---
title: "Assignment 8"
author: "Team Maitreyi"
output:
flexdashboard::flex_dashboard:
orientation: columns
social: menu
source_code: embed
---
------------------------------------------------------------------------
```{r setup, include=FALSE}
library(plotly)
library(flexdashboard)
library(dplyr)
library(ggplot2)
library(tidyr)
library("gtools")
```
### Imports Over Time
```{r}
trade <- read.csv('trade.csv')
trade$Countries <- as.character(trade$X)
View(trade)
set.seed(123)
sampled_trade <- trade %>%
sample_n(500) # Sample 500 observations for a clearer plot
trade_long <- trade %>%
pivot_longer(
cols = matches("^X19|^X20"),
names_to = "Year",
values_to = "Value"
) %>%
mutate(Year = as.numeric(sub("X","", Year)))
View(trade_long)
aggregated_trade <- trade_long %>%
group_by(Year, Trade.Flow) %>%
summarise(Mean_Value = mean(Value, na.rm = TRUE), .groups = 'drop')
p<-ggplot(aggregated_trade, aes(x = Year, y = Mean_Value, color = Trade.Flow)) +
geom_line(size = 1) +
geom_point() +
labs(
title = "Trade Trends Over Time",
x = "Year",
y = "Mean Trade Value",
color = "Trade Flow"
) +
theme_minimal()
ggplotly(p)
```
### SIPRI Time Series Data
```{r}
weapons <- read.csv('wpns.csv')
set.seed(123456)
sampled_weapons <- weapons %>% sample_n(100)
top_weaponstrade <- weapons %>% top_n(50, TIV.delivery.values)
q<-ggplot(sampled_weapons, aes(x = Delivery.year, y = Recipient, color = Supplier)) + geom_line(size = 1) + geom_point() + labs( title = "Arms Transfer Trends Over Time", x = "Year", y = "Recipient", color = "Supplier" ) + theme_minimal()
ggplotly(q)
```