# Load packages

# Core
library(tidyverse)
library(tidyquant)
library(readr)

# Time series
library(lubridate)
library(tibbletime)

# modeling
library(broom)

Goal

Examine how each asset contributes to portfolio standard deviation. This is to ensure that our risk is not concentrated in any one asset.

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG” from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x    = symbols,
                 get  = "stock.prices",    
                 from = "2012-12-31",
                 to   = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log") %>%
    
    slice(-1) %>%
    
    ungroup() %>%
    
    set_names(c("asset", "date", "returns"))

3 Component Contribution Step-by-Step

Refresh your memory on covariance with this video. Click this link Refresh your memory on matrix multiplication. Click this link

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

asset_returns_wide_tbl
##                      AGG           EEM           EFA          IJS           SPY
## 2013-01-31 -0.0062310958 -0.0029354636  0.0366062100  0.052132991  4.992311e-02
## 2013-02-28  0.0058907089 -0.0231051224 -0.0129694779  0.016175669  1.267798e-02
## 2013-03-28  0.0009850716 -0.0102350107  0.0129694779  0.040257790  3.726821e-02
## 2013-04-30  0.0096393419  0.0120847911  0.0489677181  0.001222770  1.902994e-02
## 2013-05-31 -0.0202130761 -0.0494832585 -0.0306557752  0.041976671  2.333538e-02
## 2013-06-28 -0.0157793790 -0.0547285037 -0.0271440195 -0.001403139 -1.343434e-02
## 2013-07-31  0.0026880034  0.0131596987  0.0518601598  0.063541070  5.038599e-02
## 2013-08-30 -0.0082980040 -0.0257054850 -0.0197463751 -0.034743283 -3.045125e-02
## 2013-09-30  0.0111440802  0.0695888322  0.0753384162  0.063873739  3.115566e-02
## 2013-10-31  0.0082917494  0.0408612922  0.0320817979  0.034234022  4.526680e-02
## 2013-11-29 -0.0025094722 -0.0025941412  0.0054497801  0.041661092  2.920693e-02
## 2013-12-31 -0.0055836574 -0.0040742469  0.0215278959  0.012892288  2.559627e-02
## 2014-01-31  0.0152923667 -0.0903225381 -0.0534132206 -0.035775487 -3.588464e-02
## 2014-02-28  0.0037562706  0.0332203487  0.0595048493  0.045257655  4.451020e-02
## 2014-03-31 -0.0014807160  0.0380217573 -0.0046024121  0.013314877  8.261416e-03
## 2014-04-30  0.0081821644  0.0077726260  0.0165291408 -0.023184040  6.927568e-03
## 2014-05-30  0.0117214569  0.0290911914  0.0158285772  0.006205303  2.294137e-02
## 2014-06-30 -0.0005750547  0.0237340534  0.0091654826  0.037718799  2.043459e-02
## 2014-07-31 -0.0025124761  0.0135552466 -0.0263799323 -0.052009605 -1.352883e-02
## 2014-08-29  0.0114309532  0.0279050056  0.0018004228  0.043658128  3.870455e-02
## 2014-09-30 -0.0061670580 -0.0808569014 -0.0395984174 -0.061260697 -1.389256e-02
## 2014-10-31  0.0105840153  0.0140965659 -0.0026546525  0.068875056  2.327807e-02
## 2014-11-28  0.0065489709 -0.0155412963  0.0006252304  0.004773331  2.710131e-02
## 2014-12-31  0.0014747384 -0.0404422264 -0.0407467275  0.025296135 -2.539750e-03
## 2015-01-30  0.0203158024 -0.0068957966  0.0062265867 -0.054628201 -3.007717e-02
## 2015-02-27 -0.0089887149  0.0431363135  0.0614505303  0.056914643  5.468217e-02
## 2015-03-31  0.0037405985 -0.0150862503 -0.0143890184  0.010156463 -1.583019e-02
## 2015-04-30 -0.0032328528  0.0662814074  0.0358169657 -0.018417592  9.785692e-03
## 2015-05-29 -0.0043838241 -0.0419112382  0.0019523458  0.007509648  1.277439e-02
## 2015-06-30 -0.0108257184 -0.0297464970 -0.0316785964  0.004171596 -2.052127e-02
## 2015-07-31  0.0085847509 -0.0651779380  0.0201144044 -0.027375440  2.233772e-02
## 2015-08-31 -0.0033635521 -0.0925123800 -0.0771526510 -0.047268502 -6.288651e-02
## 2015-09-30  0.0080812008 -0.0318252684 -0.0451948180 -0.038464635 -2.584704e-02
## 2015-10-30  0.0006856494  0.0618084413  0.0640260593  0.063589794  8.163478e-02
## 2015-11-30 -0.0038981617 -0.0255606062 -0.0075557984  0.024415337  3.648705e-03
## 2015-12-31 -0.0019192489 -0.0389469654 -0.0235951109 -0.052157303 -1.743400e-02
## 2016-01-29  0.0123306196 -0.0516367506 -0.0567577314 -0.060306957 -5.106840e-02
## 2016-02-29  0.0088311387 -0.0082113794 -0.0339139897  0.020605462 -8.264855e-04
## 2016-03-31  0.0087081795  0.1218790346  0.0637456024  0.089910253  6.510051e-02
## 2016-04-29  0.0025468031  0.0040792818  0.0219751003  0.021044161  3.933307e-03
## 2016-05-31  0.0001360014 -0.0376287763 -0.0008558782  0.004397116  1.686830e-02
## 2016-06-30  0.0191662416  0.0445824046 -0.0244915341  0.008292253  3.469969e-03
## 2016-07-29  0.0054294454  0.0524420934  0.0390000281  0.049348598  3.582231e-02
## 2016-08-31 -0.0021561793  0.0087988491  0.0053270279  0.011260969  1.196251e-03
## 2016-09-30  0.0005162247  0.0248727475  0.0132791575  0.008614599  5.837817e-05
## 2016-10-31 -0.0082050594 -0.0083121901 -0.0224038311 -0.038134793 -1.748921e-02
## 2016-11-30 -0.0259901287 -0.0451619574 -0.0179743144  0.125246628  3.617606e-02
## 2016-12-30  0.0025383305 -0.0025299462  0.0267027760  0.031491550  2.006917e-02
## 2017-01-31  0.0021262473  0.0644310950  0.0323819564 -0.012143722  1.773638e-02
## 2017-02-28  0.0064377595  0.0172581393  0.0118362339  0.013428745  3.853934e-02
## 2017-03-31 -0.0005533038  0.0361891001  0.0318057158 -0.006533142  1.248867e-03
## 2017-04-28  0.0090295114  0.0168662855  0.0239522923  0.005107958  9.877674e-03
## 2017-05-31  0.0068474362  0.0280599865  0.0348101875 -0.022862999  1.401423e-02
## 2017-06-30 -0.0001826117  0.0092236570  0.0029560702  0.029152122  6.354546e-03
## 2017-07-31  0.0033340475  0.0565945476  0.0261878661  0.007481190  2.034593e-02
## 2017-08-31  0.0093695836  0.0232437740 -0.0004482934 -0.027564741  2.913239e-03
## 2017-09-29 -0.0057321697 -0.0004462958  0.0233425686  0.082321743  1.994908e-02
## 2017-10-31  0.0009779225  0.0322786711  0.0166537998  0.005916546  2.329068e-02
## 2017-11-30 -0.0014840591 -0.0038970489  0.0068700385  0.036913278  3.010801e-02
## 2017-12-29  0.0047404538  0.0369253030  0.0133982702 -0.003731688  1.205525e-02
# Covariance of asset returns
covariance_matrix <- cov(asset_returns_wide_tbl)

covariance_matrix
##               AGG          EEM          EFA           IJS           SPY
## AGG  7.398443e-05 0.0001042068 4.178057e-05 -7.812301e-05 -9.033394e-06
## EEM  1.042068e-04 0.0017547119 1.039018e-03  6.437749e-04  6.795447e-04
## EFA  4.178057e-05 0.0010390176 1.064236e-03  6.490294e-04  6.975405e-04
## IJS -7.812301e-05 0.0006437749 6.490294e-04  1.565454e-03  8.290271e-04
## SPY -9.033394e-06 0.0006795447 6.975405e-04  8.290271e-04  7.408300e-04
# Standard deviation of portfolio
# Summarizes how much each asset's returns vary with those of other assets within the portfolio into a single number
w <- c(0.25, 0.25, 0.2, 0.2, 0.1)

sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)
sd_portfolio
##           [,1]
## [1,] 0.0234749
# Component contribution
# Similar to the formula for sd_portfolio
# Mathematical trick to summarize the same, sd_portfolio, by asset instead of a single number
component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]
component_contribution
##               AGG        EEM         EFA         IJS         SPY
## [1,] 0.0003873922 0.00925715 0.005815631 0.005684475 0.002330252
rowSums(component_contribution)
## [1] 0.0234749
# Component contribution in percentage
component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
    round(3) %>%
    as_tibble()

component_percentages
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099
component_percentages %>%

    as_tibble() %>%
    gather(key = "asset", value = "contribution")
## # A tibble: 5 × 2
##   asset contribution
##   <chr>        <dbl>
## 1 AGG          0.017
## 2 EEM          0.394
## 3 EFA          0.248
## 4 IJS          0.242
## 5 SPY          0.099

4 Component Contribution with a Custom Function

# Transform data into wide form
asset_returns_wide_tbl <- asset_returns_tbl %>%

    pivot_wider(names_from = asset, values_from = returns) %>%

    column_to_rownames(var = "date")

# Custom function
calculate_component_contribution <- function(asset_returns_wide_tbl, w) {

    # Covariance of asset returns
    covariance_matrix <- cov(asset_returns_wide_tbl)
    
    # Standard deviation of portfolio
    sd_portfolio <- sqrt(t(w) %*% covariance_matrix %*% w)

    # Component contribution
    component_contribution <- (t(w) %*% covariance_matrix * w) / sd_portfolio[1,1]

    # Component contribution in percentage
    component_percentages <- (component_contribution / sd_portfolio[1,1]) %>%
        round(3) %>%
        as_tibble()
    
    return(component_percentages)

}

asset_returns_wide_tbl %>% calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1))
## # A tibble: 1 × 5
##     AGG   EEM   EFA   IJS   SPY
##   <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.017 0.394 0.248 0.242 0.099

5 Visualizing Component Contribution

# Figure 10.1 Contribution to Standard Deviation ----
asset_returns_wide_tbl %>%

    calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1)) %>%
    gather(key = "asset", value = "contribution") %>%

    ggplot(aes(asset, contribution)) +
    geom_col(fill = "cornflowerblue") +
    
    theme(plot.title = element_text(hjust = 0.5)) +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    
    labs(title = "Percent Contribution to Portfolio Standard Deviation",
         y = "Percent Contribution to Risk",
         x = NULL)

# Figure 10.2 Weight versus Contribution ----
asset_returns_wide_tbl %>%

    calculate_component_contribution(w = c(0.25,0.25,0.2,0.2,0.1)) %>%
    gather(key = "asset", value = "contribution") %>%
    add_column(weights = c(0.25,0.25,0.2,0.2,0.1)) %>%
    pivot_longer(cols = c(contribution, weights), names_to = "type", values_to = "value") %>%

    ggplot(aes(asset, value, fill = type)) +
    geom_col(position = "dodge") +
    
    theme(plot.title = element_text(hjust = 0.5)) +
    scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
    theme_tq() +
    scale_fill_tq() +

    labs(title = "Percent Contribution to Volatility",
         y = "percent",
         x = "asset") 

6 Rolling Component Contribution

calculate_comp_contrib_by_window <- function(asset_returns_wide_tbl,
                                             start = 1,
                                             window = 24,
                                             weights) {

    # 1 Define start date
    start_date <- rownames(asset_returns_wide_tbl)[start]

    # 2 Define end date
    end_date <- rownames(asset_returns_wide_tbl)[start + window]

    # 3 Subset df
    df_subset <- asset_returns_wide_tbl %>%

        rownames_to_column(var = "date") %>%

        filter(date >= start_date & date < end_date) %>%

        column_to_rownames(var = "date")

    # 4 Calculate component contribution
    component_percentages <-df_subset %>%
        calculate_component_contribution(w = weights)

    # 5 Add end date to df
    component_percentages %>%

        mutate(date = ymd(end_date)) %>%
        select(date, everything())

}


# Check the custom function
asset_returns_wide_tbl %>% calculate_comp_contrib_by_window(start = 1, window = 24,
                                                            w = c(0.25,0.25,0.2,0.2,0.1))
## # A tibble: 1 × 6
##   date         AGG   EEM   EFA   IJS   SPY
##   <date>     <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2015-01-30 0.039 0.372 0.256 0.245 0.088
asset_returns_wide_tbl %>% calculate_comp_contrib_by_window(start = 2, window = 24,
                                                            w = c(0.25,0.25,0.2,0.2,0.1))
## # A tibble: 1 × 6
##   date         AGG   EEM   EFA   IJS   SPY
##   <date>     <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 2015-02-27 0.036 0.374 0.249 0.252 0.089
dump(list = c("calculate_component_contribution",
              "calculate_comp_contrib_by_window"),
     file = "../00_scripts/calculate_comp_contrib_to_portfolio_volatility.R")
# Iterate the custom function
w <- c(0.25,0.25,0.2,0.2,0.1)
window <- 24

rolling_comp_contrib_tbl <- 1:(nrow(asset_returns_wide_tbl) - window) %>%

    map_df(.x = ., .f = ~calculate_comp_contrib_by_window(asset_returns_wide_tbl,
                                                          start = .x,
                                                          weights = w,
                                                          window = window))
rolling_comp_contrib_tbl
## # A tibble: 36 × 6
##    date         AGG   EEM   EFA   IJS   SPY
##    <date>     <dbl> <dbl> <dbl> <dbl> <dbl>
##  1 2015-01-30 0.039 0.372 0.256 0.245 0.088
##  2 2015-02-27 0.036 0.374 0.249 0.252 0.089
##  3 2015-03-31 0.027 0.37  0.255 0.255 0.092
##  4 2015-04-30 0.027 0.372 0.256 0.252 0.093
##  5 2015-05-29 0.024 0.385 0.254 0.246 0.092
##  6 2015-06-30 0.018 0.383 0.248 0.257 0.094
##  7 2015-07-31 0.014 0.375 0.253 0.261 0.096
##  8 2015-08-31 0.013 0.404 0.237 0.257 0.09 
##  9 2015-09-30 0.012 0.407 0.248 0.238 0.094
## 10 2015-10-30 0.003 0.405 0.244 0.243 0.105
## # ℹ 26 more rows
# Figure 10.3 Component Contribution ggplot ----
rolling_comp_contrib_tbl %>%

    # Transform data to long form
    pivot_longer(cols = -date, names_to = "asset", values_to = "contribution") %>%

    # Plot
    ggplot(aes(date, contribution, color = asset)) +
    geom_line() +

    scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
    scale_y_continuous(labels = scales::percent_format()) +

    annotate(geom = "text",
             x = as.Date("2016-07-01"),
             y = 0.03,
             color = "red", size = 5,
             label = str_glue("AGG dips below zero sometimes, indicating
                              it reduces the portfolio volatility."))

# Figure 10.4 Stacked Component Contribution ggplot ----
rolling_comp_contrib_tbl %>%

    # Transform data to long form
    pivot_longer(cols = -date, names_to = "asset", values_to = "contribution") %>%

    # Plot
    ggplot(aes(date, contribution, fill = asset)) +
    geom_area() +

    scale_x_date(breaks = scales::pretty_breaks(n = 7)) +
    scale_y_continuous(labels = scales::percent_format()) +

    annotate(geom = "text",
             x = as.Date("2016-07-01"),
             y = 0.08,
             color = "red", size = 5,
             label = str_glue("AGG dips below zero sometimes, indicating
                              it reduces the portfolio volatility."))