# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062309366 -0.0029352422  0.0366064924  0.052133087  4.992255e-02
## 2013-02-28  0.0058912501 -0.0231056805 -0.0129695699  0.016175454  1.267880e-02
## 2013-03-28  0.0009845318 -0.0102347844  0.0129695699  0.040258089  3.726773e-02
## 2013-04-30  0.0096393007  0.0120846781  0.0489675453  0.001222264  1.903024e-02
## 2013-05-31 -0.0202140304 -0.0494833829 -0.0306553350  0.041976482  2.333538e-02
## 2013-06-28 -0.0157784659 -0.0547283917 -0.0271445615 -0.001402849 -1.343434e-02
## 2013-07-31  0.0026877549  0.0131598241  0.0518602606  0.063540888  5.038588e-02
## 2013-08-30 -0.0082983986 -0.0257054850 -0.0197462012 -0.034743101 -3.045114e-02
## 2013-09-30  0.0111439865  0.0695885954  0.0753385807  0.063873386  3.115544e-02
## 2013-10-31  0.0082926898  0.0408610743  0.0320815538  0.034234717  4.526691e-02
## 2013-11-29 -0.0025103626 -0.0025933446  0.0054497805  0.041660833  2.920704e-02
## 2013-12-31 -0.0055830853 -0.0040745888  0.0215279752  0.012892044  2.559627e-02
## 2014-01-31  0.0152919892 -0.0903229138 -0.0534133841 -0.035775409 -3.588453e-02
## 2014-02-28  0.0037566638  0.0332204822  0.0595051669  0.045257499  4.450990e-02
## 2014-03-31 -0.0014809777  0.0380219996 -0.0046025662  0.013315117  8.261908e-03
## 2014-04-30  0.0081826431  0.0077729732  0.0165290647 -0.023184283  6.927175e-03
## 2014-05-30  0.0117219631  0.0290908442  0.0158288032  0.006205626  2.294080e-02
## 2014-06-30 -0.0005757591  0.0237338338  0.0091654070  0.037718564  2.043507e-02
## 2014-07-31 -0.0025124754  0.0135556828 -0.0263800828 -0.052009531 -1.352855e-02
## 2014-08-29  0.0114307708  0.0279048943  0.0018007274  0.043658054  3.870482e-02
## 2014-09-30 -0.0061673850 -0.0808570067 -0.0395985666 -0.061260541 -1.389274e-02
## 2014-10-31  0.0105849796  0.0140964533 -0.0026550493  0.068874823  2.327815e-02
## 2014-11-28  0.0065485366 -0.0155411837  0.0006254686  0.004773795  2.710122e-02
## 2014-12-31  0.0014750596 -0.0404421073 -0.0407466482  0.025295678 -2.539662e-03
## 2015-01-30  0.0203151387 -0.0068957359  0.0062265045 -0.054627737 -3.007717e-02
## 2015-02-27 -0.0089877187  0.0431359040  0.0614506124  0.056914405  5.468181e-02
## 2015-03-31  0.0037400403 -0.0150862538 -0.0143887050  0.010156537 -1.583019e-02
## 2015-04-30 -0.0032332689  0.0662814223  0.0358165767 -0.018417818  9.785952e-03
## 2015-05-29 -0.0043831115 -0.0419109062  0.0019525723  0.007509950  1.277439e-02
## 2015-06-30 -0.0108257831 -0.0297468452 -0.0316788252  0.004171371 -2.052161e-02
## 2015-07-31  0.0085844648 -0.0651779538  0.0201145586 -0.027375442  2.233781e-02
## 2015-08-31 -0.0033637457 -0.0925124042 -0.0771525624 -0.047268345 -6.288643e-02
## 2015-09-30  0.0080813422 -0.0318249231 -0.0451948104 -0.038464799 -2.584732e-02
## 2015-10-30  0.0006854946  0.0618082373  0.0640259677  0.063589720  8.163514e-02
## 2015-11-30 -0.0038982207 -0.0255603364 -0.0075558793  0.024415188  3.648448e-03
## 2015-12-31 -0.0019190337 -0.0389471730 -0.0235950275 -0.052156916 -1.743374e-02
## 2016-01-29  0.0123303065 -0.0516366048 -0.0567579916 -0.060306866 -5.106857e-02
## 2016-02-29  0.0088311328 -0.0082114542 -0.0339138130  0.020605375 -8.262107e-04
## 2016-03-31  0.0087090675  0.1218789678  0.0637457739  0.089910323  6.510015e-02
## 2016-04-29  0.0025463209  0.0040789497  0.0219750127  0.021044233  3.933479e-03
## 2016-05-31  0.0001353070 -0.0376283774 -0.0008560460  0.004397115  1.686830e-02
## 2016-06-30  0.0191666959  0.0445824046 -0.0244914502  0.008291954  3.470053e-03
## 2016-07-29  0.0054300076  0.0524421561  0.0390003591  0.049348601  3.582207e-02
## 2016-08-31 -0.0021561129  0.0087984139  0.0053266146  0.011261250  1.196897e-03
## 2016-09-30  0.0005156509  0.0248729989  0.0132791585  0.008614458  5.773221e-05
## 2016-10-31 -0.0082048781 -0.0083123743 -0.0224035838 -0.038134646 -1.748897e-02
## 2016-11-30 -0.0259900561 -0.0451616521 -0.0179746496  0.125246412  3.617622e-02
## 2016-12-30  0.0025381850 -0.0025298821  0.0267029452  0.031491488  2.006878e-02
## 2017-01-31  0.0021258727  0.0644314514  0.0323819564 -0.012143972  1.773669e-02
## 2017-02-28  0.0064384661  0.0172578369  0.0118363126  0.013428750  3.853933e-02
## 2017-03-31 -0.0005532259  0.0361889820  0.0318057133 -0.006533021  1.249160e-03
## 2017-04-28  0.0090291145  0.0168663974  0.0239522905  0.005107959  9.877162e-03
## 2017-05-31  0.0068473331  0.0280599834  0.0348100411 -0.022862500  1.401430e-02
## 2017-06-30 -0.0001825045  0.0092235481  0.0029559987  0.029151746  6.354688e-03
## 2017-07-31  0.0033342335  0.0565945476  0.0261880095  0.007481616  2.034565e-02
## 2017-08-31  0.0093691148  0.0232437740 -0.0004482934 -0.027564918  2.913448e-03
## 2017-09-29 -0.0057316276 -0.0004460965  0.0233426369  0.082322015  1.994921e-02
## 2017-10-31  0.0009776145  0.0322783753  0.0166537315  0.005916315  2.329068e-02
## 2017-11-30 -0.0014839869 -0.0038968556  0.0068700385  0.036912499  3.010768e-02
## 2017-12-29  0.0047404895  0.0369252062  0.0133983361 -0.003730916  1.205532e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398458e-05 0.0001042110 4.178363e-05 -7.811772e-05 -9.030107e-06
## EEM  1.042110e-04 0.0017547101 1.039018e-03  6.437744e-04  6.795440e-04
## EFA  4.178363e-05 0.0010390179 1.064238e-03  6.490299e-04  6.975400e-04
## IJS -7.811772e-05 0.0006437744 6.490299e-04  1.565447e-03  8.290244e-04
## SPY -9.030107e-06 0.0006795440 6.975400e-04  8.290244e-04  7.408277e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##            [,1]
## [1,] 0.02347492
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG         EEM         EFA         IJS         SPY
## [1,] 0.0003874247 0.009257146 0.005815636 0.005684467 0.002330249
rowSums(component_contribution)
## [1] 0.02347492
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%
  
  pivot_wider(names_from = asset, values_from = returns) %>%
  
  column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062309366 -0.0029352422  0.0366064924  0.052133087  4.992255e-02
## 2013-02-28  0.0058912501 -0.0231056805 -0.0129695699  0.016175454  1.267880e-02
## 2013-03-28  0.0009845318 -0.0102347844  0.0129695699  0.040258089  3.726773e-02
## 2013-04-30  0.0096393007  0.0120846781  0.0489675453  0.001222264  1.903024e-02
## 2013-05-31 -0.0202140304 -0.0494833829 -0.0306553350  0.041976482  2.333538e-02
## 2013-06-28 -0.0157784659 -0.0547283917 -0.0271445615 -0.001402849 -1.343434e-02
## 2013-07-31  0.0026877549  0.0131598241  0.0518602606  0.063540888  5.038588e-02
## 2013-08-30 -0.0082983986 -0.0257054850 -0.0197462012 -0.034743101 -3.045114e-02
## 2013-09-30  0.0111439865  0.0695885954  0.0753385807  0.063873386  3.115544e-02
## 2013-10-31  0.0082926898  0.0408610743  0.0320815538  0.034234717  4.526691e-02
## 2013-11-29 -0.0025103626 -0.0025933446  0.0054497805  0.041660833  2.920704e-02
## 2013-12-31 -0.0055830853 -0.0040745888  0.0215279752  0.012892044  2.559627e-02
## 2014-01-31  0.0152919892 -0.0903229138 -0.0534133841 -0.035775409 -3.588453e-02
## 2014-02-28  0.0037566638  0.0332204822  0.0595051669  0.045257499  4.450990e-02
## 2014-03-31 -0.0014809777  0.0380219996 -0.0046025662  0.013315117  8.261908e-03
## 2014-04-30  0.0081826431  0.0077729732  0.0165290647 -0.023184283  6.927175e-03
## 2014-05-30  0.0117219631  0.0290908442  0.0158288032  0.006205626  2.294080e-02
## 2014-06-30 -0.0005757591  0.0237338338  0.0091654070  0.037718564  2.043507e-02
## 2014-07-31 -0.0025124754  0.0135556828 -0.0263800828 -0.052009531 -1.352855e-02
## 2014-08-29  0.0114307708  0.0279048943  0.0018007274  0.043658054  3.870482e-02
## 2014-09-30 -0.0061673850 -0.0808570067 -0.0395985666 -0.061260541 -1.389274e-02
## 2014-10-31  0.0105849796  0.0140964533 -0.0026550493  0.068874823  2.327815e-02
## 2014-11-28  0.0065485366 -0.0155411837  0.0006254686  0.004773795  2.710122e-02
## 2014-12-31  0.0014750596 -0.0404421073 -0.0407466482  0.025295678 -2.539662e-03
## 2015-01-30  0.0203151387 -0.0068957359  0.0062265045 -0.054627737 -3.007717e-02
## 2015-02-27 -0.0089877187  0.0431359040  0.0614506124  0.056914405  5.468181e-02
## 2015-03-31  0.0037400403 -0.0150862538 -0.0143887050  0.010156537 -1.583019e-02
## 2015-04-30 -0.0032332689  0.0662814223  0.0358165767 -0.018417818  9.785952e-03
## 2015-05-29 -0.0043831115 -0.0419109062  0.0019525723  0.007509950  1.277439e-02
## 2015-06-30 -0.0108257831 -0.0297468452 -0.0316788252  0.004171371 -2.052161e-02
## 2015-07-31  0.0085844648 -0.0651779538  0.0201145586 -0.027375442  2.233781e-02
## 2015-08-31 -0.0033637457 -0.0925124042 -0.0771525624 -0.047268345 -6.288643e-02
## 2015-09-30  0.0080813422 -0.0318249231 -0.0451948104 -0.038464799 -2.584732e-02
## 2015-10-30  0.0006854946  0.0618082373  0.0640259677  0.063589720  8.163514e-02
## 2015-11-30 -0.0038982207 -0.0255603364 -0.0075558793  0.024415188  3.648448e-03
## 2015-12-31 -0.0019190337 -0.0389471730 -0.0235950275 -0.052156916 -1.743374e-02
## 2016-01-29  0.0123303065 -0.0516366048 -0.0567579916 -0.060306866 -5.106857e-02
## 2016-02-29  0.0088311328 -0.0082114542 -0.0339138130  0.020605375 -8.262107e-04
## 2016-03-31  0.0087090675  0.1218789678  0.0637457739  0.089910323  6.510015e-02
## 2016-04-29  0.0025463209  0.0040789497  0.0219750127  0.021044233  3.933479e-03
## 2016-05-31  0.0001353070 -0.0376283774 -0.0008560460  0.004397115  1.686830e-02
## 2016-06-30  0.0191666959  0.0445824046 -0.0244914502  0.008291954  3.470053e-03
## 2016-07-29  0.0054300076  0.0524421561  0.0390003591  0.049348601  3.582207e-02
## 2016-08-31 -0.0021561129  0.0087984139  0.0053266146  0.011261250  1.196897e-03
## 2016-09-30  0.0005156509  0.0248729989  0.0132791585  0.008614458  5.773221e-05
## 2016-10-31 -0.0082048781 -0.0083123743 -0.0224035838 -0.038134646 -1.748897e-02
## 2016-11-30 -0.0259900561 -0.0451616521 -0.0179746496  0.125246412  3.617622e-02
## 2016-12-30  0.0025381850 -0.0025298821  0.0267029452  0.031491488  2.006878e-02
## 2017-01-31  0.0021258727  0.0644314514  0.0323819564 -0.012143972  1.773669e-02
## 2017-02-28  0.0064384661  0.0172578369  0.0118363126  0.013428750  3.853933e-02
## 2017-03-31 -0.0005532259  0.0361889820  0.0318057133 -0.006533021  1.249160e-03
## 2017-04-28  0.0090291145  0.0168663974  0.0239522905  0.005107959  9.877162e-03
## 2017-05-31  0.0068473331  0.0280599834  0.0348100411 -0.022862500  1.401430e-02
## 2017-06-30 -0.0001825045  0.0092235481  0.0029559987  0.029151746  6.354688e-03
## 2017-07-31  0.0033342335  0.0565945476  0.0261880095  0.007481616  2.034565e-02
## 2017-08-31  0.0093691148  0.0232437740 -0.0004482934 -0.027564918  2.913448e-03
## 2017-09-29 -0.0057316276 -0.0004460965  0.0233426369  0.082322015  1.994921e-02
## 2017-10-31  0.0009776145  0.0322783753  0.0166537315  0.005916315  2.329068e-02
## 2017-11-30 -0.0014839869 -0.0038968556  0.0068700385  0.036912499  3.010768e-02
## 2017-12-29  0.0047404895  0.0369252062  0.0133983361 -0.003730916  1.205532e-02
calculate_component_contribution <- function(.data, w) {
  
  # Covariance of asset returns
  covariance_matrix <- cov(.data)
  
  # Standard deviation of portfolio
  # Summarizes how much each asset's returns may vary with those of other assets withing the portfolio into a single number
  sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
  
  # Component contribution
  # Similar to the formula for sd_portfolio
  # Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
  component_contribution <- (t(w) %*% covariance_matrix *w) / sd_portfolio[1,1]
  
  # Component contribution in percentage
  component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()
  
  return(component_percentages)
}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(.25, .25, .2, .2, .1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

Column Chart of Component Contribution

plot_data <- asset_returns_wide_tbl %>%
  
  calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
  
  # Transform to long form
  pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution")

plot_data %>%
  
  ggplot(aes(x = Asset, y = Contribution)) +
  geom_col(fill = "cornflowerblue") +
  
  scale_y_continuous(labels = scales::percent_format(accuracy =  1)) +
  theme(plot.title = element_text(hjust = 0.5)) +
  
  labs(title = "Percent Contribution to Portfolio Volatility")

Column Chart of Component Contribution and Weight

plot_data <- asset_returns_wide_tbl %>%
  
  calculate_component_contribution(w = c(.25, .25, .2, .2, .1)) %>%
  
 # Transform to long form
  pivot_longer(cols = everything(), names_to = "Asset", values_to = "Contribution") %>%

  # Add weights
  add_column(weight = c(.25, .25, .2, .2, .1)) %>%
  
  # Transform to long
  pivot_longer(cols = c(Contribution, weight), names_to = "type", values_to = "value")

plot_data %>%
  
  ggplot(aes(x = Asset, y = value, fill = type)) +
  geom_col(position = "dodge") +
  
  scale_y_continuous(labels = scales::percent_format(accuracy =  1)) +
  scale_fill_tq() +
  theme(plot.title = element_text(hjust = 0.5)) +
  theme_tq() +
  
  labs(title = "Percent Contribution to Portfolio Volatility and Weight",
       y = "Percent",
       x = NULL)

6 Rolling Component Contribution