# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062308196 -0.0029353531  0.0366061226  0.052133425  4.992298e-02
## 2013-02-28  0.0058916374 -0.0231054593 -0.0129693883  0.016175243  1.267811e-02
## 2013-03-28  0.0009854413 -0.0102346701  0.0129693883  0.040258299  3.726833e-02
## 2013-04-30  0.0096386901  0.0120847897  0.0489678996  0.001222264  1.902971e-02
## 2013-05-31 -0.0202138173 -0.0494834901 -0.0306554188  0.041976579  2.333584e-02
## 2013-06-28 -0.0157788145 -0.0547283850 -0.0271447422 -0.001403237 -1.343457e-02
## 2013-07-31  0.0026879081  0.0131598224  0.0518604391  0.063541816  5.038565e-02
## 2013-08-30 -0.0082980988 -0.0257055452 -0.0197464655 -0.034743549 -3.045126e-02
## 2013-09-30  0.0111435129  0.0695886503  0.0753385113  0.063873285  3.115600e-02
## 2013-10-31  0.0082925042  0.0408611832  0.0320818802  0.034234372  4.526679e-02
## 2013-11-29 -0.0025099417 -0.0025940278  0.0054494632  0.041660843  2.920682e-02
## 2013-12-31 -0.0055831864 -0.0040741329  0.0215281353  0.012892452  2.559597e-02
## 2014-01-31  0.0152918052 -0.0903228512 -0.0534133066 -0.035775487 -3.588413e-02
## 2014-02-28  0.0037564575  0.0332208436  0.0595051669  0.045257575  4.451019e-02
## 2014-03-31 -0.0014813665  0.0380216922 -0.0046026436  0.013315036  8.261316e-03
## 2014-04-30  0.0081831846  0.0077727408  0.0165293705 -0.023184038  6.927372e-03
## 2014-05-30  0.0117222743  0.0290908475  0.0158284999  0.006205383  2.294128e-02
## 2014-06-30 -0.0005760563  0.0237341658  0.0091654820  0.037718328  2.043441e-02
## 2014-07-31 -0.0025122021  0.0135556798 -0.0263798541 -0.052009132 -1.352845e-02
## 2014-08-29  0.0114309500  0.0279046777  0.0018003464  0.043657965  3.870465e-02
## 2014-09-30 -0.0061676014 -0.0808572351 -0.0395984935 -0.061260697 -1.389247e-02
## 2014-10-31  0.0105846474  0.0140969069 -0.0026546525  0.068874901  2.327779e-02
## 2014-11-28  0.0065484327 -0.0155414089  0.0006252304  0.004773640  2.710167e-02
## 2014-12-31  0.0014752737 -0.0404419882 -0.0407468101  0.025296056 -2.539661e-03
## 2015-01-30  0.0203153584 -0.0068959149  0.0062265051 -0.054628276 -3.007734e-02
## 2015-02-27 -0.0089888039  0.0431358491  0.0614506945  0.056914793  5.468216e-02
## 2015-03-31  0.0037405113 -0.0150859058 -0.0143887833  0.010156239 -1.583062e-02
## 2015-04-30 -0.0032331180  0.0662811892  0.0358167306 -0.018417442  9.786040e-03
## 2015-05-29 -0.0043835609 -0.0419107925  0.0019524967  0.007509873  1.277414e-02
## 2015-06-30 -0.0108249160 -0.0297469590 -0.0316788252  0.004171296 -2.052119e-02
## 2015-07-31  0.0085846576 -0.0651778287  0.0201143296 -0.027375517  2.233789e-02
## 2015-08-31 -0.0033640847 -0.0925124607 -0.0771523334 -0.047268184 -6.288651e-02
## 2015-09-30  0.0080816430 -0.0318251334 -0.0451947241 -0.038464877 -2.584741e-02
## 2015-10-30  0.0006850315  0.0618084456  0.0640258005  0.063589951  8.163523e-02
## 2015-11-30 -0.0038981627 -0.0255605396 -0.0075558800  0.024414950  3.648191e-03
## 2015-12-31 -0.0019192494 -0.0389469654 -0.0235950294 -0.052157073 -1.743348e-02
## 2016-01-29  0.0123305352 -0.0516369002 -0.0567579081 -0.060306614 -5.106857e-02
## 2016-02-29  0.0088312287 -0.0082112298 -0.0339139044  0.020604867 -8.263022e-04
## 2016-03-31  0.0087089570  0.1218787676  0.0637458653  0.089910428  6.510015e-02
## 2016-04-29  0.0025461144  0.0040794824  0.0219750127  0.021044313  3.933394e-03
## 2016-05-31  0.0001353142 -0.0376285717 -0.0008561299  0.004397191  1.686847e-02
## 2016-06-30  0.0191671850  0.0445822665 -0.0244915383  0.008292177  3.469885e-03
## 2016-07-29  0.0054298641  0.0524422814  0.0390003656  0.049348594  3.582207e-02
## 2016-08-31 -0.0021565982  0.0087984128  0.0053268624  0.011260968  1.196817e-03
## 2016-09-30  0.0005156369  0.0248728142  0.0132791575  0.008614667  5.805518e-05
## 2016-10-31 -0.0082046403 -0.0083122527 -0.0224039142 -0.038134931 -1.748930e-02
## 2016-11-30 -0.0259904785 -0.0451616492 -0.0179745696  0.125246501  3.617638e-02
## 2016-12-30  0.0025383316 -0.0025301382  0.0267031143  0.031491677  2.006878e-02
## 2017-01-31  0.0021264212  0.0644317036  0.0323819564 -0.012143971  1.773662e-02
## 2017-02-28  0.0064374175  0.0172576588  0.0118363914  0.013429056  3.853934e-02
## 2017-03-31 -0.0005523585  0.0361891001  0.0318056345 -0.006533142  1.249160e-03
## 2017-04-28  0.0090294231  0.0168663974  0.0239522160  0.005107527  9.877162e-03
## 2017-05-31  0.0068476883  0.0280597656  0.0348101875 -0.022862504  1.401430e-02
## 2017-06-30 -0.0001826963  0.0092238738  0.0029560702  0.029151813  6.354618e-03
## 2017-07-31  0.0033342148  0.0565946436  0.0261877962  0.007481920  2.034565e-02
## 2017-08-31  0.0093685754  0.0232436697 -0.0004482935 -0.027565162  2.913726e-03
## 2017-09-29 -0.0057320040 -0.0004462957  0.0233427751  0.082322193  1.994901e-02
## 2017-10-31  0.0009785104  0.0322784749  0.0166535289  0.005915628  2.329061e-02
## 2017-11-30 -0.0014842267 -0.0038968556  0.0068702395  0.036913401  3.010800e-02
## 2017-12-29  0.0047402019  0.0369252995  0.0133982693 -0.003731467  1.205487e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398534e-05 0.0001042102 4.178129e-05 -7.812227e-05 -9.032986e-06
## EEM  1.042102e-04 0.0017547113 1.039019e-03  6.437767e-04  6.795436e-04
## EFA  4.178129e-05 0.0010390190 1.064239e-03  6.490319e-04  6.975403e-04
## IJS -7.812227e-05 0.0006437767 6.490319e-04  1.565454e-03  8.290272e-04
## SPY -9.032986e-06 0.0006795436 6.975403e-04  8.290272e-04  7.408298e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347492
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS         SPY
## [1,] 0.0003874069 0.009257153 0.005815638 0.005684479 0.002330249
rowSums(component_contribution)
## [1] 0.02347492
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062308196 -0.0029353531  0.0366061226  0.052133425  4.992298e-02
## 2013-02-28  0.0058916374 -0.0231054593 -0.0129693883  0.016175243  1.267811e-02
## 2013-03-28  0.0009854413 -0.0102346701  0.0129693883  0.040258299  3.726833e-02
## 2013-04-30  0.0096386901  0.0120847897  0.0489678996  0.001222264  1.902971e-02
## 2013-05-31 -0.0202138173 -0.0494834901 -0.0306554188  0.041976579  2.333584e-02
## 2013-06-28 -0.0157788145 -0.0547283850 -0.0271447422 -0.001403237 -1.343457e-02
## 2013-07-31  0.0026879081  0.0131598224  0.0518604391  0.063541816  5.038565e-02
## 2013-08-30 -0.0082980988 -0.0257055452 -0.0197464655 -0.034743549 -3.045126e-02
## 2013-09-30  0.0111435129  0.0695886503  0.0753385113  0.063873285  3.115600e-02
## 2013-10-31  0.0082925042  0.0408611832  0.0320818802  0.034234372  4.526679e-02
## 2013-11-29 -0.0025099417 -0.0025940278  0.0054494632  0.041660843  2.920682e-02
## 2013-12-31 -0.0055831864 -0.0040741329  0.0215281353  0.012892452  2.559597e-02
## 2014-01-31  0.0152918052 -0.0903228512 -0.0534133066 -0.035775487 -3.588413e-02
## 2014-02-28  0.0037564575  0.0332208436  0.0595051669  0.045257575  4.451019e-02
## 2014-03-31 -0.0014813665  0.0380216922 -0.0046026436  0.013315036  8.261316e-03
## 2014-04-30  0.0081831846  0.0077727408  0.0165293705 -0.023184038  6.927372e-03
## 2014-05-30  0.0117222743  0.0290908475  0.0158284999  0.006205383  2.294128e-02
## 2014-06-30 -0.0005760563  0.0237341658  0.0091654820  0.037718328  2.043441e-02
## 2014-07-31 -0.0025122021  0.0135556798 -0.0263798541 -0.052009132 -1.352845e-02
## 2014-08-29  0.0114309500  0.0279046777  0.0018003464  0.043657965  3.870465e-02
## 2014-09-30 -0.0061676014 -0.0808572351 -0.0395984935 -0.061260697 -1.389247e-02
## 2014-10-31  0.0105846474  0.0140969069 -0.0026546525  0.068874901  2.327779e-02
## 2014-11-28  0.0065484327 -0.0155414089  0.0006252304  0.004773640  2.710167e-02
## 2014-12-31  0.0014752737 -0.0404419882 -0.0407468101  0.025296056 -2.539661e-03
## 2015-01-30  0.0203153584 -0.0068959149  0.0062265051 -0.054628276 -3.007734e-02
## 2015-02-27 -0.0089888039  0.0431358491  0.0614506945  0.056914793  5.468216e-02
## 2015-03-31  0.0037405113 -0.0150859058 -0.0143887833  0.010156239 -1.583062e-02
## 2015-04-30 -0.0032331180  0.0662811892  0.0358167306 -0.018417442  9.786040e-03
## 2015-05-29 -0.0043835609 -0.0419107925  0.0019524967  0.007509873  1.277414e-02
## 2015-06-30 -0.0108249160 -0.0297469590 -0.0316788252  0.004171296 -2.052119e-02
## 2015-07-31  0.0085846576 -0.0651778287  0.0201143296 -0.027375517  2.233789e-02
## 2015-08-31 -0.0033640847 -0.0925124607 -0.0771523334 -0.047268184 -6.288651e-02
## 2015-09-30  0.0080816430 -0.0318251334 -0.0451947241 -0.038464877 -2.584741e-02
## 2015-10-30  0.0006850315  0.0618084456  0.0640258005  0.063589951  8.163523e-02
## 2015-11-30 -0.0038981627 -0.0255605396 -0.0075558800  0.024414950  3.648191e-03
## 2015-12-31 -0.0019192494 -0.0389469654 -0.0235950294 -0.052157073 -1.743348e-02
## 2016-01-29  0.0123305352 -0.0516369002 -0.0567579081 -0.060306614 -5.106857e-02
## 2016-02-29  0.0088312287 -0.0082112298 -0.0339139044  0.020604867 -8.263022e-04
## 2016-03-31  0.0087089570  0.1218787676  0.0637458653  0.089910428  6.510015e-02
## 2016-04-29  0.0025461144  0.0040794824  0.0219750127  0.021044313  3.933394e-03
## 2016-05-31  0.0001353142 -0.0376285717 -0.0008561299  0.004397191  1.686847e-02
## 2016-06-30  0.0191671850  0.0445822665 -0.0244915383  0.008292177  3.469885e-03
## 2016-07-29  0.0054298641  0.0524422814  0.0390003656  0.049348594  3.582207e-02
## 2016-08-31 -0.0021565982  0.0087984128  0.0053268624  0.011260968  1.196817e-03
## 2016-09-30  0.0005156369  0.0248728142  0.0132791575  0.008614667  5.805518e-05
## 2016-10-31 -0.0082046403 -0.0083122527 -0.0224039142 -0.038134931 -1.748930e-02
## 2016-11-30 -0.0259904785 -0.0451616492 -0.0179745696  0.125246501  3.617638e-02
## 2016-12-30  0.0025383316 -0.0025301382  0.0267031143  0.031491677  2.006878e-02
## 2017-01-31  0.0021264212  0.0644317036  0.0323819564 -0.012143971  1.773662e-02
## 2017-02-28  0.0064374175  0.0172576588  0.0118363914  0.013429056  3.853934e-02
## 2017-03-31 -0.0005523585  0.0361891001  0.0318056345 -0.006533142  1.249160e-03
## 2017-04-28  0.0090294231  0.0168663974  0.0239522160  0.005107527  9.877162e-03
## 2017-05-31  0.0068476883  0.0280597656  0.0348101875 -0.022862504  1.401430e-02
## 2017-06-30 -0.0001826963  0.0092238738  0.0029560702  0.029151813  6.354618e-03
## 2017-07-31  0.0033342148  0.0565946436  0.0261877962  0.007481920  2.034565e-02
## 2017-08-31  0.0093685754  0.0232436697 -0.0004482935 -0.027565162  2.913726e-03
## 2017-09-29 -0.0057320040 -0.0004462957  0.0233427751  0.082322193  1.994901e-02
## 2017-10-31  0.0009785104  0.0322784749  0.0166535289  0.005915628  2.329061e-02
## 2017-11-30 -0.0014842267 -0.0038968556  0.0068702395  0.036913401  3.010800e-02
## 2017-12-29  0.0047402019  0.0369252995  0.0133982693 -0.003731467  1.205487e-02
calculate_component_contribution <- function(.data, w) {
    
    # Covariance of asset returns
    covariance_matrix <- cov(.data)
    
    # Standard deviation of portfolio
    # Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
    
    # Component contribution
    # Similar to the formula for sd_portfolio
    # Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
    
    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    return(component_percentages)
}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .2, .2, .1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

plot_data <- asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution")

plot_data %>%
    
    ggplot(aes(x = Asset, y = Contribution)) +
    geom_col(fill = "cornflowerblue") +
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    theme(plot.title = element_text(hjust = 0.5)) +
    
    labs(title = "Percent Contribution to Portfolio Volatility")

6 Rolling Component Contribution

plot_data <- asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long form
    pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") %>%
    
    # Add weights
    add_column(weight = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long
    pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")

plot_data %>%
    
    ggplot(aes(x = Asset, y = value, fill = type)) +
    geom_col(position = "dodge") +
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    scale_fill_tq () +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme_tq() +
    
    labs(title = "Percent Contribution to Portfolio Volatility and Weight",
        y = "Percent",
        x = NULL)