Grading the professor

Many college courses conclude by giving students the opportunity to evaluate the course and the instructor anonymously. However, the use of these student evaluations as an indicator of course quality and teaching effectiveness is often criticized because these measures may reflect the influence of non-teaching related characteristics, such as the physical appearance of the instructor. The article titled, “Beauty in the classroom: instructors’ pulchritude and putative pedagogical productivity” by Hamermesh and Parker found that instructors who are viewed to be better looking receive higher instructional ratings.

Here, you will analyze the data from this study in order to learn what goes into a positive professor evaluation.

Getting Started

Load packages

In this lab, you will explore and visualize the data using the tidyverse suite of packages. The data can be found in the companion package for OpenIntro resources, openintro.

Let’s load the packages.

library(tidyverse)
library(openintro)
library(GGally)

This is the first time we’re using the GGally package. You will be using the ggpairs function from this package later in the lab.

The data

The data were gathered from end of semester student evaluations for a large sample of professors from the University of Texas at Austin. In addition, six students rated the professors’ physical appearance. The result is a data frame where each row contains a different course and columns represent variables about the courses and professors. It’s called evals.

glimpse(evals)
## Rows: 463
## Columns: 23
## $ course_id     <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1…
## $ prof_id       <int> 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5,…
## $ score         <dbl> 4.7, 4.1, 3.9, 4.8, 4.6, 4.3, 2.8, 4.1, 3.4, 4.5, 3.8, 4…
## $ rank          <fct> tenure track, tenure track, tenure track, tenure track, …
## $ ethnicity     <fct> minority, minority, minority, minority, not minority, no…
## $ gender        <fct> female, female, female, female, male, male, male, male, …
## $ language      <fct> english, english, english, english, english, english, en…
## $ age           <int> 36, 36, 36, 36, 59, 59, 59, 51, 51, 40, 40, 40, 40, 40, …
## $ cls_perc_eval <dbl> 55.81395, 68.80000, 60.80000, 62.60163, 85.00000, 87.500…
## $ cls_did_eval  <int> 24, 86, 76, 77, 17, 35, 39, 55, 111, 40, 24, 24, 17, 14,…
## $ cls_students  <int> 43, 125, 125, 123, 20, 40, 44, 55, 195, 46, 27, 25, 20, …
## $ cls_level     <fct> upper, upper, upper, upper, upper, upper, upper, upper, …
## $ cls_profs     <fct> single, single, single, single, multiple, multiple, mult…
## $ cls_credits   <fct> multi credit, multi credit, multi credit, multi credit, …
## $ bty_f1lower   <int> 5, 5, 5, 5, 4, 4, 4, 5, 5, 2, 2, 2, 2, 2, 2, 2, 2, 7, 7,…
## $ bty_f1upper   <int> 7, 7, 7, 7, 4, 4, 4, 2, 2, 5, 5, 5, 5, 5, 5, 5, 5, 9, 9,…
## $ bty_f2upper   <int> 6, 6, 6, 6, 2, 2, 2, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 9, 9,…
## $ bty_m1lower   <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 7, 7,…
## $ bty_m1upper   <int> 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 6,…
## $ bty_m2upper   <int> 6, 6, 6, 6, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6,…
## $ bty_avg       <dbl> 5.000, 5.000, 5.000, 5.000, 3.000, 3.000, 3.000, 3.333, …
## $ pic_outfit    <fct> not formal, not formal, not formal, not formal, not form…
## $ pic_color     <fct> color, color, color, color, color, color, color, color, …

We have observations on 21 different variables, some categorical and some numerical. The meaning of each variable can be found by bringing up the help file:

?evals

Exploring the data

  1. Is this an observational study or an experiment? The original research question posed in the paper is whether beauty leads directly to the differences in course evaluations. Given the study design, is it possible to answer this question as it is phrased? If not, rephrase the question.

Answer: this is an observational study. The current question is pedantic and not well suited. I would rephrase it as, “Is there a positive and statistically significant correlation between rated beauty of professors and students overall course evaluations for them?

  1. Describe the distribution of score. Is the distribution skewed? What does that tell you about how students rate courses? Is this what you expected to see? Why, or why not?

Answer: this data has a left skew, with a tail that extends down and out gradually. I’m surprised the scores cluster so close to the top of the scale. Student evaluations are most likely positively correlated with the overall grade in the class. There’s generally a lot of grade inflation in academia so there also being ratings inflation doesn’t surprise me.

summary(evals$score)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.300   3.800   4.300   4.175   4.600   5.000
ggplot(evals, aes(x = score)) +
  geom_histogram(binwidth = 0.2, fill = "pink", color = "skyblue") +
  labs(title = "Course evaluation scores", x = "Score", y = "Frequency")

  1. Excluding score, select two other variables and describe their relationship with each other using an appropriate visualization.
ggplot(evals, aes(x = cls_level, y = bty_avg, fill = cls_level)) +
  geom_boxplot() +
  labs(title = "Evaulating classs level and average beauty score",
       x = "Class level", y = "Beauty")

Simple linear regression

The fundamental phenomenon suggested by the study is that better looking teachers are evaluated more favorably. Let’s create a scatterplot to see if this appears to be the case:

ggplot(data = evals, aes(x = bty_avg, y = score)) +
  geom_point()

Before you draw conclusions about the trend, compare the number of observations in the data frame with the approximate number of points on the scatterplot. Is anything awry?

  1. Replot the scatterplot, but this time use geom_jitter as your layer. What was misleading about the initial scatterplot?
ggplot(data = evals, aes(x = bty_avg, y = score)) +
  geom_jitter(width = 0.3, height = 0.2)

Answer: the initial plot had everything neatly organied, almost as if it didn’t want aknowledge any other pattern. This new chart allows for some of the messiness in the data to come through better.

  1. Let’s see if the apparent trend in the plot is something more than natural variation. Fit a linear model called m_bty to predict average professor score by average beauty rating. Write out the equation for the linear model and interpret the slope. Is average beauty score a statistically significant predictor? Does it appear to be a practically significant predictor?

Answer: y = b0 + b1x y = 3.88034 + 0.06664(bty_avg)

Add the line of the bet fit model to your plot using the following:

m_bty <- lm(score ~ bty_avg, data = evals)

ggplot(data = evals, aes(x = bty_avg, y = score)) +
  geom_jitter() +
  geom_smooth(method = "lm")

The blue line is the model. The shaded gray area around the line tells you about the variability you might expect in your predictions. To turn that off, use se = FALSE.

ggplot(data = evals, aes(x = bty_avg, y = score)) +
  geom_jitter() +
  geom_smooth(method = "lm", se = FALSE)

  1. Use residual plots to evaluate whether the conditions of least squares regression are reasonable. Provide plots and comments for each one (see the Simple Regression Lab for a reminder of how to make these).

Answer: the residuals aren’t pretty widely scatered around, with only a weak connection to the zero line.

Residuals <- resid(m_bty)

plot(x = fitted(m_bty), y = Residuals,
     xlab = "fitted values", ylab = "residuals",
     main = "Residuals vs fitted values")
abline(h = 0, col = "skyblue")

qqnorm(Residuals)
qqline(Residuals)

Multiple linear regression

The data set contains several variables on the beauty score of the professor: individual ratings from each of the six students who were asked to score the physical appearance of the professors and the average of these six scores. Let’s take a look at the relationship between one of these scores and the average beauty score.

ggplot(data = evals, aes(x = bty_f1lower, y = bty_avg)) +
  geom_point()

evals %>% 
  summarise(cor(bty_avg, bty_f1lower))
## # A tibble: 1 Ă— 1
##   `cor(bty_avg, bty_f1lower)`
##                         <dbl>
## 1                       0.844

As expected, the relationship is quite strong—after all, the average score is calculated using the individual scores. You can actually look at the relationships between all beauty variables (columns 13 through 19) using the following command:

evals %>%
  select(contains("bty")) %>%
  ggpairs()

These variables are collinear (correlated), and adding more than one of these variables to the model would not add much value to the model. In this application and with these highly-correlated predictors, it is reasonable to use the average beauty score as the single representative of these variables.

In order to see if beauty is still a significant predictor of professor score after you’ve accounted for the professor’s gender, you can add the gender term into the model.

m_bty_gen <- lm(score ~ bty_avg + gender, data = evals)
summary(m_bty_gen)
## 
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8305 -0.3625  0.1055  0.4213  0.9314 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.74734    0.08466  44.266  < 2e-16 ***
## bty_avg      0.07416    0.01625   4.563 6.48e-06 ***
## gendermale   0.17239    0.05022   3.433 0.000652 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared:  0.05912,    Adjusted R-squared:  0.05503 
## F-statistic: 14.45 on 2 and 460 DF,  p-value: 8.177e-07
  1. P-values and parameter estimates should only be trusted if the conditions for the regression are reasonable. Verify that the conditions for this model are reasonable using diagnostic plots.

Answer: this data is chaotic and less reasonable than reasonable, suggesting the conditions for the regression are unreasonable.

par(mfrow = c(2, 2))
plot(m_bty_gen)

  1. Is bty_avg still a significant predictor of score? Has the addition of gender to the model changed the parameter estimate for bty_avg?

Answer: Adding gender to the model significantly changes the coefficient and its significance, showing that the relationship between bty_avg and score is influenced by gender. R represents a categorical variable like gender with two categories as a binary variable, where female professors are coded as 0 and male professors as 1.

summary(m_bty)
## 
## Call:
## lm(formula = score ~ bty_avg, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.9246 -0.3690  0.1420  0.3977  0.9309 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.88034    0.07614   50.96  < 2e-16 ***
## bty_avg      0.06664    0.01629    4.09 5.08e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5348 on 461 degrees of freedom
## Multiple R-squared:  0.03502,    Adjusted R-squared:  0.03293 
## F-statistic: 16.73 on 1 and 461 DF,  p-value: 5.083e-05
summary(m_bty_gen)
## 
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8305 -0.3625  0.1055  0.4213  0.9314 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.74734    0.08466  44.266  < 2e-16 ***
## bty_avg      0.07416    0.01625   4.563 6.48e-06 ***
## gendermale   0.17239    0.05022   3.433 0.000652 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared:  0.05912,    Adjusted R-squared:  0.05503 
## F-statistic: 14.45 on 2 and 460 DF,  p-value: 8.177e-07

Note that the estimate for gender is now called gendermale. You’ll see this name change whenever you introduce a categorical variable. The reason is that R recodes gender from having the values of male and female to being an indicator variable called gendermale that takes a value of \(0\) for female professors and a value of \(1\) for male professors. (Such variables are often referred to as “dummy” variables.)

As a result, for female professors, the parameter estimate is multiplied by zero, leaving the intercept and slope form familiar from simple regression.

\[ \begin{aligned} \widehat{score} &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg + \hat{\beta}_2 \times (0) \\ &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg\end{aligned} \]

ggplot(data = evals, aes(x = bty_avg, y = score, color = pic_color)) +
 geom_smooth(method = "lm", formula = y ~ x, se = FALSE)

  1. What is the equation of the line corresponding to those with color pictures? (Hint: For those with color pictures, the parameter estimate is multiplied by 1.) For two professors who received the same beauty rating, which color picture tends to have the higher course evaluation score?

Answer:

\[ \hat{\text{score}} = 3.7434 + 0.07416 \times \text{bty\_avg} + 0.17239 \times (\text{gendermale}) \\ = 3.7434 + 0.07416 \times \text{bty\_avg} + 0.17239 \]

The decision to call the indicator variable gendermale instead of genderfemale has no deeper meaning. R simply codes the category that comes first alphabetically as a \(0\). (You can change the reference level of a categorical variable, which is the level that is coded as a 0, using therelevel() function. Use ?relevel to learn more.)

  1. Create a new model called m_bty_rank with gender removed and rank added in. How does R appear to handle categorical variables that have more than two levels? Note that the rank variable has three levels: teaching, tenure track, tenured.

Answer:

R created additional dummy variables to help encode the bew categorical variable.

m_bty_rank <- lm(score ~ bty_avg + rank, data = evals)
summary(m_bty_rank)
## 
## Call:
## lm(formula = score ~ bty_avg + rank, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8713 -0.3642  0.1489  0.4103  0.9525 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       3.98155    0.09078  43.860  < 2e-16 ***
## bty_avg           0.06783    0.01655   4.098 4.92e-05 ***
## ranktenure track -0.16070    0.07395  -2.173   0.0303 *  
## ranktenured      -0.12623    0.06266  -2.014   0.0445 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5328 on 459 degrees of freedom
## Multiple R-squared:  0.04652,    Adjusted R-squared:  0.04029 
## F-statistic: 7.465 on 3 and 459 DF,  p-value: 6.88e-05

The interpretation of the coefficients in multiple regression is slightly different from that of simple regression. The estimate for bty_avg reflects how much higher a group of professors is expected to score if they have a beauty rating that is one point higher while holding all other variables constant. In this case, that translates into considering only professors of the same rank with bty_avg scores that are one point apart.

The search for the best model

We will start with a full model that predicts professor score based on rank, gender, ethnicity, language of the university where they got their degree, age, proportion of students that filled out evaluations, class size, course level, number of professors, number of credits, average beauty rating, outfit, and picture color.

  1. Which variable would you expect to have the highest p-value in this model? Why? Hint: Think about which variable would you expect to not have any association with the professor score.

Answer: cls_profssingle has the highest p-value, coming in at 0.778

linear_r <- lm(score ~ rank + gender + ethnicity + language + age + cls_perc_eval 
             + cls_students + cls_level + cls_profs + cls_credits + bty_avg 
             + pic_outfit + pic_color, data = evals)
summary(linear_r)
## 
## Call:
## lm(formula = score ~ rank + gender + ethnicity + language + age + 
##     cls_perc_eval + cls_students + cls_level + cls_profs + cls_credits + 
##     bty_avg + pic_outfit + pic_color, data = evals)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.77397 -0.32432  0.09067  0.35183  0.95036 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.0952141  0.2905277  14.096  < 2e-16 ***
## ranktenure track      -0.1475932  0.0820671  -1.798  0.07278 .  
## ranktenured           -0.0973378  0.0663296  -1.467  0.14295    
## gendermale             0.2109481  0.0518230   4.071 5.54e-05 ***
## ethnicitynot minority  0.1234929  0.0786273   1.571  0.11698    
## languagenon-english   -0.2298112  0.1113754  -2.063  0.03965 *  
## age                   -0.0090072  0.0031359  -2.872  0.00427 ** 
## cls_perc_eval          0.0053272  0.0015393   3.461  0.00059 ***
## cls_students           0.0004546  0.0003774   1.205  0.22896    
## cls_levelupper         0.0605140  0.0575617   1.051  0.29369    
## cls_profssingle       -0.0146619  0.0519885  -0.282  0.77806    
## cls_creditsone credit  0.5020432  0.1159388   4.330 1.84e-05 ***
## bty_avg                0.0400333  0.0175064   2.287  0.02267 *  
## pic_outfitnot formal  -0.1126817  0.0738800  -1.525  0.12792    
## pic_colorcolor        -0.2172630  0.0715021  -3.039  0.00252 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.498 on 448 degrees of freedom
## Multiple R-squared:  0.1871, Adjusted R-squared:  0.1617 
## F-statistic: 7.366 on 14 and 448 DF,  p-value: 6.552e-14

Let’s run the model…

m_full <- lm(score ~ rank + gender + ethnicity + language + age + cls_perc_eval 
             + cls_students + cls_level + cls_profs + cls_credits + bty_avg 
             + pic_outfit + pic_color, data = evals)
summary(m_full)
## 
## Call:
## lm(formula = score ~ rank + gender + ethnicity + language + age + 
##     cls_perc_eval + cls_students + cls_level + cls_profs + cls_credits + 
##     bty_avg + pic_outfit + pic_color, data = evals)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.77397 -0.32432  0.09067  0.35183  0.95036 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.0952141  0.2905277  14.096  < 2e-16 ***
## ranktenure track      -0.1475932  0.0820671  -1.798  0.07278 .  
## ranktenured           -0.0973378  0.0663296  -1.467  0.14295    
## gendermale             0.2109481  0.0518230   4.071 5.54e-05 ***
## ethnicitynot minority  0.1234929  0.0786273   1.571  0.11698    
## languagenon-english   -0.2298112  0.1113754  -2.063  0.03965 *  
## age                   -0.0090072  0.0031359  -2.872  0.00427 ** 
## cls_perc_eval          0.0053272  0.0015393   3.461  0.00059 ***
## cls_students           0.0004546  0.0003774   1.205  0.22896    
## cls_levelupper         0.0605140  0.0575617   1.051  0.29369    
## cls_profssingle       -0.0146619  0.0519885  -0.282  0.77806    
## cls_creditsone credit  0.5020432  0.1159388   4.330 1.84e-05 ***
## bty_avg                0.0400333  0.0175064   2.287  0.02267 *  
## pic_outfitnot formal  -0.1126817  0.0738800  -1.525  0.12792    
## pic_colorcolor        -0.2172630  0.0715021  -3.039  0.00252 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.498 on 448 degrees of freedom
## Multiple R-squared:  0.1871, Adjusted R-squared:  0.1617 
## F-statistic: 7.366 on 14 and 448 DF,  p-value: 6.552e-14
  1. Check your suspicions from the previous exercise. Include the model output in your response.

See above.

  1. Interpret the coefficient associated with the ethnicity variable.

Answer: The coefficient for a particular ethnicity, such as African American, is 0.1235. This means that, compared to the reference ethnicity, professors of this ethnicity are estimated to have a score about 0.1235 units higher on average, assuming all other variables are constant.

  1. Drop the variable with the highest p-value and re-fit the model. Did the coefficients and significance of the other explanatory variables change? (One of the things that makes multiple regression interesting is that coefficient estimates depend on the other variables that are included in the model.) If not, what does this say about whether or not the dropped variable was collinear with the other explanatory variables?
drop_var <- update(m_full, . ~ . - cls_profs)
summary(drop_var)
## 
## Call:
## lm(formula = score ~ rank + gender + ethnicity + language + age + 
##     cls_perc_eval + cls_students + cls_level + cls_credits + 
##     bty_avg + pic_outfit + pic_color, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7836 -0.3257  0.0859  0.3513  0.9551 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.0872523  0.2888562  14.150  < 2e-16 ***
## ranktenure track      -0.1476746  0.0819824  -1.801 0.072327 .  
## ranktenured           -0.0973829  0.0662614  -1.470 0.142349    
## gendermale             0.2101231  0.0516873   4.065 5.66e-05 ***
## ethnicitynot minority  0.1274458  0.0772887   1.649 0.099856 .  
## languagenon-english   -0.2282894  0.1111305  -2.054 0.040530 *  
## age                   -0.0089992  0.0031326  -2.873 0.004262 ** 
## cls_perc_eval          0.0052888  0.0015317   3.453 0.000607 ***
## cls_students           0.0004687  0.0003737   1.254 0.210384    
## cls_levelupper         0.0606374  0.0575010   1.055 0.292200    
## cls_creditsone credit  0.5061196  0.1149163   4.404 1.33e-05 ***
## bty_avg                0.0398629  0.0174780   2.281 0.023032 *  
## pic_outfitnot formal  -0.1083227  0.0721711  -1.501 0.134080    
## pic_colorcolor        -0.2190527  0.0711469  -3.079 0.002205 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4974 on 449 degrees of freedom
## Multiple R-squared:  0.187,  Adjusted R-squared:  0.1634 
## F-statistic: 7.943 on 13 and 449 DF,  p-value: 2.336e-14
  1. Using backward-selection and p-value as the selection criterion, determine the best model. You do not need to show all steps in your answer, just the output for the final model. Also, write out the linear model for predicting score based on the final model you settle on.

Answer:

backwards_m <- step(m_full, direction = "backward", criterion = "p-value")
## Start:  AIC=-630.9
## score ~ rank + gender + ethnicity + language + age + cls_perc_eval + 
##     cls_students + cls_level + cls_profs + cls_credits + bty_avg + 
##     pic_outfit + pic_color
## 
##                 Df Sum of Sq    RSS     AIC
## - cls_profs      1    0.0197 111.11 -632.82
## - cls_level      1    0.2740 111.36 -631.76
## - cls_students   1    0.3599 111.44 -631.40
## - rank           2    0.8930 111.98 -631.19
## <none>                       111.08 -630.90
## - pic_outfit     1    0.5768 111.66 -630.50
## - ethnicity      1    0.6117 111.70 -630.36
## - language       1    1.0557 112.14 -628.52
## - bty_avg        1    1.2967 112.38 -627.53
## - age            1    2.0456 113.13 -624.45
## - pic_color      1    2.2893 113.37 -623.46
## - cls_perc_eval  1    2.9698 114.06 -620.69
## - gender         1    4.1085 115.19 -616.09
## - cls_credits    1    4.6495 115.73 -613.92
## 
## Step:  AIC=-632.82
## score ~ rank + gender + ethnicity + language + age + cls_perc_eval + 
##     cls_students + cls_level + cls_credits + bty_avg + pic_outfit + 
##     pic_color
## 
##                 Df Sum of Sq    RSS     AIC
## - cls_level      1    0.2752 111.38 -633.67
## - cls_students   1    0.3893 111.49 -633.20
## - rank           2    0.8939 112.00 -633.11
## <none>                       111.11 -632.82
## - pic_outfit     1    0.5574 111.66 -632.50
## - ethnicity      1    0.6728 111.78 -632.02
## - language       1    1.0442 112.15 -630.49
## - bty_avg        1    1.2872 112.39 -629.49
## - age            1    2.0422 113.15 -626.39
## - pic_color      1    2.3457 113.45 -625.15
## - cls_perc_eval  1    2.9502 114.06 -622.69
## - gender         1    4.0895 115.19 -618.08
## - cls_credits    1    4.7999 115.90 -615.24
## 
## Step:  AIC=-633.67
## score ~ rank + gender + ethnicity + language + age + cls_perc_eval + 
##     cls_students + cls_credits + bty_avg + pic_outfit + pic_color
## 
##                 Df Sum of Sq    RSS     AIC
## - cls_students   1    0.2459 111.63 -634.65
## - rank           2    0.8140 112.19 -634.30
## <none>                       111.38 -633.67
## - pic_outfit     1    0.6618 112.04 -632.93
## - ethnicity      1    0.8698 112.25 -632.07
## - language       1    0.9015 112.28 -631.94
## - bty_avg        1    1.3694 112.75 -630.02
## - age            1    1.9342 113.31 -627.70
## - pic_color      1    2.0777 113.46 -627.12
## - cls_perc_eval  1    3.0290 114.41 -623.25
## - gender         1    3.8989 115.28 -619.74
## - cls_credits    1    4.5296 115.91 -617.22
## 
## Step:  AIC=-634.65
## score ~ rank + gender + ethnicity + language + age + cls_perc_eval + 
##     cls_credits + bty_avg + pic_outfit + pic_color
## 
##                 Df Sum of Sq    RSS     AIC
## - rank           2    0.7892 112.42 -635.39
## <none>                       111.63 -634.65
## - ethnicity      1    0.8832 112.51 -633.00
## - pic_outfit     1    0.9700 112.60 -632.65
## - language       1    1.0338 112.66 -632.38
## - bty_avg        1    1.5783 113.20 -630.15
## - pic_color      1    1.9477 113.57 -628.64
## - age            1    2.1163 113.74 -627.96
## - cls_perc_eval  1    2.7922 114.42 -625.21
## - gender         1    4.0945 115.72 -619.97
## - cls_credits    1    4.5163 116.14 -618.29
## 
## Step:  AIC=-635.39
## score ~ gender + ethnicity + language + age + cls_perc_eval + 
##     cls_credits + bty_avg + pic_outfit + pic_color
## 
##                 Df Sum of Sq    RSS     AIC
## <none>                       112.42 -635.39
## - pic_outfit     1    0.7141 113.13 -634.46
## - ethnicity      1    1.1790 113.59 -632.56
## - language       1    1.3403 113.75 -631.90
## - age            1    1.6847 114.10 -630.50
## - pic_color      1    1.7841 114.20 -630.10
## - bty_avg        1    1.8553 114.27 -629.81
## - cls_perc_eval  1    2.9147 115.33 -625.54
## - gender         1    4.0577 116.47 -620.97
## - cls_credits    1    6.1208 118.54 -612.84
summary(backwards_m)
## 
## Call:
## lm(formula = score ~ gender + ethnicity + language + age + cls_perc_eval + 
##     cls_credits + bty_avg + pic_outfit + pic_color, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8455 -0.3221  0.1013  0.3745  0.9051 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            3.907030   0.244889  15.954  < 2e-16 ***
## gendermale             0.202597   0.050102   4.044 6.18e-05 ***
## ethnicitynot minority  0.163818   0.075158   2.180 0.029798 *  
## languagenon-english   -0.246683   0.106146  -2.324 0.020567 *  
## age                   -0.006925   0.002658  -2.606 0.009475 ** 
## cls_perc_eval          0.004942   0.001442   3.427 0.000666 ***
## cls_creditsone credit  0.517205   0.104141   4.966 9.68e-07 ***
## bty_avg                0.046732   0.017091   2.734 0.006497 ** 
## pic_outfitnot formal  -0.113939   0.067168  -1.696 0.090510 .  
## pic_colorcolor        -0.180870   0.067456  -2.681 0.007601 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4982 on 453 degrees of freedom
## Multiple R-squared:  0.1774, Adjusted R-squared:  0.161 
## F-statistic: 10.85 on 9 and 453 DF,  p-value: 2.441e-15

Model equation: \[ \hat{\text{score}} = \hat{\beta}_0 + \hat{\beta}_1 \times \text{gendermale} + \hat{\beta}_2 \times \text{ethnicitynot minority} + \hat{\beta}_3 \times \text{languagenon-english} + \hat{\beta}_4 \times \text{age} + \hat{\beta}_5 \times \text{cls\_perc\_eval} + \hat{\beta}_6 \times \text{cls\_reditsone\_credit} + \hat{\beta}_7 \times \text{bty\_avg} + \hat{\beta}_8 \times \text{pic\_outfitnot formal} + \hat{\beta}_9 \times \text{pic\_colorcolor} \]

  1. Verify that the conditions for this model are reasonable using diagnostic plots.

Answer:

plot(backwards_m)

  1. The original paper describes how these data were gathered by taking a sample of professors from the University of Texas at Austin and including all courses that they have taught. Considering that each row represents a course, could this new information have an impact on any of the conditions of linear regression?

Answer: Student evaluations are most heavily influenced by their academic performance in the course, which manifests as grade inflation. Until this relationship can be established or controlled for, the rest of this data is more interesting than statistically useful.

  1. Based on your final model, describe the characteristics of a professor and course at University of Texas at Austin that would be associated with a high evaluation score.

Answer: The interpretation of these characteristics depends on the values and coefficients from final_model, including factors like ethnicity, gender, language of instruction, age, class size, average beauty ratings, and picture attributes. Each of these variables affects the score, holding all else equal.

  1. Would you be comfortable generalizing your conclusions to apply to professors generally (at any university)? Why or why not?

Answer: This observational dataset comes from a single university, so it may not capture the diversity of professors and courses across all institutions, which could limit the generalizability of findings. That said, professors’ appearance or perceived attractiveness, similar to the bty_avg variable in the evals dataset, tends to be a major factor in student evaluation scores.