## d.o.f=4
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.1195  0.7296
## Lag[2*(p+q)+(p+q)-1][5]    0.7051  0.9219
## Lag[4*(p+q)+(p+q)-1][9]    1.8783  0.9190
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]    0.1381 0.500 2.000  0.7102
## ARCH Lag[5]    0.8110 1.440 1.667  0.7897
## ARCH Lag[7]    1.1659 2.315 1.543  0.8852
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  1.3814
## Individual Statistics:              
## mu     0.16183
## ar1    0.04856
## ar2    0.03908
## ma1    0.05375
## ma2    0.05469
## omega  0.13557
## alpha1 0.32710
## beta1  0.29239
## gamma1 0.03212
## shape  0.38672
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          2.29 2.54 3.05
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           1.2213 0.2224    
## Negative Sign Bias  0.2613 0.7939    
## Positive Sign Bias  0.7338 0.4633    
## Joint Effect        1.6311 0.6524    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     12.01      0.88519
## 2    30     27.28      0.55663
## 3    40     56.00      0.03811
## 4    50     56.74      0.20875
## 
## 
## Elapsed time : 2.161631
EIB.s.11 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,1)
## Mean Model   : ARFIMA(1,0,1)
## Distribution : std 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error   t value Pr(>|t|)
## mu     -0.032171    0.043354  -0.74206 0.458053
## ar1     0.925656    0.020616  44.89980 0.000000
## ma1    -0.956962    0.011315 -84.57447 0.000000
## omega   0.240714    0.163801   1.46955 0.141685
## alpha1  0.200505    0.062749   3.19533 0.001397
## beta1   0.798495    0.064611  12.35848 0.000000
## shape   3.615454    0.468917   7.71022 0.000000
## 
## Robust Standard Errors:
##         Estimate  Std. Error    t value Pr(>|t|)
## mu     -0.032171    0.048926   -0.65754 0.510831
## ar1     0.925656    0.019382   47.75975 0.000000
## ma1    -0.956962    0.008346 -114.66435 0.000000
## omega   0.240714    0.274884    0.87569 0.381197
## alpha1  0.200505    0.082075    2.44296 0.014567
## beta1   0.798495    0.100822    7.91988 0.000000
## shape   3.615454    0.451586    8.00613 0.000000
## 
## LogLikelihood : -1504.958 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       4.4016
## Bayes        4.4478
## Shibata      4.4014
## Hannan-Quinn 4.4195
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                      1.497  0.2211
## Lag[2*(p+q)+(p+q)-1][5]     3.441  0.2310
## Lag[4*(p+q)+(p+q)-1][9]     4.932  0.4690
## d.o.f=2
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                    0.02294  0.8796
## Lag[2*(p+q)+(p+q)-1][5]   0.41785  0.9696
## Lag[4*(p+q)+(p+q)-1][9]   1.15458  0.9789
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]   0.05698 0.500 2.000  0.8113
## ARCH Lag[5]   0.18543 1.440 1.667  0.9689
## ARCH Lag[7]   0.73857 2.315 1.543  0.9520
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  1.95
## Individual Statistics:              
## mu     0.14497
## ar1    0.25747
## ma1    0.24093
## omega  0.06803
## alpha1 0.59714
## beta1  0.20413
## shape  0.24231
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          1.69 1.9 2.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           0.4065 0.6845    
## Negative Sign Bias  0.7642 0.4450    
## Positive Sign Bias  0.6587 0.5103    
## Joint Effect        1.3192 0.7246    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     19.81      0.40596
## 2    30     42.91      0.04638
## 3    40     49.59      0.11911
## 4    50     58.78      0.15983
## 
## 
## Elapsed time : 0.469908
HDB.e.11 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : eGARCH(1,1)
## Mean Model   : ARFIMA(2,0,2)
## Distribution : std 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error     t value Pr(>|t|)
## mu     -0.316270    0.000130  -2431.1682  0.0e+00
## ar1     1.146939    0.000149   7718.4457  0.0e+00
## ar2    -0.148121    0.000048  -3057.7726  0.0e+00
## ma1    -1.239952    0.000104 -11967.5138  0.0e+00
## ma2     0.231315    0.000035   6689.5140  0.0e+00
## omega   0.027565    0.002627     10.4942  0.0e+00
## alpha1 -0.047932    0.011802     -4.0613  4.9e-05
## beta1   0.982205    0.000445   2206.7213  0.0e+00
## gamma1  0.125852    0.007698     16.3492  0.0e+00
## shape   2.898225    0.164004     17.6716  0.0e+00
## 
## Robust Standard Errors:
##         Estimate  Std. Error    t value Pr(>|t|)
## mu     -0.316270    0.001118 -283.00310  0.00000
## ar1     1.146939    0.003530  324.87909  0.00000
## ar2    -0.148121    0.000530 -279.36037  0.00000
## ma1    -1.239952    0.002608 -475.39299  0.00000
## ma2     0.231315    0.001312  176.33948  0.00000
## omega   0.027565    0.161021    0.17119  0.86408
## alpha1 -0.047932    0.460432   -0.10410  0.91709
## beta1   0.982205    0.008500  115.55135  0.00000
## gamma1  0.125852    0.652353    0.19292  0.84702
## shape   2.898225    7.535529    0.38461  0.70053
## 
## LogLikelihood : -1347.848 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       3.9530
## Bayes        4.0190
## Shibata      3.9526
## Hannan-Quinn 3.9785
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                          statistic   p-value
## Lag[1]                     0.02173 8.828e-01
## Lag[2*(p+q)+(p+q)-1][11]   9.60900 1.557e-07
## Lag[4*(p+q)+(p+q)-1][19]  16.69318 7.644e-03
## d.o.f=4
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                  0.0009577  0.9753
## Lag[2*(p+q)+(p+q)-1][5] 0.2853987  0.9852
## Lag[4*(p+q)+(p+q)-1][9] 0.7194397  0.9950
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]    0.1658 0.500 2.000  0.6839
## ARCH Lag[5]    0.5285 1.440 1.667  0.8752
## ARCH Lag[7]    0.6526 2.315 1.543  0.9626
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  1.858
## Individual Statistics:              
## mu     0.04979
## ar1    0.04946
## ar2    0.05036
## ma1    0.04413
## ma2    0.04915
## omega  0.18523
## alpha1 0.08505
## beta1  0.21061
## gamma1 0.13543
## shape  0.36521
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          2.29 2.54 3.05
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           1.3673 0.1720    
## Negative Sign Bias  0.8975 0.3698    
## Positive Sign Bias  1.0727 0.2838    
## Joint Effect        2.2749 0.5173    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     28.20      0.07972
## 2    30     45.01      0.02937
## 3    40     50.29      0.10629
## 4    50     58.34      0.16953
## 
## 
## Elapsed time : 2.646098
MBB.e.11 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : eGARCH(1,1)
## Mean Model   : ARFIMA(2,0,2)
## Distribution : std 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## mu      0.087275    0.051502   1.6946 0.090148
## ar1    -0.217366    0.014153 -15.3585 0.000000
## ar2    -0.954804    0.009620 -99.2511 0.000000
## ma1     0.226123    0.008402  26.9143 0.000000
## ma2     0.980963    0.001474 665.4408 0.000000
## omega   0.058414    0.032303   1.8083 0.070554
## alpha1 -0.116607    0.042312  -2.7559 0.005854
## beta1   0.952957    0.021550  44.2215 0.000000
## gamma1  0.238618    0.062053   3.8454 0.000120
## shape   3.413996    0.496676   6.8737 0.000000
## 
## Robust Standard Errors:
##         Estimate  Std. Error   t value Pr(>|t|)
## mu      0.087275    0.051219    1.7039 0.088391
## ar1    -0.217366    0.013192  -16.4769 0.000000
## ar2    -0.954804    0.009227 -103.4740 0.000000
## ma1     0.226123    0.007494   30.1751 0.000000
## ma2     0.980963    0.001171  837.3731 0.000000
## omega   0.058414    0.038571    1.5145 0.129907
## alpha1 -0.116607    0.046333   -2.5167 0.011846
## beta1   0.952957    0.027394   34.7876 0.000000
## gamma1  0.238618    0.052566    4.5394 0.000006
## shape   3.413996    0.409840    8.3301 0.000000
## 
## LogLikelihood : -1329.893 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       3.9007
## Bayes        3.9667
## Shibata      3.9003
## Hannan-Quinn 3.9262
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                          statistic p-value
## Lag[1]                      0.8873  0.3462
## Lag[2*(p+q)+(p+q)-1][11]    4.2518  0.9993
## Lag[4*(p+q)+(p+q)-1][19]    6.1438  0.9647
## d.o.f=4
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.2509  0.6164
## Lag[2*(p+q)+(p+q)-1][5]    1.4970  0.7406
## Lag[4*(p+q)+(p+q)-1][9]    3.0763  0.7463
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]    0.0690 0.500 2.000  0.7928
## ARCH Lag[5]    0.7087 1.440 1.667  0.8208
## ARCH Lag[7]    1.9572 2.315 1.543  0.7264
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  1.546
## Individual Statistics:              
## mu     0.03106
## ar1    0.47419
## ar2    0.01670
## ma1    0.36999
## ma2    0.02714
## omega  0.11790
## alpha1 0.42278
## beta1  0.18885
## gamma1 0.05204
## shape  0.04647
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          2.29 2.54 3.05
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           0.5928 0.5535    
## Negative Sign Bias  0.5630 0.5736    
## Positive Sign Bias  1.0373 0.3000    
## Joint Effect        1.4588 0.6918    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     18.71       0.4758
## 2    30     30.42       0.3931
## 3    40     31.66       0.7919
## 4    50     41.75       0.7592
## 
## 
## Elapsed time : 1.177285
MSB.e.11 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : eGARCH(1,1)
## Mean Model   : ARFIMA(0,0,1)
## Distribution : std 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## mu      0.060553    0.052547  1.15236 0.249175
## ma1     0.032700    0.032980  0.99151 0.321437
## omega   0.237900    0.121868  1.95211 0.050925
## alpha1 -0.183842    0.083665 -2.19736 0.027995
## beta1   0.857550    0.060847 14.09360 0.000000
## gamma1  0.345961    0.118340  2.92345 0.003462
## shape   2.641884    0.341911  7.72682 0.000000
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## mu      0.060553    0.054365   1.1138 0.265350
## ma1     0.032700    0.029925   1.0927 0.274511
## omega   0.237900    0.218521   1.0887 0.276295
## alpha1 -0.183842    0.119427  -1.5394 0.123717
## beta1   0.857550    0.111827   7.6686 0.000000
## gamma1  0.345961    0.165840   2.0861 0.036968
## shape   2.641884    0.373531   7.0727 0.000000
## 
## LogLikelihood : -1349.168 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       3.9481
## Bayes        3.9943
## Shibata      3.9479
## Hannan-Quinn 3.9660
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                      1.999 0.15737
## Lag[2*(p+q)+(p+q)-1][2]     2.493 0.09205
## Lag[4*(p+q)+(p+q)-1][5]     2.972 0.43826
## d.o.f=1
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                      4.139 0.04191
## Lag[2*(p+q)+(p+q)-1][5]     4.859 0.16469
## Lag[4*(p+q)+(p+q)-1][9]     5.822 0.31913
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]   0.07749 0.500 2.000  0.7807
## ARCH Lag[5]   1.22317 1.440 1.667  0.6680
## ARCH Lag[7]   1.58743 2.315 1.543  0.8037
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  2.5614
## Individual Statistics:              
## mu     0.05181
## ma1    0.59676
## omega  0.16494
## alpha1 0.41335
## beta1  0.40106
## gamma1 0.05790
## shape  0.26067
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          1.69 1.9 2.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias          0.01527 0.9878    
## Negative Sign Bias 0.27335 0.7847    
## Positive Sign Bias 0.83388 0.4046    
## Joint Effect       1.29610 0.7301    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     172.9    7.539e-27
## 2    30     194.6    1.907e-26
## 3    40     193.3    2.520e-22
## 4    50     253.1    2.696e-29
## 
## 
## Elapsed time : 0.7386749
NVB.e.11 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : eGARCH(1,1)
## Mean Model   : ARFIMA(0,0,2)
## Distribution : std 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error   t value Pr(>|t|)
## mu      -0.20576    0.051870 -3.966797 0.000073
## ma1     -0.12582    0.040752 -3.087462 0.002019
## ma2     -0.07935    0.033061 -2.400139 0.016389
## omega    0.52238    0.190966  2.735459 0.006229
## alpha1  -0.00270    0.077589 -0.034805 0.972235
## beta1    0.79135    0.064738 12.223753 0.000000
## gamma1   0.80953    0.198156  4.085301 0.000044
## shape    2.55045    0.308890  8.256830 0.000000
## 
## Robust Standard Errors:
##         Estimate  Std. Error   t value Pr(>|t|)
## mu      -0.20576    0.051633 -3.985014 0.000067
## ma1     -0.12582    0.041942 -2.999877 0.002701
## ma2     -0.07935    0.026641 -2.978512 0.002897
## omega    0.52238    0.215252  2.426825 0.015232
## alpha1  -0.00270    0.070287 -0.038421 0.969352
## beta1    0.79135    0.074436 10.631297 0.000000
## gamma1   0.80953    0.177844  4.551891 0.000005
## shape    2.55045    0.262319  9.722718 0.000000
## 
## LogLikelihood : -1581.975 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       4.6287
## Bayes        4.6815
## Shibata      4.6285
## Hannan-Quinn 4.6492
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                      2.222  0.1361
## Lag[2*(p+q)+(p+q)-1][5]     2.746  0.6340
## Lag[4*(p+q)+(p+q)-1][9]     5.483  0.3504
## d.o.f=2
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.9416  0.3319
## Lag[2*(p+q)+(p+q)-1][5]    2.8020  0.4444
## Lag[4*(p+q)+(p+q)-1][9]    4.8493  0.4519
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]    0.8463 0.500 2.000  0.3576
## ARCH Lag[5]    1.3860 1.440 1.667  0.6228
## ARCH Lag[7]    1.8913 2.315 1.543  0.7403
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  1.5737
## Individual Statistics:              
## mu     0.09826
## ma1    0.11526
## ma2    0.15323
## omega  0.13355
## alpha1 0.12522
## beta1  0.15516
## gamma1 0.34336
## shape  0.20223
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          1.89 2.11 2.59
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value    prob sig
## Sign Bias           1.3596 0.17439    
## Negative Sign Bias  0.5869 0.55746    
## Positive Sign Bias  2.0342 0.04232  **
## Joint Effect        5.4781 0.13995    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     45.37    0.0006077
## 2    30     48.50    0.0130290
## 3    40     65.66    0.0047850
## 4    50     66.20    0.0511737
## 
## 
## Elapsed time : 4.2954
OCB.a.11 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : apARCH(1,1)
## Mean Model   : ARFIMA(2,0,2)
## Distribution : std 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error    t value Pr(>|t|)
## mu     -0.077983    0.002197  -35.49424 0.000000
## ar1     0.128643    0.001395   92.22800 0.000000
## ar2    -0.982294    0.003826 -256.73113 0.000000
## ma1    -0.133474    0.001171 -113.98013 0.000000
## ma2     0.995942    0.000384 2596.00141 0.000000
## omega   0.157327    0.239951    0.65566 0.512041
## alpha1  0.139518    0.117908    1.18328 0.236697
## beta1   0.785605    0.176477    4.45160 0.000009
## gamma1  0.360098    0.346874    1.03812 0.299214
## delta   0.360201    0.456720    0.78867 0.430306
## shape   2.759141    0.524972    5.25579 0.000000
## 
## Robust Standard Errors:
##         Estimate  Std. Error    t value Pr(>|t|)
## mu     -0.077983    0.007694  -10.13576 0.000000
## ar1     0.128643    0.006564   19.59860 0.000000
## ar2    -0.982294    0.008294 -118.43224 0.000000
## ma1    -0.133474    0.005532  -24.12803 0.000000
## ma2     0.995942    0.000476 2092.42109 0.000000
## omega   0.157327    0.834883    0.18844 0.850530
## alpha1  0.139518    0.405279    0.34425 0.730656
## beta1   0.785605    0.590201    1.33108 0.183163
## gamma1  0.360098    0.981008    0.36707 0.713568
## delta   0.360201    1.665961    0.21621 0.828823
## shape   2.759141    1.477248    1.86776 0.061796
## 
## LogLikelihood : -1386.57 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       4.0686
## Bayes        4.1412
## Shibata      4.0681
## Hannan-Quinn 4.0967
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                          statistic p-value
## Lag[1]                      0.3697  0.5432
## Lag[2*(p+q)+(p+q)-1][11]    1.9591  1.0000
## Lag[4*(p+q)+(p+q)-1][19]    3.6513  0.9998
## d.o.f=4
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                    0.01228  0.9118
## Lag[2*(p+q)+(p+q)-1][5]   0.03515  0.9998
## Lag[4*(p+q)+(p+q)-1][9]   0.06084  1.0000
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]   0.01462 0.500 2.000  0.9038
## ARCH Lag[5]   0.02545 1.440 1.667  0.9981
## ARCH Lag[7]   0.04312 2.315 1.543  0.9999
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  5.7781
## Individual Statistics:              
## mu     2.49519
## ar1    3.48571
## ar2    0.64870
## ma1    3.23166
## ma2    0.32576
## omega  0.18445
## alpha1 0.26413
## beta1  0.22696
## gamma1 0.05807
## delta  0.24938
## shape  0.30649
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          2.49 2.75 3.27
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           0.5706 0.5685    
## Negative Sign Bias  0.2940 0.7689    
## Positive Sign Bias  0.2232 0.8234    
## Joint Effect        0.7174 0.8691    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     25.40       0.1477
## 2    30     33.57       0.2554
## 3    40     45.05       0.2335
## 4    50     54.12       0.2853
## 
## 
## Elapsed time : 7.584002
SHB.e.11 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : eGARCH(1,1)
## Mean Model   : ARFIMA(1,0,0)
## Distribution : std 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error   t value Pr(>|t|)
## mu     -0.028448    0.059219  -0.48038 0.630955
## ar1    -0.028096    0.036918  -0.76105 0.446627
## omega   0.020278    0.010094   2.00889 0.044549
## alpha1 -0.072422    0.024353  -2.97388 0.002941
## beta1   0.984144    0.008163 120.56163 0.000000
## gamma1  0.161863    0.145703   1.11091 0.266607
## shape   4.119798    0.672083   6.12989 0.000000
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## mu     -0.028448    0.086800 -0.32774  0.74311
## ar1    -0.028096    0.043109 -0.65174  0.51457
## omega   0.020278    0.030144  0.67270  0.50114
## alpha1 -0.072422    0.046842 -1.54611  0.12208
## beta1   0.984144    0.031714 31.03185  0.00000
## gamma1  0.161863    0.584618  0.27687  0.78188
## shape   4.119798    0.739458  5.57137  0.00000
## 
## LogLikelihood : -1430.629 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       4.1852
## Bayes        4.2314
## Shibata      4.1850
## Hannan-Quinn 4.2031
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                      2.967 0.08497
## Lag[2*(p+q)+(p+q)-1][2]     3.309 0.01883
## Lag[4*(p+q)+(p+q)-1][5]     3.760 0.26626
## d.o.f=1
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.2228  0.6369
## Lag[2*(p+q)+(p+q)-1][5]    0.8099  0.9010
## Lag[4*(p+q)+(p+q)-1][9]    1.4375  0.9605
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]    0.3781 0.500 2.000  0.5386
## ARCH Lag[5]    0.4472 1.440 1.667  0.8991
## ARCH Lag[7]    0.8431 2.315 1.543  0.9377
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  2.5266
## Individual Statistics:              
## mu     0.14058
## ar1    0.08129
## omega  0.34031
## alpha1 0.95023
## beta1  0.18996
## gamma1 0.11715
## shape  0.51051
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          1.69 1.9 2.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value    prob sig
## Sign Bias            0.700 0.48415    
## Negative Sign Bias   0.148 0.88237    
## Positive Sign Bias   1.915 0.05591   *
## Joint Effect         3.865 0.27645    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     56.55    1.341e-05
## 2    30    101.17    6.361e-10
## 3    40    132.04    4.882e-12
## 4    50    141.02    7.641e-11
## 
## 
## Elapsed time : 0.792836
SSB.a.11 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : apARCH(1,1)
## Mean Model   : ARFIMA(2,0,2)
## Distribution : std 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error   t value Pr(>|t|)
## mu     -0.021124    0.001796 -11.75937 0.000000
## ar1    -0.043266    0.002758 -15.68741 0.000000
## ar2     0.846448    0.010660  79.40280 0.000000
## ma1     0.045716    0.002200  20.77899 0.000000
## ma2    -0.817437    0.016138 -50.65386 0.000000
## omega   0.287525    0.125399   2.29288 0.021855
## alpha1  0.470001    0.295029   1.59307 0.111145
## beta1   0.532242    0.069369   7.67267 0.000000
## gamma1  0.229984    0.130846   1.75767 0.078804
## delta   0.359475    0.377154   0.95312 0.340527
## shape   2.115204    0.046045  45.93785 0.000000
## 
## Robust Standard Errors:
##         Estimate  Std. Error   t value Pr(>|t|)
## mu     -0.021124    0.018127 -1.165342 0.243880
## ar1    -0.043266    0.029238 -1.479798 0.138927
## ar2     0.846448    0.112337  7.534908 0.000000
## ma1     0.045716    0.022693  2.014497 0.043957
## ma2    -0.817437    0.174339 -4.688792 0.000003
## omega   0.287525    1.138103  0.252635 0.800550
## alpha1  0.470001    2.929237  0.160452 0.872525
## beta1   0.532242    0.330216  1.611799 0.107006
## gamma1  0.229984    0.216561  1.061980 0.288245
## delta   0.359475    3.823822  0.094009 0.925102
## shape   2.115204    0.070490 30.007302 0.000000
## 
## LogLikelihood : -969.6714 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       2.8549
## Bayes        2.9275
## Shibata      2.8544
## Hannan-Quinn 2.8830
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                          statistic p-value
## Lag[1]                      0.4252  0.5144
## Lag[2*(p+q)+(p+q)-1][11]    5.2928  0.8827
## Lag[4*(p+q)+(p+q)-1][19]   11.4722  0.2520
## d.o.f=4
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.3053  0.5806
## Lag[2*(p+q)+(p+q)-1][5]    0.8954  0.8829
## Lag[4*(p+q)+(p+q)-1][9]    1.2573  0.9730
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]   0.05193 0.500 2.000  0.8197
## ARCH Lag[5]   0.54200 1.440 1.667  0.8712
## ARCH Lag[7]   0.73099 2.315 1.543  0.9530
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  8.8386
## Individual Statistics:             
## mu     0.9468
## ar1    1.4621
## ar2    1.8242
## ma1    1.5216
## ma2    1.7244
## omega  0.1443
## alpha1 0.1634
## beta1  0.1226
## gamma1 1.8978
## delta  0.1738
## shape  0.1781
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          2.49 2.75 3.27
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           0.5173 0.6051    
## Negative Sign Bias  0.5409 0.5887    
## Positive Sign Bias  0.2635 0.7922    
## Joint Effect        1.2978 0.7296    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     70.93    6.431e-08
## 2    30     95.66    4.776e-09
## 3    40    104.32    7.214e-08
## 4    50    112.34    6.995e-07
## 
## 
## Elapsed time : 8.820632
STB.e.11 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : eGARCH(1,1)
## Mean Model   : ARFIMA(0,0,2)
## Distribution : std 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error   t value Pr(>|t|)
## mu      0.043666    0.064952   0.67228 0.501404
## ma1    -0.076229    0.037721  -2.02088 0.043292
## ma2    -0.014466    0.038125  -0.37943 0.704371
## omega   0.029325    0.007042   4.16395 0.000031
## alpha1 -0.086533    0.022629  -3.82394 0.000131
## beta1   0.979441    0.002519 388.89088 0.000000
## gamma1  0.157671    0.036875   4.27583 0.000019
## shape   7.336517    2.242355   3.27179 0.001069
## 
## Robust Standard Errors:
##         Estimate  Std. Error    t value Pr(>|t|)
## mu      0.043666    0.069488    0.62840 0.529744
## ma1    -0.076229    0.034981   -2.17916 0.029320
## ma2    -0.014466    0.039602   -0.36528 0.714903
## omega   0.029325    0.006041    4.85435 0.000001
## alpha1 -0.086533    0.025497   -3.39384 0.000689
## beta1   0.979441    0.000723 1353.86100 0.000000
## gamma1  0.157671    0.034702    4.54352 0.000006
## shape   7.336517    2.053239    3.57314 0.000353
## 
## LogLikelihood : -1502.39 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       4.3971
## Bayes        4.4498
## Shibata      4.3968
## Hannan-Quinn 4.4175
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                    0.01089  0.9169
## Lag[2*(p+q)+(p+q)-1][5]   1.04510  1.0000
## Lag[4*(p+q)+(p+q)-1][9]   2.80538  0.9179
## d.o.f=2
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                      1.091  0.2962
## Lag[2*(p+q)+(p+q)-1][5]     3.171  0.3767
## Lag[4*(p+q)+(p+q)-1][9]     4.205  0.5545
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]     2.837 0.500 2.000 0.09212
## ARCH Lag[5]     3.269 1.440 1.667 0.25305
## ARCH Lag[7]     3.540 2.315 1.543 0.41782
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  1.6937
## Individual Statistics:              
## mu     0.07407
## ma1    0.16066
## ma2    0.44775
## omega  0.15811
## alpha1 0.31035
## beta1  0.25034
## gamma1 0.11846
## shape  0.50068
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          1.89 2.11 2.59
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           0.3048 0.7606    
## Negative Sign Bias  0.5929 0.5535    
## Positive Sign Bias  0.4375 0.6619    
## Joint Effect        0.6470 0.8856    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     31.57     0.034888
## 2    30     38.11     0.119928
## 3    40     69.39     0.001953
## 4    50     57.47     0.190212
## 
## 
## Elapsed time : 1.57287
TCB.a.11 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : apARCH(1,1)
## Mean Model   : ARFIMA(1,0,0)
## Distribution : std 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## mu      0.043949    0.003788  11.6025 0.000000
## ar1     0.018905    0.000722  26.1665 0.000000
## omega   0.043058    0.024535   1.7550 0.079265
## alpha1  0.078491    0.022539   3.4824 0.000497
## beta1   0.917419    0.026088  35.1662 0.000000
## gamma1  0.579018    0.254555   2.2746 0.022928
## delta   0.479047    0.134607   3.5589 0.000372
## shape   3.068539    0.385643   7.9569 0.000000
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## mu      0.043949    0.002150  20.4377 0.000000
## ar1     0.018905    0.001042  18.1408 0.000000
## omega   0.043058    0.026873   1.6023 0.109099
## alpha1  0.078491    0.021715   3.6146 0.000301
## beta1   0.917419    0.025441  36.0610 0.000000
## gamma1  0.579018    0.275605   2.1009 0.035650
## delta   0.479047    0.132984   3.6023 0.000315
## shape   3.068539    0.487102   6.2996 0.000000
## 
## LogLikelihood : -1412.207 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       4.1345
## Bayes        4.1873
## Shibata      4.1343
## Hannan-Quinn 4.1549
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.4657  0.4950
## Lag[2*(p+q)+(p+q)-1][2]    0.4803  0.9688
## Lag[4*(p+q)+(p+q)-1][5]    0.7148  0.9802
## d.o.f=1
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                   0.002862  0.9573
## Lag[2*(p+q)+(p+q)-1][5]  0.008747  1.0000
## Lag[4*(p+q)+(p+q)-1][9]  0.014462  1.0000
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]  0.002783 0.500 2.000  0.9579
## ARCH Lag[5]  0.007064 1.440 1.667  0.9997
## ARCH Lag[7]  0.010455 2.315 1.543  1.0000
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  4.4523
## Individual Statistics:              
## mu     0.27163
## ar1    0.26830
## omega  0.09391
## alpha1 0.21481
## beta1  0.13728
## gamma1 0.04615
## delta  0.05201
## shape  0.34254
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          1.89 2.11 2.59
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                     t-value   prob sig
## Sign Bias          0.767776 0.4429    
## Negative Sign Bias 0.198653 0.8426    
## Positive Sign Bias 0.002455 0.9980    
## Joint Effect       0.906208 0.8239    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     30.23    0.0488906
## 2    30     60.38    0.0005538
## 3    40     70.44    0.0015051
## 4    50     72.02    0.0177605
## 
## 
## Elapsed time : 3.901846
TPB.e.11 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : eGARCH(1,1)
## Mean Model   : ARFIMA(0,0,1)
## Distribution : std 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error    t value Pr(>|t|)
## mu      0.019673    0.051556    0.38159 0.702765
## ma1    -0.089711    0.030364   -2.95458 0.003131
## omega   0.022844    0.005326    4.28874 0.000018
## alpha1 -0.038535    0.020158   -1.91164 0.055923
## beta1   0.985164    0.000150 6587.00296 0.000000
## gamma1  0.068198    0.020811    3.27711 0.001049
## shape   2.837310    0.326767    8.68299 0.000000
## 
## Robust Standard Errors:
##         Estimate  Std. Error    t value Pr(>|t|)
## mu      0.019673    0.046340    0.42455 0.671168
## ma1    -0.089711    0.030740   -2.91844 0.003518
## omega   0.022844    0.005318    4.29528 0.000017
## alpha1 -0.038535    0.025805   -1.49332 0.135354
## beta1   0.985164    0.000176 5588.06486 0.000000
## gamma1  0.068198    0.014784    4.61286 0.000004
## shape   2.837310    0.356708    7.95414 0.000000
## 
## LogLikelihood : -1415.167 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       4.1402
## Bayes        4.1864
## Shibata      4.1400
## Hannan-Quinn 4.1581
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                    0.05202  0.8196
## Lag[2*(p+q)+(p+q)-1][2]   0.14012  0.9997
## Lag[4*(p+q)+(p+q)-1][5]   0.66810  0.9840
## d.o.f=1
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                    0.03726  0.8469
## Lag[2*(p+q)+(p+q)-1][5]   0.15946  0.9952
## Lag[4*(p+q)+(p+q)-1][9]   0.29141  0.9997
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]   0.09979 0.500 2.000  0.7521
## ARCH Lag[5]   0.18047 1.440 1.667  0.9700
## ARCH Lag[7]   0.27327 2.315 1.543  0.9941
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  0.8937
## Individual Statistics:              
## mu     0.12511
## ma1    0.03769
## omega  0.12819
## alpha1 0.08534
## beta1  0.15607
## gamma1 0.12844
## shape  0.28771
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          1.69 1.9 2.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           0.1388 0.8897    
## Negative Sign Bias  0.3082 0.7580    
## Positive Sign Bias  0.8077 0.4196    
## Joint Effect        0.8242 0.8437    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     29.48     0.058837
## 2    30     50.42     0.008128
## 3    40     65.20     0.005334
## 4    50     76.83     0.006737
## 
## 
## Elapsed time : 1.896572
VCB.g.11 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : gjrGARCH(1,1)
## Mean Model   : ARFIMA(2,0,2)
## Distribution : std 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error     t value Pr(>|t|)
## mu     -0.002356    0.043742   -0.053863 0.957044
## ar1     0.145742    0.018330    7.951082 0.000000
## ar2    -0.988104    0.008672 -113.944676 0.000000
## ma1    -0.150200    0.028917   -5.194144 0.000000
## ma2     0.963808    0.010670   90.331293 0.000000
## omega   0.000000    0.000188    0.000000 1.000000
## alpha1  0.000000    0.002528    0.000004 0.999996
## beta1   0.992934    0.000571 1739.532395 0.000000
## gamma1  0.010042    0.005229    1.920344 0.054814
## shape   4.256771    0.669250    6.360506 0.000000
## 
## Robust Standard Errors:
##         Estimate  Std. Error     t value Pr(>|t|)
## mu     -0.002356    0.046464   -0.050708 0.959558
## ar1     0.145742    0.027088    5.380207 0.000000
## ar2    -0.988104    0.008128 -121.565352 0.000000
## ma1    -0.150200    0.043602   -3.444764 0.000572
## ma2     0.963808    0.011011   87.532575 0.000000
## omega   0.000000    0.000009    0.000000 1.000000
## alpha1  0.000000    0.002968    0.000004 0.999997
## beta1   0.992934    0.000281 3537.976376 0.000000
## gamma1  0.010042    0.006491    1.546973 0.121870
## shape   4.256771    0.879952    4.837503 0.000001
## 
## LogLikelihood : -1197.26 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       3.5146
## Bayes        3.5806
## Shibata      3.5142
## Hannan-Quinn 3.5401
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                          statistic p-value
## Lag[1]                      0.3564  0.5505
## Lag[2*(p+q)+(p+q)-1][11]    6.4538  0.2214
## Lag[4*(p+q)+(p+q)-1][19]    9.6759  0.5230
## d.o.f=4
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                    0.03058  0.8612
## Lag[2*(p+q)+(p+q)-1][5]   0.15745  0.9954
## Lag[4*(p+q)+(p+q)-1][9]   0.37312  0.9994
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]    0.1101 0.500 2.000  0.7400
## ARCH Lag[5]    0.2252 1.440 1.667  0.9594
## ARCH Lag[7]    0.3349 2.315 1.543  0.9908
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  1.4203
## Individual Statistics:              
## mu     0.16200
## ar1    0.08143
## ar2    0.15521
## ma1    0.06343
## ma2    0.26595
## omega  0.03608
## alpha1 0.07173
## beta1  0.08154
## gamma1 0.08177
## shape  0.06601
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          2.29 2.54 3.05
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias          0.75227 0.4522    
## Negative Sign Bias 0.05542 0.9558    
## Positive Sign Bias 0.70771 0.4794    
## Joint Effect       0.79771 0.8500    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     24.12       0.1916
## 2    30     36.89       0.1492
## 3    40     46.80       0.1828
## 4    50     46.55       0.5729
## 
## 
## Elapsed time : 2.052199
VIB.a.11 
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : apARCH(1,1)
## Mean Model   : ARFIMA(0,0,0)
## Distribution : std 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## mu     -0.088235    0.053889  -1.6373 0.101558
## omega   0.052071    0.022591   2.3050 0.021168
## alpha1  0.109703    0.028876   3.7991 0.000145
## beta1   0.875481    0.030312  28.8820 0.000000
## gamma1  0.575378    0.185707   3.0983 0.001946
## delta   0.316012    0.188856   1.6733 0.094269
## shape   3.545440    0.528705   6.7059 0.000000
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## mu     -0.088235    0.065346  -1.3503 0.176927
## omega   0.052071    0.026240   1.9844 0.047209
## alpha1  0.109703    0.027605   3.9740 0.000071
## beta1   0.875481    0.033911  25.8172 0.000000
## gamma1  0.575378    0.175563   3.2773 0.001048
## delta   0.316012    0.184304   1.7146 0.086413
## shape   3.545440    0.591085   5.9982 0.000000
## 
## LogLikelihood : -1373.389 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       4.0186
## Bayes        4.0648
## Shibata      4.0184
## Hannan-Quinn 4.0365
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.5756  0.4480
## Lag[2*(p+q)+(p+q)-1][2]    0.6368  0.6327
## Lag[4*(p+q)+(p+q)-1][5]    1.1998  0.8130
## d.o.f=0
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                     0.1819  0.6697
## Lag[2*(p+q)+(p+q)-1][5]    0.3052  0.9832
## Lag[4*(p+q)+(p+q)-1][9]    1.0920  0.9821
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]   0.02360 0.500 2.000  0.8779
## ARCH Lag[5]   0.06899 1.440 1.667  0.9922
## ARCH Lag[7]   0.17873 2.315 1.543  0.9977
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  1.8966
## Individual Statistics:             
## mu     0.2280
## omega  0.3085
## alpha1 0.3718
## beta1  0.3568
## gamma1 0.1720
## delta  0.3142
## shape  0.6772
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          1.69 1.9 2.35
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           1.4253 0.1545    
## Negative Sign Bias  1.2243 0.2212    
## Positive Sign Bias  0.3229 0.7469    
## Joint Effect        3.6044 0.3075    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     59.35    4.908e-06
## 2    30     57.32    1.314e-03
## 3    40    102.00    1.540e-07
## 4    50    150.92    2.587e-12
## 
## 
## Elapsed time : 2.658072
VPB.s.11
## 
## *---------------------------------*
## *          GARCH Model Fit        *
## *---------------------------------*
## 
## Conditional Variance Dynamics    
## -----------------------------------
## GARCH Model  : sGARCH(1,1)
## Mean Model   : ARFIMA(2,0,2)
## Distribution : std 
## 
## Optimal Parameters
## ------------------------------------
##         Estimate  Std. Error  t value Pr(>|t|)
## mu      0.030599    0.052111  0.58719 0.557077
## ar1     0.590880    0.294681  2.00515 0.044947
## ar2    -0.612592    0.186657 -3.28192 0.001031
## ma1    -0.620068    0.313663 -1.97686 0.048057
## ma2     0.546779    0.210145  2.60191 0.009271
## omega   0.163665    0.098523  1.66118 0.096677
## alpha1  0.089035    0.035129  2.53454 0.011259
## beta1   0.887056    0.041499 21.37548 0.000000
## shape   3.496435    0.571099  6.12229 0.000000
## 
## Robust Standard Errors:
##         Estimate  Std. Error  t value Pr(>|t|)
## mu      0.030599    0.053165  0.57554 0.564925
## ar1     0.590880    0.354519  1.66671 0.095572
## ar2    -0.612592    0.184364 -3.32273 0.000891
## ma1    -0.620068    0.373255 -1.66125 0.096664
## ma2     0.546779    0.212745  2.57011 0.010166
## omega   0.163665    0.104463  1.56673 0.117178
## alpha1  0.089035    0.034350  2.59200 0.009542
## beta1   0.887056    0.044804 19.79874 0.000000
## shape   3.496435    0.562196  6.21925 0.000000
## 
## LogLikelihood : -1381.264 
## 
## Information Criteria
## ------------------------------------
##                    
## Akaike       4.0473
## Bayes        4.1067
## Shibata      4.0470
## Hannan-Quinn 4.0703
## 
## Weighted Ljung-Box Test on Standardized Residuals
## ------------------------------------
##                          statistic p-value
## Lag[1]                      0.3155  0.5743
## Lag[2*(p+q)+(p+q)-1][11]    4.8275  0.9800
## Lag[4*(p+q)+(p+q)-1][19]    7.8411  0.8157
## d.o.f=4
## H0 : No serial correlation
## 
## Weighted Ljung-Box Test on Standardized Squared Residuals
## ------------------------------------
##                         statistic p-value
## Lag[1]                    0.03208  0.8579
## Lag[2*(p+q)+(p+q)-1][5]   0.78218  0.9067
## Lag[4*(p+q)+(p+q)-1][9]   1.31744  0.9691
## d.o.f=2
## 
## Weighted ARCH LM Tests
## ------------------------------------
##             Statistic Shape Scale P-Value
## ARCH Lag[3]     1.048 0.500 2.000  0.3060
## ARCH Lag[5]     1.364 1.440 1.667  0.6288
## ARCH Lag[7]     1.436 2.315 1.543  0.8340
## 
## Nyblom stability test
## ------------------------------------
## Joint Statistic:  1.7213
## Individual Statistics:              
## mu     0.13847
## ar1    0.05920
## ar2    0.37246
## ma1    0.07306
## ma2    0.37026
## omega  0.27770
## alpha1 0.61437
## beta1  0.53096
## shape  0.43411
## 
## Asymptotic Critical Values (10% 5% 1%)
## Joint Statistic:          2.1 2.32 2.82
## Individual Statistic:     0.35 0.47 0.75
## 
## Sign Bias Test
## ------------------------------------
##                    t-value   prob sig
## Sign Bias           0.4761 0.6342    
## Negative Sign Bias  0.3637 0.7162    
## Positive Sign Bias  0.1464 0.8837    
## Joint Effect        0.4481 0.9301    
## 
## 
## Adjusted Pearson Goodness-of-Fit Test:
## ------------------------------------
##   group statistic p-value(g-1)
## 1    20     41.82     0.001874
## 2    30     36.54     0.158438
## 3    40     58.21     0.024541
## 4    50     71.59     0.019316
## 
## 
## Elapsed time : 0.590162
# ĐƯỜNG CONG MÔ TẢ MỨC ĐỘ BẤT ĐỐI XỨNG THÔNG TIN (NEWS IMPACT CURVE) #
plot(ACB.a.11, which=12)

plot(BAB.s.11, which=12)

plot(BID.g.11, which=12)

plot(CTG.e.11, which=12)

plot(EIB.s.11, which=12)

plot(HDB.e.11, which=12)

plot(MBB.e.11, which=12)

plot(MSB.e.11, which=12)

plot(NVB.e.11, which=12)

plot(OCB.a.11, which=12)

plot(SHB.e.11, which=12)

plot(SSB.a.11, which=12)

plot(STB.e.11, which=12)

plot(TCB.a.11, which=12)

plot(TPB.e.11, which=12)

plot(VCB.g.11, which=12)

plot(VIB.a.11, which=12)

plot(VPB.s.11, which=12)

# XÁC ĐỊNH PHÂN VỊ 5% CỦA PHÂN PHỐI STD #
ACB.res <- residuals(ACB.a.11)/sigma(ACB.a.11)
BAB.res <- residuals(BAB.s.11)/sigma(BAB.s.11)
BID.res <- residuals(BID.g.11)/sigma(BID.g.11)
CTG.res <- residuals(CTG.e.11)/sigma(CTG.e.11)
EIB.res <- residuals(EIB.s.11)/sigma(EIB.s.11)
HDB.res <- residuals(HDB.e.11)/sigma(HDB.e.11)
MBB.res <- residuals(MBB.e.11)/sigma(MBB.e.11)
MSB.res <- residuals(MSB.e.11)/sigma(MSB.e.11)
NVB.res <- residuals(NVB.e.11)/sigma(NVB.e.11)
OCB.res <- residuals(OCB.a.11)/sigma(OCB.a.11)
SHB.res <- residuals(SHB.e.11)/sigma(SHB.e.11)
SSB.res <- residuals(SSB.a.11)/sigma(SSB.a.11)
STB.res <- residuals(STB.e.11)/sigma(STB.e.11)
TCB.res <- residuals(TCB.a.11)/sigma(TCB.a.11)
TPB.res <- residuals(TPB.e.11)/sigma(TPB.e.11)
VCB.res <- residuals(VCB.g.11)/sigma(VCB.g.11)
VIB.res <- residuals(VIB.a.11)/sigma(VIB.a.11)
VPB.res <- residuals(VPB.s.11)/sigma(VPB.s.11)

ACB.df <- fitdist(distribution = "std", ACB.res, control = list())$pars
BAB.df <- fitdist(distribution = "std", BAB.res, control = list())$pars
BID.df <- fitdist(distribution = "std", BID.res, control = list())$pars
CTG.df <- fitdist(distribution = "std", CTG.res, control = list())$pars
EIB.df <- fitdist(distribution = "std", EIB.res, control = list())$pars
HDB.df <- fitdist(distribution = "std", HDB.res, control = list())$pars
MBB.df <- fitdist(distribution = "std", MBB.res, control = list())$pars
MSB.df <- fitdist(distribution = "std", MSB.res, control = list())$pars
NVB.df <- fitdist(distribution = "std", NVB.res, control = list())$pars
OCB.df <- fitdist(distribution = "std", OCB.res, control = list())$pars
SHB.df <- fitdist(distribution = "std", SHB.res, control = list())$pars
SSB.df <- fitdist(distribution = "std", SSB.res, control = list())$pars
STB.df <- fitdist(distribution = "std", STB.res, control = list())$pars
TCB.df <- fitdist(distribution = "std", TCB.res, control = list())$pars
TPB.df <- fitdist(distribution = "std", TPB.res, control = list())$pars
VCB.df <- fitdist(distribution = "std", VCB.res, control = list())$pars
VIB.df <- fitdist(distribution = "std", VIB.res, control = list())$pars
VPB.df <- fitdist(distribution = "std", VPB.res, control = list())$pars

ACB.std <- qstd(0.05, mean = ACB.df['mu'], sd = ACB.df['sigma'], nu = ACB.df['shape'])
BAB.std <- qstd(0.05, mean = BAB.df['mu'], sd = BAB.df['sigma'], nu = BAB.df['shape'])
BID.std <- qstd(0.05, mean = BID.df['mu'], sd = BID.df['sigma'], nu = BID.df['shape'])
CTG.std <- qstd(0.05, mean = CTG.df['mu'], sd = CTG.df['sigma'], nu = CTG.df['shape'])
EIB.std <- qstd(0.05, mean = EIB.df['mu'], sd = EIB.df['sigma'], nu = EIB.df['shape'])
HDB.std <- qstd(0.05, mean = HDB.df['mu'], sd = HDB.df['sigma'], nu = HDB.df['shape'])
MBB.std <- qstd(0.05, mean = MBB.df['mu'], sd = MBB.df['sigma'], nu = MBB.df['shape'])
MSB.std <- qstd(0.05, mean = MSB.df['mu'], sd = MSB.df['sigma'], nu = MSB.df['shape'])
NVB.std <- qstd(0.05, mean = NVB.df['mu'], sd = NVB.df['sigma'], nu = NVB.df['shape'])
OCB.std <- qstd(0.05, mean = OCB.df['mu'], sd = OCB.df['sigma'], nu = OCB.df['shape'])
SHB.std <- qstd(0.05, mean = SHB.df['mu'], sd = SHB.df['sigma'], nu = SHB.df['shape'])
SSB.std <- qstd(0.05, mean = SSB.df['mu'], sd = SSB.df['sigma'], nu = SSB.df['shape'])
STB.std <- qstd(0.05, mean = STB.df['mu'], sd = STB.df['sigma'], nu = STB.df['shape'])
TCB.std <- qstd(0.05, mean = TCB.df['mu'], sd = TCB.df['sigma'], nu = TCB.df['shape'])
TPB.std <- qstd(0.05, mean = TPB.df['mu'], sd = TPB.df['sigma'], nu = TPB.df['shape'])
VCB.std <- qstd(0.05, mean = VCB.df['mu'], sd = VCB.df['sigma'], nu = VCB.df['shape'])
VIB.std <- qstd(0.05, mean = VIB.df['mu'], sd = VIB.df['sigma'], nu = VIB.df['shape'])
VPB.std <- qstd(0.05, mean = VPB.df['mu'], sd = VPB.df['sigma'], nu = VPB.df['shape'])
# TÍNH GIÁ TRỊ VALUE AT RISK #
VaR.ACB<-ACB.std*ACB.a.11 @fit$sigma
VaR.BAB<-BAB.std*BAB.s.11 @fit$sigma
VaR.BID<-BID.std*BID.g.11 @fit$sigma
VaR.CTG<-CTG.std*CTG.e.11 @fit$sigma
VaR.EIB<-EIB.std*EIB.s.11 @fit$sigma
VaR.HDB<-HDB.std*HDB.e.11 @fit$sigma
VaR.MBB<-MBB.std*MBB.e.11 @fit$sigma
VaR.MSB<-MSB.std*MSB.e.11 @fit$sigma
VaR.NVB<-NVB.std*NVB.e.11 @fit$sigma
VaR.OCB<-OCB.std*OCB.a.11 @fit$sigma
VaR.SHB<-SHB.std*SHB.e.11 @fit$sigma
VaR.SSB<-SSB.std*SSB.a.11 @fit$sigma
VaR.STB<-STB.std*STB.e.11 @fit$sigma
VaR.TCB<-TCB.std*TCB.a.11 @fit$sigma
VaR.TPB<-TPB.std*TPB.e.11 @fit$sigma
VaR.VCB<-VCB.std*VCB.e.11 @fit$sigma
VaR.VIB<-VIB.std*VIB.a.11 @fit$sigma
VaR.VPB<-VPB.std*VPB.s.11 @fit$sigma

VaR <- data.frame(Date,VaR.ACB,VaR.BAB,VaR.BID,VaR.CTG,VaR.EIB,VaR.HDB,VaR.MBB,VaR.MSB,VaR.NVB,VaR.OCB,VaR.SHB,VaR.SSB,VaR.STB,VaR.TCB,VaR.TPB,VaR.VCB,VaR.VIB,VaR.VPB)
obj_list <- c("ACB", "BAB", "BID", "CTG", "EIB", "HDB", "MBB", "MSB", "NVB", 
              "OCB", "SHB", "SSB", "STB", "TCB", "TPB", "VCB", "VIB", "VPB")
for (obj_name in obj_list) {
  var_column <- paste0("VaR.", obj_name)
  p <- ggplot(VaR, aes(x = Date, y = get(var_column))) + 
    geom_line() + 
    labs(x = "", y = obj_name) + 
    ylim(min(VaR[[var_column]]), max(VaR[[var_column]]))
  print(p)
}