# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062307246 -0.0029359050  0.0366063983  0.052133650  4.992311e-02
## 2013-02-28  0.0058909864 -0.0231050118 -0.0129692940  0.016175454  1.267854e-02
## 2013-03-28  0.0009850712 -0.0102351250  0.0129692940  0.040257887  3.726796e-02
## 2013-04-30  0.0096392466  0.0120849054  0.0489675453  0.001222567  1.902965e-02
## 2013-05-31 -0.0202140999 -0.0494832585 -0.0306553350  0.041976187  2.333561e-02
## 2013-06-28 -0.0157778698 -0.0547283783 -0.0271444699 -0.001403043 -1.343457e-02
## 2013-07-31  0.0026869584  0.0131596971  0.0518603429  0.063541640  5.038600e-02
## 2013-08-30 -0.0082976240 -0.0257058626 -0.0197464637 -0.034743465 -3.045148e-02
## 2013-09-30  0.0111438900  0.0695887308  0.0753385871  0.063873739  3.115666e-02
## 2013-10-31  0.0082918439  0.0408616474  0.0320815564  0.034234107  4.526603e-02
## 2013-11-29 -0.0025102242 -0.0025941412  0.0054498601  0.041661089  2.920714e-02
## 2013-12-31 -0.0055820547 -0.0040742469  0.0215278976  0.012891963  2.559577e-02
## 2014-01-31  0.0152915159 -0.0903229765 -0.0534132249 -0.035775161 -3.588434e-02
## 2014-02-28  0.0037565489  0.0332206659  0.0595050852  0.045257331  4.450991e-02
## 2014-03-31 -0.0014817373  0.0380217618 -0.0046025662  0.013315275  8.261714e-03
## 2014-04-30  0.0081831838  0.0077726269  0.0165292931 -0.023184198  6.927471e-03
## 2014-05-30  0.0117221821  0.0290914195  0.0158284999  0.006205464  2.294138e-02
## 2014-06-30 -0.0005763296  0.0237338312  0.0091654077  0.037718406  2.043441e-02
## 2014-07-31 -0.0025119288  0.0135557896 -0.0263797798 -0.052009209 -1.352826e-02
## 2014-08-29  0.0114308598  0.0279045724  0.0018003464  0.043657809  3.870473e-02
## 2014-09-30 -0.0061671477 -0.0808567872 -0.0395985727 -0.061260541 -1.389256e-02
## 2014-10-31  0.0105840144  0.0140964517 -0.0026546528  0.068875056  2.327761e-02
## 2014-11-28  0.0065491489 -0.0155412963  0.0006252305  0.004773408  2.710193e-02
## 2014-12-31  0.0014749163 -0.0404421073 -0.0407466482  0.025295983 -2.540013e-03
## 2015-01-30  0.0203144827 -0.0068957958  0.0062263403 -0.054627808 -3.007726e-02
## 2015-02-27 -0.0089871357  0.0431359639  0.0614506994  0.056914325  5.468224e-02
## 2015-03-31  0.0037404202 -0.0150861372 -0.0143886278  0.010156463 -1.583053e-02
## 2015-04-30 -0.0032336442  0.0662814149  0.0358165767 -0.018417516  9.785865e-03
## 2015-05-29 -0.0043839138 -0.0419110153  0.0019524968  0.007509497  1.277405e-02
## 2015-06-30 -0.0108253644 -0.0297467280 -0.0316785940  0.004171671 -2.052093e-02
## 2015-07-31  0.0085851945 -0.0651781961  0.0201144792 -0.027375440  2.233797e-02
## 2015-08-31 -0.0033641737 -0.0925120733 -0.0771525563 -0.047268422 -6.288694e-02
## 2015-09-30  0.0080811139 -0.0318249873 -0.0451949791 -0.038464883 -2.584723e-02
## 2015-10-30  0.0006858260  0.0618080957  0.0640258921  0.063590118  8.163506e-02
## 2015-11-30 -0.0038982506 -0.0255604047 -0.0075558806  0.024415104  3.648705e-03
## 2015-12-31 -0.0019187167 -0.0389471047 -0.0235949479 -0.052156984 -1.743348e-02
## 2016-01-29  0.0123298263 -0.0516366796 -0.0567577314 -0.060307028 -5.106873e-02
## 2016-02-29  0.0088314901 -0.0082116056 -0.0339138983  0.020605123 -8.264853e-04
## 2016-03-31  0.0087089555  0.1218789271  0.0637454253  0.089910421  6.510032e-02
## 2016-04-29  0.0025456844  0.0040791502  0.0219751022  0.021044537  3.933307e-03
## 2016-05-31  0.0001364310 -0.0376282419 -0.0008560461  0.004396740  1.686863e-02
## 2016-06-30  0.0191660731  0.0445824676 -0.0244913683  0.008292327  3.469632e-03
## 2016-07-29  0.0054296140  0.0524420867  0.0390001969  0.049348382  3.582199e-02
## 2016-08-31 -0.0021560113  0.0087983513  0.0053267805  0.011261041  1.197140e-03
## 2016-09-30  0.0005160567  0.0248731807  0.0132794033  0.008614669  5.765146e-05
## 2016-10-31 -0.0082054827 -0.0083126171 -0.0224040785 -0.038134649 -1.748880e-02
## 2016-11-30 -0.0259895317 -0.0451615271 -0.0179743174  0.125246357  3.617582e-02
## 2016-12-30  0.0025378968 -0.0025300741  0.0267031098  0.031491800  2.006925e-02
## 2017-01-31  0.0021261614  0.0644314594  0.0323817120 -0.012144156  1.773608e-02
## 2017-02-28  0.0064379336  0.0172578390  0.0118363136  0.013428811  3.853950e-02
## 2017-03-31 -0.0005528741  0.0361888723  0.0318057158 -0.006532525  1.249233e-03
## 2017-04-28  0.0090292535  0.0168667372  0.0239523668  0.005107402  9.877091e-03
## 2017-05-31  0.0068476900  0.0280597625  0.0348102570 -0.022862689  1.401452e-02
## 2017-06-30 -0.0001830348  0.0092235491  0.0029559263  0.029151568  6.354617e-03
## 2017-07-31  0.0033349759  0.0565949613  0.0261876564  0.007481861  2.034579e-02
## 2017-08-31  0.0093689081  0.0232434682 -0.0004482935 -0.027564734  2.913517e-03
## 2017-09-29 -0.0057323373 -0.0004461961  0.0233427783  0.082321608  1.994901e-02
## 2017-10-31  0.0009780905  0.0322784749  0.0166536655  0.005916431  2.329055e-02
## 2017-11-30 -0.0014838908 -0.0038968556  0.0068702395  0.036912948  3.010813e-02
## 2017-12-29  0.0047397831  0.0369252995  0.0133981377 -0.003731357  1.205506e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398192e-05 0.0001042089 4.178418e-05 -7.811946e-05 -9.029085e-06
## EEM  1.042089e-04 0.0017547106 1.039016e-03  6.437761e-04  6.795438e-04
## EFA  4.178418e-05 0.0010390156 1.064236e-03  6.490320e-04  6.975413e-04
## IJS -7.811946e-05 0.0006437761 6.490320e-04  1.565449e-03  8.290253e-04
## SPY -9.029085e-06 0.0006795438 6.975413e-04  8.290253e-04  7.408304e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347492
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS         SPY
## [1,] 0.0003874106 0.009257142 0.005815635 0.005684476 0.002330253
rowSums(component_contribution)
## [1] 0.02347492
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%
    pivot_wider(names_from = asset, values_from = returns) %>%
    column_to_rownames(var = "date")
# Custom function
calculate_component_contribution <- function(asset_returns_wide_tbl, w) {
    # Covariance of asset returns
    covariance_matrix <- cov(asset_returns_wide_tbl)
    
    # Standard deviation of portfolio
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
    # Component contribution
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    return(component_percentages)
}
asset_returns_wide_tbl %>% calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

# Figure 10.1 Contribution to Standard Deviation ----
asset_returns_wide_tbl %>%
    calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1)) %>%
    gather(key = "asset", value = "contribution") %>%
    ggplot(aes(asset, contribution)) +
    geom_col(fill = "cornflowerblue") +
    
    theme(plot.title = element_text(hjust = 0.5)) +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    
    labs(title = "Percent Contribution to Portfolio Standard Deviation",
         y = "Percent Contribution to Risk",
         x = NULL)

# Figure 10.2 Weight versus Contribution ----
asset_returns_wide_tbl %>%
    calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1)) %>%
    gather(key = "asset", value = "contribution") %>%
    add_column(weights = c(0.25,0.25,0.2,0.2,0.1)) %>%
    pivot_longer(cols = c(contribution, weights), names_to = "type", values_to = "value") %>%
    ggplot(aes(asset, value, fill = type)) +
    geom_col(position = "dodge") +
    
    theme(plot.title = element_text(hjust = 0.5)) +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    theme_tq() +
    scale_fill_tq() +
    labs(title = "Percent Contribution to Volatility",
         y = "percent",
         x = "asset") 

6 Rolling Component Contribution

calculate_comp_contrib_by_window <- function(asset_returns_wide_tbl,
                                             start = 1,
                                             window = 24,
                                             weights) {
    # 1 Define start date
    start_date <- rownames(asset_returns_wide_tbl)[start]
    # 2 Define end date
    end_date <- rownames(asset_returns_wide_tbl)[start + window]
    # 3 Subset df
    df_subset <- asset_returns_wide_tbl %>%
        rownames_to_column(var = "date") %>%
        filter(date >= start_date & date < end_date) %>%
        column_to_rownames(var = "date")
    # 4 Calculate component contribution
    component_percentages <-df_subset %>%
        calculate_component_contribution(w = weights)
    # 5 Add end date to df
    component_percentages %>%
        mutate(date = ymd(end_date)) %>%
        select(date, everything())
}