# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062317479 -0.0029354630  0.0366061226  0.052133425  4.992285e-02
## 2013-02-28  0.0058914537 -0.0231053436 -0.0129692045  0.016175559  1.267873e-02
## 2013-03-28  0.0009856270 -0.0102348964  0.0129692045  0.040257984  3.726735e-02
## 2013-04-30  0.0096388762  0.0120847897  0.0489679861  0.001222567  1.903048e-02
## 2013-05-31 -0.0202143806 -0.0494836088 -0.0306555943  0.041976373  2.333503e-02
## 2013-06-28 -0.0157782545 -0.0547283290 -0.0271443784 -0.001403043 -1.343435e-02
## 2013-07-31  0.0026880032  0.0131596995  0.0518602514  0.063540979  5.038589e-02
## 2013-08-30 -0.0082979076 -0.0257055501 -0.0197463751 -0.034743097 -3.045115e-02
## 2013-09-30  0.0111436053  0.0695888407  0.0753384162  0.063873645  3.115633e-02
## 2013-10-31  0.0082925019  0.0408612969  0.0320817183  0.034234449  4.526635e-02
## 2013-11-29 -0.0025104110 -0.0025940275  0.0054497013  0.041660911  2.920682e-02
## 2013-12-31 -0.0055832820 -0.0040742469  0.0215281319  0.012891880  2.559637e-02
## 2014-01-31  0.0152923681 -0.0903229138 -0.0534132163 -0.035775325 -3.588484e-02
## 2014-02-28  0.0037565492  0.0332204216  0.0595049987  0.045257495  4.451040e-02
## 2014-03-31 -0.0014817374  0.0380217103 -0.0046025659  0.013315037  8.261218e-03
## 2014-04-30  0.0081832767  0.0077728602  0.0165291395 -0.023184040  6.927568e-03
## 2014-05-30  0.0117220911  0.0290913071  0.0158285011  0.006205222  2.294128e-02
## 2014-06-30 -0.0005761474  0.0237336143  0.0091656312  0.037718802  2.043459e-02
## 2014-07-31 -0.0025116546  0.0135556857 -0.0263800046 -0.052009446 -1.352883e-02
## 2014-08-29  0.0114304944  0.0279050056  0.0018005749  0.043657891  3.870502e-02
## 2014-09-30 -0.0061673294 -0.0808567872 -0.0395985666 -0.061260292 -1.389265e-02
## 2014-10-31  0.0105841062  0.0140964517 -0.0026548905  0.068874574  2.327806e-02
## 2014-11-28  0.0065487923 -0.0155414106  0.0006253892  0.004773872  2.710140e-02
## 2014-12-31  0.0014755412 -0.0404421120 -0.0407467275  0.025295751 -2.539573e-03
## 2015-01-30  0.0203147413 -0.0068959765  0.0062264224 -0.054627967 -3.007743e-02
## 2015-02-27 -0.0089880135  0.0431363785  0.0614505401  0.056914634  5.468216e-02
## 2015-03-31  0.0037402461 -0.0150862520 -0.0143885505  0.010156164 -1.583027e-02
## 2015-04-30 -0.0032326768  0.0662813058  0.0358164255 -0.018417443  9.785431e-03
## 2015-05-29 -0.0043840893 -0.0419107925  0.0019527235  0.007509648  1.277465e-02
## 2015-06-30 -0.0108251835 -0.0297469590 -0.0316788252  0.004171446 -2.052162e-02
## 2015-07-31  0.0085847478 -0.0651780164  0.0201145586 -0.027375521  2.233806e-02
## 2015-08-31 -0.0033644410 -0.0925122045 -0.0771527273 -0.047268030 -6.288669e-02
## 2015-09-30  0.0080818231 -0.0318250603 -0.0451947318 -0.038464709 -2.584695e-02
## 2015-10-30  0.0006851199  0.0618082373  0.0640258921  0.063589469  8.163495e-02
## 2015-11-30 -0.0038978977 -0.0255604047 -0.0075557990  0.024415418  3.648362e-03
## 2015-12-31 -0.0019184505 -0.0389469627 -0.0235951129 -0.052157227 -1.743365e-02
## 2016-01-29  0.0123292094 -0.0516366720 -0.0567577363 -0.060306614 -5.106848e-02
## 2016-02-29  0.0088321884 -0.0082116798 -0.0339138100  0.020605119 -8.263021e-04
## 2016-03-31  0.0087084356  0.1218791187  0.0637455968  0.089910637  6.510006e-02
## 2016-04-29  0.0025462862  0.0040790827  0.0219752662  0.021043927  3.933394e-03
## 2016-05-31  0.0001351423 -0.0376283033 -0.0008562977  0.004396966  1.686880e-02
## 2016-06-30  0.0191672693  0.0445821975 -0.0244914523  0.008292550  3.469716e-03
## 2016-07-29  0.0054294445  0.0524420308  0.0390001969  0.049348301  3.582182e-02
## 2016-08-31 -0.0021560949  0.0087987255  0.0053267805  0.011261109  1.196897e-03
## 2016-09-30  0.0005156368  0.0248728732  0.0132794033  0.008614667  5.797444e-05
## 2016-10-31 -0.0082048082 -0.0083121295 -0.0224037462 -0.038134857 -1.748905e-02
## 2016-11-30 -0.0259895228 -0.0451619574 -0.0179746496  0.125246484  3.617606e-02
## 2016-12-30  0.0025378093 -0.0025300102  0.0267031098  0.031491796  2.006893e-02
## 2017-01-31  0.0021262473  0.0644314594  0.0323819512 -0.012144030  1.773662e-02
## 2017-02-28  0.0064377595  0.0172579571  0.0118362320  0.013428623  3.853934e-02
## 2017-03-31 -0.0005529599  0.0361887542  0.0318056345 -0.006533082  1.249013e-03
## 2017-04-28  0.0090290824  0.0168667372  0.0239521415  0.005108020  9.877164e-03
## 2017-05-31  0.0068475214  0.0280597625  0.0348104060 -0.022862749  1.401423e-02
## 2017-06-30 -0.0001825271  0.0092236570  0.0029559263  0.029151933  6.354975e-03
## 2017-07-31  0.0033342159  0.0565946495  0.0261877962  0.007481251  2.034572e-02
## 2017-08-31  0.0093689963  0.0232437716 -0.0004482935 -0.027564552  2.913587e-03
## 2017-09-29 -0.0057320035 -0.0004462957  0.0233427751  0.082321608  1.994894e-02
## 2017-10-31  0.0009785104  0.0322784749  0.0166537304  0.005916088  2.329075e-02
## 2017-11-30 -0.0014847311 -0.0038969524  0.0068701047  0.036913180  3.010800e-02
## 2017-12-29  0.0047404549  0.0369253964  0.0133981368 -0.003731026  1.205519e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398392e-05 0.0001042089 4.178037e-05 -7.812212e-05 -9.032446e-06
## EEM  1.042089e-04 0.0017547114 1.039017e-03  6.437733e-04  6.795436e-04
## EFA  4.178037e-05 0.0010390174 1.064237e-03  6.490286e-04  6.975410e-04
## IJS -7.812212e-05 0.0006437733 6.490286e-04  1.565447e-03  8.290241e-04
## SPY -9.032446e-06 0.0006795436 6.975410e-04  8.290241e-04  7.408295e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347489
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS        SPY
## [1,] 0.0003873992 0.009257152 0.005815632 0.005684459 0.00233025
rowSums(component_contribution)
## [1] 0.02347489
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062317479 -0.0029354630  0.0366061226  0.052133425  4.992285e-02
## 2013-02-28  0.0058914537 -0.0231053436 -0.0129692045  0.016175559  1.267873e-02
## 2013-03-28  0.0009856270 -0.0102348964  0.0129692045  0.040257984  3.726735e-02
## 2013-04-30  0.0096388762  0.0120847897  0.0489679861  0.001222567  1.903048e-02
## 2013-05-31 -0.0202143806 -0.0494836088 -0.0306555943  0.041976373  2.333503e-02
## 2013-06-28 -0.0157782545 -0.0547283290 -0.0271443784 -0.001403043 -1.343435e-02
## 2013-07-31  0.0026880032  0.0131596995  0.0518602514  0.063540979  5.038589e-02
## 2013-08-30 -0.0082979076 -0.0257055501 -0.0197463751 -0.034743097 -3.045115e-02
## 2013-09-30  0.0111436053  0.0695888407  0.0753384162  0.063873645  3.115633e-02
## 2013-10-31  0.0082925019  0.0408612969  0.0320817183  0.034234449  4.526635e-02
## 2013-11-29 -0.0025104110 -0.0025940275  0.0054497013  0.041660911  2.920682e-02
## 2013-12-31 -0.0055832820 -0.0040742469  0.0215281319  0.012891880  2.559637e-02
## 2014-01-31  0.0152923681 -0.0903229138 -0.0534132163 -0.035775325 -3.588484e-02
## 2014-02-28  0.0037565492  0.0332204216  0.0595049987  0.045257495  4.451040e-02
## 2014-03-31 -0.0014817374  0.0380217103 -0.0046025659  0.013315037  8.261218e-03
## 2014-04-30  0.0081832767  0.0077728602  0.0165291395 -0.023184040  6.927568e-03
## 2014-05-30  0.0117220911  0.0290913071  0.0158285011  0.006205222  2.294128e-02
## 2014-06-30 -0.0005761474  0.0237336143  0.0091656312  0.037718802  2.043459e-02
## 2014-07-31 -0.0025116546  0.0135556857 -0.0263800046 -0.052009446 -1.352883e-02
## 2014-08-29  0.0114304944  0.0279050056  0.0018005749  0.043657891  3.870502e-02
## 2014-09-30 -0.0061673294 -0.0808567872 -0.0395985666 -0.061260292 -1.389265e-02
## 2014-10-31  0.0105841062  0.0140964517 -0.0026548905  0.068874574  2.327806e-02
## 2014-11-28  0.0065487923 -0.0155414106  0.0006253892  0.004773872  2.710140e-02
## 2014-12-31  0.0014755412 -0.0404421120 -0.0407467275  0.025295751 -2.539573e-03
## 2015-01-30  0.0203147413 -0.0068959765  0.0062264224 -0.054627967 -3.007743e-02
## 2015-02-27 -0.0089880135  0.0431363785  0.0614505401  0.056914634  5.468216e-02
## 2015-03-31  0.0037402461 -0.0150862520 -0.0143885505  0.010156164 -1.583027e-02
## 2015-04-30 -0.0032326768  0.0662813058  0.0358164255 -0.018417443  9.785431e-03
## 2015-05-29 -0.0043840893 -0.0419107925  0.0019527235  0.007509648  1.277465e-02
## 2015-06-30 -0.0108251835 -0.0297469590 -0.0316788252  0.004171446 -2.052162e-02
## 2015-07-31  0.0085847478 -0.0651780164  0.0201145586 -0.027375521  2.233806e-02
## 2015-08-31 -0.0033644410 -0.0925122045 -0.0771527273 -0.047268030 -6.288669e-02
## 2015-09-30  0.0080818231 -0.0318250603 -0.0451947318 -0.038464709 -2.584695e-02
## 2015-10-30  0.0006851199  0.0618082373  0.0640258921  0.063589469  8.163495e-02
## 2015-11-30 -0.0038978977 -0.0255604047 -0.0075557990  0.024415418  3.648362e-03
## 2015-12-31 -0.0019184505 -0.0389469627 -0.0235951129 -0.052157227 -1.743365e-02
## 2016-01-29  0.0123292094 -0.0516366720 -0.0567577363 -0.060306614 -5.106848e-02
## 2016-02-29  0.0088321884 -0.0082116798 -0.0339138100  0.020605119 -8.263021e-04
## 2016-03-31  0.0087084356  0.1218791187  0.0637455968  0.089910637  6.510006e-02
## 2016-04-29  0.0025462862  0.0040790827  0.0219752662  0.021043927  3.933394e-03
## 2016-05-31  0.0001351423 -0.0376283033 -0.0008562977  0.004396966  1.686880e-02
## 2016-06-30  0.0191672693  0.0445821975 -0.0244914523  0.008292550  3.469716e-03
## 2016-07-29  0.0054294445  0.0524420308  0.0390001969  0.049348301  3.582182e-02
## 2016-08-31 -0.0021560949  0.0087987255  0.0053267805  0.011261109  1.196897e-03
## 2016-09-30  0.0005156368  0.0248728732  0.0132794033  0.008614667  5.797444e-05
## 2016-10-31 -0.0082048082 -0.0083121295 -0.0224037462 -0.038134857 -1.748905e-02
## 2016-11-30 -0.0259895228 -0.0451619574 -0.0179746496  0.125246484  3.617606e-02
## 2016-12-30  0.0025378093 -0.0025300102  0.0267031098  0.031491796  2.006893e-02
## 2017-01-31  0.0021262473  0.0644314594  0.0323819512 -0.012144030  1.773662e-02
## 2017-02-28  0.0064377595  0.0172579571  0.0118362320  0.013428623  3.853934e-02
## 2017-03-31 -0.0005529599  0.0361887542  0.0318056345 -0.006533082  1.249013e-03
## 2017-04-28  0.0090290824  0.0168667372  0.0239521415  0.005108020  9.877164e-03
## 2017-05-31  0.0068475214  0.0280597625  0.0348104060 -0.022862749  1.401423e-02
## 2017-06-30 -0.0001825271  0.0092236570  0.0029559263  0.029151933  6.354975e-03
## 2017-07-31  0.0033342159  0.0565946495  0.0261877962  0.007481251  2.034572e-02
## 2017-08-31  0.0093689963  0.0232437716 -0.0004482935 -0.027564552  2.913587e-03
## 2017-09-29 -0.0057320035 -0.0004462957  0.0233427751  0.082321608  1.994894e-02
## 2017-10-31  0.0009785104  0.0322784749  0.0166537304  0.005916088  2.329075e-02
## 2017-11-30 -0.0014847311 -0.0038969524  0.0068701047  0.036913180  3.010800e-02
## 2017-12-29  0.0047404549  0.0369253964  0.0133981368 -0.003731026  1.205519e-02
    calculate_component_contribution <-function(.data, w)  {
        # Covariance of asset returns
    covariance_matrix <- cov(.data)
    
    # Standard deviation of portfolio
    # Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
    
    
    # Component contribution
    # Similar to the formula for sd_portfolio
    # Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
    
    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    return(component_percentages)
}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .2, .2, .1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

Column Chart of Component Contribution

plot_data <- asset_returns_wide_tbl %>% 
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long form
    pivot_longer(cols = everything(), names_to = "asset", values_to = "Contribution")

plot_data %>%
    
    ggplot(aes(x = asset, y = Contribution)) +
    geom_col(fill = "cornflowerblue") +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    theme(plot.title = element_text(hjust = .5))

    labs(title = "Percent Contriibution tp {prtfolio Volatility")
## $title
## [1] "Percent Contriibution tp {prtfolio Volatility"
## 
## attr(,"class")
## [1] "labels"

Column Chart of Component Contribution and Weight

plot_data <- asset_returns_wide_tbl %>% 
    
    calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
    
    # Transform to long form
    pivot_longer(cols = everything(), names_to = "asset", values_to = "Contribution") %>%
    
    # Add Weight
    add_column(weight = c(.25, .25, .2, .2, .1)) %>%
    
    # Tranform to long
    pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")


plot_data %>%
    
    ggplot(aes(x = asset, y = value, fill = type)) +
    geom_col(position = "dodge") +
    
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    scale_fill_tq() +
    theme(plot.title = element_text(hjust = .5)) +
    theme_tq() +

    labs(title = "Percent Contriibution to Portfolio Volatility and Weight",
         y = "Percent",
         x = NULL)

6 Rolling Component Contribution