Overview

Data on veterans in the U.S.

Set up your work enviornment

Open up a new .Rmd file.

Use {r setup, include=F} in your first code chunk.

knitr::opts_chunk$set(echo = TRUE)

# Load necessary libraries
library(knitr)
library(kableExtra)
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter()     masks stats::filter()
## ✖ dplyr::group_rows() masks kableExtra::group_rows()
## ✖ dplyr::lag()        masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(readr) 
library(dplyr)
library(tidyr)
library(readxl)

Data

Accessing 2010 data on U.S. Veterans here.

If you have issues with the above link, try: https://www.va.gov/vetdata/Surveys.asp

# Load necessary libraries
library(httr)
library(readxl)

# Define the URL of the Excel file
url <- "https://www.va.gov/vetdata/docs/SurveysAndStudies/Publicdata2010.xls"

# Define a temporary file path
temp_file <- tempfile(fileext = ".xls")

# Download the file
GET(url, write_disk(temp_file, overwrite = TRUE))
## Response [https://www.va.gov/vetdata/docs/SurveysAndStudies/Publicdata2010.xls]
##   Date: 2024-11-18 01:49
##   Status: 200
##   Content-Type: application/vnd.ms-excel
##   Size: 38.8 MB
## <ON DISK>  /var/folders/54/02xngdrx2277pg5hxjx3z8040000gn/T//RtmplNzwFV/filed886586dc22d.xls
# Read the downloaded Excel file into a data frame
df <- read_excel(temp_file)

# Optionally, remove the temporary file after reading (if desired)
unlink(temp_file)

View summaries of the data

head(df)
## # A tibble: 6 × 229
##   ACCESWEB ACTEVER ACTLAST ACTNEW ADDRESS AGREE1 AGREE2 AGREE3 AGREE4 AGREE5
##      <dbl>   <dbl>   <dbl>  <dbl>   <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
## 1       NA       1    1968   1965       1      2      2      1      1      2
## 2       NA       1    1963   1961       1      3      3      2      1      2
## 3       NA       1    1969   1968       2      2      2      2      2      2
## 4       NA       1    1956   1954       1      5      1      1      1      3
## 5       NA       1    1942   1941       0      2      2      1      8      8
## 6       NA       1    1963   1961       0      2      1      1      2      3
## # ℹ 219 more variables: AGREE6 <dbl>, AGREE7 <dbl>, AGREE8 <dbl>, AGREE9 <dbl>,
## #   AIAN <dbl>, AIDNEED <dbl>, AIRF <dbl>, APPEAR1 <dbl>, APPEAR2 <dbl>,
## #   APPLYVA <dbl>, ARMY <dbl>, ASIANI <dbl>, AWAREHL <dbl>, BENBRF <dbl>,
## #   BLACK <dbl>, BUILDNG <dbl>, BUROPT1 <dbl>, BUROPT2 <dbl>, BUROPT3 <dbl>,
## #   BUROPT4 <dbl>, BUROPT5 <dbl>, BUROPT6 <dbl>, BUROPT7 <dbl>, BURPREF <dbl>,
## #   CGUARD <dbl>, CHINESE <dbl>, COPAY1 <dbl>, COPAY2 <dbl>, COPAY3 <dbl>,
## #   COPAY4 <dbl>, COPAY5 <dbl>, COPAY6 <dbl>, COPAY7 <dbl>, COPAY8 <dbl>, …
names(df)
##   [1] "ACCESWEB" "ACTEVER"  "ACTLAST"  "ACTNEW"   "ADDRESS"  "AGREE1"  
##   [7] "AGREE2"   "AGREE3"   "AGREE4"   "AGREE5"   "AGREE6"   "AGREE7"  
##  [13] "AGREE8"   "AGREE9"   "AIAN"     "AIDNEED"  "AIRF"     "APPEAR1" 
##  [19] "APPEAR2"  "APPLYVA"  "ARMY"     "ASIANI"   "AWAREHL"  "BENBRF"  
##  [25] "BLACK"    "BUILDNG"  "BUROPT1"  "BUROPT2"  "BUROPT3"  "BUROPT4" 
##  [31] "BUROPT5"  "BUROPT6"  "BUROPT7"  "BURPREF"  "CGUARD"   "CHINESE" 
##  [37] "COPAY1"   "COPAY2"   "COPAY3"   "COPAY4"   "COPAY5"   "COPAY6"  
##  [43] "COPAY7"   "COPAY8"   "COPAY9"   "COPAY10"  "COPAY11"  "COPAY12" 
##  [49] "COPAY13"  "COVPROS"  "COVPROV1" "COVPROV2" "COVPROV3" "COVPROV4"
##  [55] "COVPROV5" "COVPROV6" "COVPROV7" "CTREMAIL" "CTRWEB"   "CURHINOS"
##  [61] "CURHINS1" "CURHINS2" "CURHINS3" "CURHINS4" "CURHINS5" "CURHINS6"
##  [67] "CURHINS7" "CURHINS8" "CURHINS9" "CURSCD"   "DEGREE"   "DENTAL6" 
##  [73] "DEPEND1"  "DEPEND2"  "DOBYYYY"  "EDUACT1"  "EDUACT2"  "EDUACT3" 
##  [79] "EDUACT4"  "EDUCOS"   "EDUCREC"  "EDUCTYP"  "EDUCVA"   "EDUCVA1" 
##  [85] "EDUCVA2"  "EDUCVA3"  "EDUCVA4"  "EDUCVA5"  "EDUCVA6"  "EDUCVA7" 
##  [91] "EDUCVA8"  "EDUCVAOS" "EDUGOAL"  "ELSEMAIL" "EMAIL"    "EMERG6"  
##  [97] "EQUIP6"   "EVDIS"    "EVENT"    "EVERUSHL" "EVEXP"    "EVHZRD"  
## [103] "EVOCR1"   "EVOCR2"   "EVOCR3"   "EVOCR4"   "EVOCR5"   "EVOCR6"  
## [109] "EVOCR7"   "EVOCROS"  "EVPRIS"   "EVSCD"    "EVSMOK"   "EVVOC"   
## [115] "EYE6"     "FILIPINO" "FINALWGT" "FRONT"    "FUTURHC"  "GENDER"  
## [121] "GENDER1"  "GETNEWS"  "GOODSERV" "GROUND"   "GUAMCHAM" "HBOUND"  
## [127] "HEARD1"   "HEARD2"   "HEARD3"   "HEARD4"   "HEARD5"   "HEARD6"  
## [133] "HEARD7"   "HISPANIC" "HISPANOS" "HLTH1"    "HLTH2"    "HLTHWEB" 
## [139] "HOMEMAIL" "HOMEWEB"  "HOWHL"    "ID"       "IMPDIS"   "IMPVOC"  
## [145] "INCOM1"   "INCOM2"   "INHC"     "INHOM6"   "INTERNET" "JOBEMAIL"
## [151] "JOBH1"    "JOBH2"    "JOBH3"    "JOBH4"    "JOBH5"    "JOBH6"   
## [157] "JOBHOS"   "JOBMATCH" "JOBPREP"  "LENDER"   "LIBEMAIL" "LIBWEB"  
## [163] "LIVARRAG" "LKBUR"    "LKCP"     "LKEDU"    "LKHC"     "LKHCF"   
## [169] "LKHL"     "LKLI"     "LKPRES"   "LKSURV"   "LKTRAN"   "LKVOCR"  
## [175] "MARINE"   "MARKER"   "MARRY"    "MCARECO1" "MCARECO2" "MCARECO3"
## [181] "MEDICADV" "MEDICD1"  "MEDICD2"  "MEDICD3"  "MEDICD4"  "MEDICD5" 
## [187] "MEDICD6"  "MEDICD7"  "MEDICD8"  "MEDICD9"  "MEDICD10" "MEDICD11"
## [193] "MEDICD12" "MEDICD13" "MEDICR1"  "MEDICR2"  "MEDICR3"  "MEDICR4" 
## [199] "MEDICR5"  "MEDICR6"  "MEDICR7"  "MEDICR8"  "MEDICR9"  "MEDICR10"
## [205] "MEDICR11" "MEDICR12" "MEDICR13" "MEDICSUP" "MILTIME"  "MPAYR"   
## [211] "NATHAWAI" "NAVY"     "NEEDA1"   "NEEDA2"   "NEEDA3"   "NEEDA4"  
## [217] "NEEDA5"   "NEEDA6"   "NEEDA7"   "NEEDA8"   "NEEDA9"   "NEEDA10" 
## [223] "NEEDA11"  "NEVHC1"   "NEVHC2"   "NEVHC3"   "NEVHC4"   "NEVHC5"  
## [229] "NEVHC6"

Public-Use Files

There are also public-use files on veterans located on the web.

For example, one set of public-use data can be accessed here.