Week 6 Workbook

Author

Tamara Walker

library(tidyverse)
library(dplyr)
library(tidyr)
library(knitr)
library(ggplot2)
library(tools)
library(gmodels)
mpg %>%
  group_by(class, cyl) %>% #Groups by class then cyl
 summarise(n=n()) %>% #Summarises by number of observations
  spread(cyl, n) %>% #Creates a crosstab/contingency table where class is arranged in rows and cyl in columns.
kable() #Creates a basic table
class 4 5 6 8
2seater NA NA NA 5
compact 32 2 13 NA
midsize 16 NA 23 2
minivan 1 NA 10 NA
pickup 3 NA 10 20
subcompact 21 2 7 5
suv 8 NA 16 38
mpg%>%
  group_by(class, cyl)%>% #Groups by class
  summarise(mean_cty=mean(cty))%>% #Summarises by average number of city miles
  spread(cyl, mean_cty) %>% #Creates a crosstab/contingency table where class is arranged in rows and cyl in columns, returning the mean value.
kable() #Creates a basic table
class 4 5 6 8
2seater NA NA NA 15.40000
compact 21.37500 21 16.92308 NA
midsize 20.50000 NA 17.78261 16.00000
minivan 18.00000 NA 15.60000 NA
pickup 16.00000 NA 14.50000 11.80000
subcompact 22.85714 20 17.00000 14.80000
suv 18.00000 NA 14.50000 12.13158
mpg %>%
  group_by(class, cyl) %>% #Groups by class then cyl
  summarise(max_cty=max(cty)) %>% #Summarises by max cty
spread(cyl, max_cty) %>% #Creates a crosstab/contingency table where class is arranged in rows and cyl in columns, returning the max value.
kable() #Creates a basic table
class 4 5 6 8
2seater NA NA NA 16
compact 33 21 18 NA
midsize 23 NA 19 16
minivan 18 NA 17 NA
pickup 17 NA 16 14
subcompact 35 20 18 15
suv 20 NA 17 14
 mpg%>%
  group_by(class)%>% #Groups by class
  summarise(n=n())%>% #Summarises by number of observations
  mutate(prop=n/sum(n))%>% #Creates a new field and calculates proportion
  kable() #Creates a basic table
class n prop
2seater 5 0.0213675
compact 47 0.2008547
midsize 41 0.1752137
minivan 11 0.0470085
pickup 33 0.1410256
subcompact 35 0.1495726
suv 62 0.2649573
mpg%>%
  group_by(class, cyl)%>% #Groups by class then cyl
  summarize(n=n())%>% #Summarises by number of observations
  mutate(prop=n/sum(n))%>% #Creates a new field and calculates proportion
  subset(select=c("class","cyl","prop"))%>% #Retains only class, cyl and prop columns (does not display frequency value)
  spread(class, prop)%>% #Creates a crosstab/contingency table where class is arranged in rows and prop in columns.
  kable() #Creates a basic table
cyl 2seater compact midsize minivan pickup subcompact suv
4 NA 0.6808511 0.3902439 0.0909091 0.0909091 0.6000000 0.1290323
5 NA 0.0425532 NA NA NA 0.0571429 NA
6 NA 0.2765957 0.5609756 0.9090909 0.3030303 0.2000000 0.2580645
8 1 NA 0.0487805 NA 0.6060606 0.1428571 0.6129032
table(mpg$class, mpg$cyl) #Creates a table showing vehicle class by number of cylinders
            
              4  5  6  8
  2seater     0  0  0  5
  compact    32  2 13  0
  midsize    16  0 23  2
  minivan     1  0 10  0
  pickup      3  0 10 20
  subcompact 21  2  7  5
  suv         8  0 16 38
mpg_table<-table(mpg$class, mpg$cyl)
ftable(mpg_table) #Creates a frequency table by class and cyl
             4  5  6  8
                       
2seater      0  0  0  5
compact     32  2 13  0
midsize     16  0 23  2
minivan      1  0 10  0
pickup       3  0 10 20
subcompact  21  2  7  5
suv          8  0 16 38
margin.table(mpg_table, 1) #Creates a frequency table by rows

   2seater    compact    midsize    minivan     pickup subcompact        suv 
         5         47         41         11         33         35         62 
margin.table(mpg_table, 2) #Creates a frequency table by columns

 4  5  6  8 
81  4 79 70 
prop.table(mpg_table) #Creates a proportions table for the entire table
            
                       4           5           6           8
  2seater    0.000000000 0.000000000 0.000000000 0.021367521
  compact    0.136752137 0.008547009 0.055555556 0.000000000
  midsize    0.068376068 0.000000000 0.098290598 0.008547009
  minivan    0.004273504 0.000000000 0.042735043 0.000000000
  pickup     0.012820513 0.000000000 0.042735043 0.085470085
  subcompact 0.089743590 0.008547009 0.029914530 0.021367521
  suv        0.034188034 0.000000000 0.068376068 0.162393162
prop.table(mpg_table, 1) #Creates a proportion table by entire row
            
                      4          5          6          8
  2seater    0.00000000 0.00000000 0.00000000 1.00000000
  compact    0.68085106 0.04255319 0.27659574 0.00000000
  midsize    0.39024390 0.00000000 0.56097561 0.04878049
  minivan    0.09090909 0.00000000 0.90909091 0.00000000
  pickup     0.09090909 0.00000000 0.30303030 0.60606061
  subcompact 0.60000000 0.05714286 0.20000000 0.14285714
  suv        0.12903226 0.00000000 0.25806452 0.61290323
prop.table(mpg_table, 2) #Creates a proportion table by entire column
            
                      4          5          6          8
  2seater    0.00000000 0.00000000 0.00000000 0.07142857
  compact    0.39506173 0.50000000 0.16455696 0.00000000
  midsize    0.19753086 0.00000000 0.29113924 0.02857143
  minivan    0.01234568 0.00000000 0.12658228 0.00000000
  pickup     0.03703704 0.00000000 0.12658228 0.28571429
  subcompact 0.25925926 0.50000000 0.08860759 0.07142857
  suv        0.09876543 0.00000000 0.20253165 0.54285714
CrossTable(mpg$class, mpg$cyl) #Creates a frequencies and table, row and column proportions in one command (requires gmodels)

 
   Cell Contents
|-------------------------|
|                       N |
| Chi-square contribution |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|

 
Total Observations in Table:  234 

 
             | mpg$cyl 
   mpg$class |         4 |         5 |         6 |         8 | Row Total | 
-------------|-----------|-----------|-----------|-----------|-----------|
     2seater |         0 |         0 |         0 |         5 |         5 | 
             |     1.731 |     0.085 |     1.688 |     8.210 |           | 
             |     0.000 |     0.000 |     0.000 |     1.000 |     0.021 | 
             |     0.000 |     0.000 |     0.000 |     0.071 |           | 
             |     0.000 |     0.000 |     0.000 |     0.021 |           | 
-------------|-----------|-----------|-----------|-----------|-----------|
     compact |        32 |         2 |        13 |         0 |        47 | 
             |    15.210 |     1.782 |     0.518 |    14.060 |           | 
             |     0.681 |     0.043 |     0.277 |     0.000 |     0.201 | 
             |     0.395 |     0.500 |     0.165 |     0.000 |           | 
             |     0.137 |     0.009 |     0.056 |     0.000 |           | 
-------------|-----------|-----------|-----------|-----------|-----------|
     midsize |        16 |         0 |        23 |         2 |        41 | 
             |     0.230 |     0.701 |     6.059 |     8.591 |           | 
             |     0.390 |     0.000 |     0.561 |     0.049 |     0.175 | 
             |     0.198 |     0.000 |     0.291 |     0.029 |           | 
             |     0.068 |     0.000 |     0.098 |     0.009 |           | 
-------------|-----------|-----------|-----------|-----------|-----------|
     minivan |         1 |         0 |        10 |         0 |        11 | 
             |     2.070 |     0.188 |    10.641 |     3.291 |           | 
             |     0.091 |     0.000 |     0.909 |     0.000 |     0.047 | 
             |     0.012 |     0.000 |     0.127 |     0.000 |           | 
             |     0.004 |     0.000 |     0.043 |     0.000 |           | 
-------------|-----------|-----------|-----------|-----------|-----------|
      pickup |         3 |         0 |        10 |        20 |        33 | 
             |     6.211 |     0.564 |     0.117 |    10.391 |           | 
             |     0.091 |     0.000 |     0.303 |     0.606 |     0.141 | 
             |     0.037 |     0.000 |     0.127 |     0.286 |           | 
             |     0.013 |     0.000 |     0.043 |     0.085 |           | 
-------------|-----------|-----------|-----------|-----------|-----------|
  subcompact |        21 |         2 |         7 |         5 |        35 | 
             |     6.515 |     3.284 |     1.963 |     2.858 |           | 
             |     0.600 |     0.057 |     0.200 |     0.143 |     0.150 | 
             |     0.259 |     0.500 |     0.089 |     0.071 |           | 
             |     0.090 |     0.009 |     0.030 |     0.021 |           | 
-------------|-----------|-----------|-----------|-----------|-----------|
         suv |         8 |         0 |        16 |        38 |        62 | 
             |     8.444 |     1.060 |     1.162 |    20.403 |           | 
             |     0.129 |     0.000 |     0.258 |     0.613 |     0.265 | 
             |     0.099 |     0.000 |     0.203 |     0.543 |           | 
             |     0.034 |     0.000 |     0.068 |     0.162 |           | 
-------------|-----------|-----------|-----------|-----------|-----------|
Column Total |        81 |         4 |        79 |        70 |       234 | 
             |     0.346 |     0.017 |     0.338 |     0.299 |           | 
-------------|-----------|-----------|-----------|-----------|-----------|