library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(ggplot2)
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
##
## The following object is masked from 'package:dplyr':
##
## recode
##
## The following object is masked from 'package:purrr':
##
## some
library(lmtest)
## Loading required package: zoo
##
## Attaching package: 'zoo'
##
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
bexar_data <- read.csv("bexar_schools.csv")
clean_data <- bexar_data %>%
select(DISTNAME, DPETECOP, DA0CC21R) %>%
filter(!is.na(DA0CC21R))
summary_stats <- clean_data %>%
summarize(
mean_disadvantaged = mean(DPETECOP),
sd_disadvantaged = sd(DPETECOP),
median_disadvantaged = median(DPETECOP),
mean_college_ready = mean(DA0CC21R, na.rm = TRUE),
sd_college_ready = sd(DA0CC21R, na.rm = TRUE),
median_college_ready = median(DA0CC21R, na.rm = TRUE),
n = n()
)
print(summary_stats)
## mean_disadvantaged sd_disadvantaged median_disadvantaged mean_college_ready
## 1 62.82069 27.75069 68.7 26.67241
## sd_college_ready median_college_ready n
## 1 22.49381 19.4 29
ggplot(clean_data, aes(x = DPETECOP, y = DA0CC21R)) +
geom_point(alpha = 0.6) +
geom_smooth(method = "lm", se = TRUE, color = "blue") +
labs(
title = "College Readiness vs Socioeconomically Disadvantaged Students",
x = "Percentage of Economically Disadvantaged Students",
y = "College Readiness Rate (%)",
caption = "Source: Bexar County School Districts"
) +theme_minimal()
## `geom_smooth()` using formula = 'y ~ x'

model <- lm(DA0CC21R ~ DPETECOP, data = clean_data)
summary(model)
##
## Call:
## lm(formula = DA0CC21R ~ DPETECOP, data = clean_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.887 -10.962 -1.040 5.053 37.508
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 65.1533 6.9964 9.312 6.40e-10 ***
## DPETECOP -0.6126 0.1022 -5.996 2.14e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15 on 27 degrees of freedom
## Multiple R-squared: 0.5711, Adjusted R-squared: 0.5552
## F-statistic: 35.95 on 1 and 27 DF, p-value: 2.139e-06
summary(model)
##
## Call:
## lm(formula = DA0CC21R ~ DPETECOP, data = clean_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.887 -10.962 -1.040 5.053 37.508
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 65.1533 6.9964 9.312 6.40e-10 ***
## DPETECOP -0.6126 0.1022 -5.996 2.14e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15 on 27 degrees of freedom
## Multiple R-squared: 0.5711, Adjusted R-squared: 0.5552
## F-statistic: 35.95 on 1 and 27 DF, p-value: 2.139e-06
confint(model)
## 2.5 % 97.5 %
## (Intercept) 50.7978617 79.5087292
## DPETECOP -0.8221701 -0.4029321
plot(model, which = 2)

raintest(model)
##
## Rainbow test
##
## data: model
## Rain = 0.56078, df1 = 15, df2 = 12, p-value = 0.8557
plot(model, which = 1)

durbinWatsonTest(model)
## lag Autocorrelation D-W Statistic p-value
## 1 0.1892619 1.596642 0.224
## Alternative hypothesis: rho != 0
bptest(model)
##
## studentized Breusch-Pagan test
##
## data: model
## BP = 13.262, df = 1, p-value = 0.0002708
plot(model, which = 3)

shapiro.test(residuals(model))
##
## Shapiro-Wilk normality test
##
## data: residuals(model)
## W = 0.97464, p-value = 0.6904
plot(model, which = 2)

par(mfrow = c(2, 2))
plot(model)

par(mfrow = c(1, 1))
std_resid <- rstandard(model)
cooks_dist <- cooks.distance(model)
outliers <- clean_data[abs(std_resid) > 2, ]
print("Potential outliers:")
## [1] "Potential outliers:"
print(outliers)
## DISTNAME DPETECOP DA0CC21R
## 13 BASIS TEXAS 8.1 97.7
## 18 RANDOLPH FIELD ISD 3.7 35.0