Many college courses conclude by giving students the opportunity to evaluate the course and the instructor anonymously. However, the use of these student evaluations as an indicator of course quality and teaching effectiveness is often criticized because these measures may reflect the influence of non-teaching related characteristics, such as the physical appearance of the instructor. The article titled, “Beauty in the classroom: instructors’ pulchritude and putative pedagogical productivity” by Hamermesh and Parker found that instructors who are viewed to be better looking receive higher instructional ratings.
Here, you will analyze the data from this study in order to learn what goes into a positive professor evaluation.
In this lab, you will explore and visualize the data using the tidyverse suite of packages. The data can be found in the companion package for OpenIntro resources, openintro.
Let’s load the packages.
This is the first time we’re using the GGally
package.
You will be using the ggpairs
function from this package
later in the lab.
The data were gathered from end of semester student evaluations for a
large sample of professors from the University of Texas at Austin. In
addition, six students rated the professors’ physical appearance. The
result is a data frame where each row contains a different course and
columns represent variables about the courses and professors. It’s
called evals
.
## Rows: 463
## Columns: 23
## $ course_id <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1…
## $ prof_id <int> 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5,…
## $ score <dbl> 4.7, 4.1, 3.9, 4.8, 4.6, 4.3, 2.8, 4.1, 3.4, 4.5, 3.8, 4…
## $ rank <fct> tenure track, tenure track, tenure track, tenure track, …
## $ ethnicity <fct> minority, minority, minority, minority, not minority, no…
## $ gender <fct> female, female, female, female, male, male, male, male, …
## $ language <fct> english, english, english, english, english, english, en…
## $ age <int> 36, 36, 36, 36, 59, 59, 59, 51, 51, 40, 40, 40, 40, 40, …
## $ cls_perc_eval <dbl> 55.81395, 68.80000, 60.80000, 62.60163, 85.00000, 87.500…
## $ cls_did_eval <int> 24, 86, 76, 77, 17, 35, 39, 55, 111, 40, 24, 24, 17, 14,…
## $ cls_students <int> 43, 125, 125, 123, 20, 40, 44, 55, 195, 46, 27, 25, 20, …
## $ cls_level <fct> upper, upper, upper, upper, upper, upper, upper, upper, …
## $ cls_profs <fct> single, single, single, single, multiple, multiple, mult…
## $ cls_credits <fct> multi credit, multi credit, multi credit, multi credit, …
## $ bty_f1lower <int> 5, 5, 5, 5, 4, 4, 4, 5, 5, 2, 2, 2, 2, 2, 2, 2, 2, 7, 7,…
## $ bty_f1upper <int> 7, 7, 7, 7, 4, 4, 4, 2, 2, 5, 5, 5, 5, 5, 5, 5, 5, 9, 9,…
## $ bty_f2upper <int> 6, 6, 6, 6, 2, 2, 2, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 9, 9,…
## $ bty_m1lower <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 7, 7,…
## $ bty_m1upper <int> 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 6, 6,…
## $ bty_m2upper <int> 6, 6, 6, 6, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 6, 6,…
## $ bty_avg <dbl> 5.000, 5.000, 5.000, 5.000, 3.000, 3.000, 3.000, 3.333, …
## $ pic_outfit <fct> not formal, not formal, not formal, not formal, not form…
## $ pic_color <fct> color, color, color, color, color, color, color, color, …
We have observations on 21 different variables, some categorical and some numerical. The meaning of each variable can be found by bringing up the help file:
Answer: this is an observational study. The current question is pedantic and not well suited. I would rephrase it as, “Is there a positive and statistically significant correlation between rated beauty of professors and students overall course evaluations for them?
score
. Is the distribution
skewed? What does that tell you about how students rate courses? Is this
what you expected to see? Why, or why not?Answer: this data has a left skew, with a tail that extends down and out gradually. I’m surprised the scores cluster so close to the top of the scale. Student evaluations are most likely positively correlated with the overall grade in the class. There’s generally a lot of grade inflation in academia so there also being ratings inflation doesn’t surprise me.
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.300 3.800 4.300 4.175 4.600 5.000
ggplot(evals, aes(x = score)) +
geom_histogram(binwidth = 0.2, fill = "pink", color = "skyblue") +
labs(title = "Course evaluation scores", x = "Score", y = "Frequency")
score
, select two other variables and
describe their relationship with each other using an appropriate
visualization.ggplot(evals, aes(x = cls_level, y = bty_avg, fill = cls_level)) +
geom_boxplot() +
labs(title = "Evaulating classs level and average beauty score",
x = "Class level", y = "Beauty")
The fundamental phenomenon suggested by the study is that better looking teachers are evaluated more favorably. Let’s create a scatterplot to see if this appears to be the case:
Before you draw conclusions about the trend, compare the number of observations in the data frame with the approximate number of points on the scatterplot. Is anything awry?
geom_jitter
as your layer. What was misleading about the initial scatterplot?Answer: the initial plot had everything neatly organied, almost as if it didn’t want aknowledge any other pattern. This new chart allows for some of the messiness in the data to come through better.
m_bty
to
predict average professor score by average beauty rating. Write out the
equation for the linear model and interpret the slope. Is average beauty
score a statistically significant predictor? Does it appear to be a
practically significant predictor?Answer: y = b0 + b1x y = 3.88034 + 0.06664(bty_avg)
Add the line of the bet fit model to your plot using the following:
m_bty <- lm(score ~ bty_avg, data = evals)
ggplot(data = evals, aes(x = bty_avg, y = score)) +
geom_jitter() +
geom_smooth(method = "lm")
The blue line is the model. The shaded gray area around the line
tells you about the variability you might expect in your predictions. To
turn that off, use se = FALSE
.
ggplot(data = evals, aes(x = bty_avg, y = score)) +
geom_jitter() +
geom_smooth(method = "lm", se = FALSE)
Answer: the residuals aren’t pretty widely scatered around, with only a weak connection to the zero line.
Residuals <- resid(m_bty)
plot(x = fitted(m_bty), y = Residuals,
xlab = "fitted values", ylab = "residuals",
main = "Residuals vs fitted values")
abline(h = 0, col = "skyblue")
The data set contains several variables on the beauty score of the professor: individual ratings from each of the six students who were asked to score the physical appearance of the professors and the average of these six scores. Let’s take a look at the relationship between one of these scores and the average beauty score.
## # A tibble: 1 Ă— 1
## `cor(bty_avg, bty_f1lower)`
## <dbl>
## 1 0.844
As expected, the relationship is quite strong—after all, the average score is calculated using the individual scores. You can actually look at the relationships between all beauty variables (columns 13 through 19) using the following command:
These variables are collinear (correlated), and adding more than one of these variables to the model would not add much value to the model. In this application and with these highly-correlated predictors, it is reasonable to use the average beauty score as the single representative of these variables.
In order to see if beauty is still a significant predictor of professor score after you’ve accounted for the professor’s gender, you can add the gender term into the model.
##
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8305 -0.3625 0.1055 0.4213 0.9314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.74734 0.08466 44.266 < 2e-16 ***
## bty_avg 0.07416 0.01625 4.563 6.48e-06 ***
## gendermale 0.17239 0.05022 3.433 0.000652 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared: 0.05912, Adjusted R-squared: 0.05503
## F-statistic: 14.45 on 2 and 460 DF, p-value: 8.177e-07
Answer: this data is chaotic and less reasonable than reasonable, suggesting the conditions for the regression are unreasonable.
bty_avg
still a significant predictor of
score
? Has the addition of gender
to the model
changed the parameter estimate for bty_avg
?Answer: Adding gender to the model significantly changes the
coefficient and its significance, showing that the relationship between
bty_avg
and score is influenced by gender. R represents a
categorical variable like gender with two categories as a binary
variable, where female professors are coded as 0 and male professors as
1.
##
## Call:
## lm(formula = score ~ bty_avg, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9246 -0.3690 0.1420 0.3977 0.9309
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.88034 0.07614 50.96 < 2e-16 ***
## bty_avg 0.06664 0.01629 4.09 5.08e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5348 on 461 degrees of freedom
## Multiple R-squared: 0.03502, Adjusted R-squared: 0.03293
## F-statistic: 16.73 on 1 and 461 DF, p-value: 5.083e-05
##
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8305 -0.3625 0.1055 0.4213 0.9314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.74734 0.08466 44.266 < 2e-16 ***
## bty_avg 0.07416 0.01625 4.563 6.48e-06 ***
## gendermale 0.17239 0.05022 3.433 0.000652 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared: 0.05912, Adjusted R-squared: 0.05503
## F-statistic: 14.45 on 2 and 460 DF, p-value: 8.177e-07
Note that the estimate for gender
is now called
gendermale
. You’ll see this name change whenever you
introduce a categorical variable. The reason is that R recodes
gender
from having the values of male
and
female
to being an indicator variable called
gendermale
that takes a value of \(0\) for female professors and a value of
\(1\) for male professors. (Such
variables are often referred to as “dummy” variables.)
As a result, for female professors, the parameter estimate is multiplied by zero, leaving the intercept and slope form familiar from simple regression.
\[ \begin{aligned} \widehat{score} &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg + \hat{\beta}_2 \times (0) \\ &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg\end{aligned} \]
ggplot(data = evals, aes(x = bty_avg, y = score, color = pic_color)) +
geom_smooth(method = "lm", formula = y ~ x, se = FALSE)
Answer:
\[ \hat{\text{score}} = 3.7434 + 0.07416 \times \text{bty\_avg} + 0.17239 \times (\text{gendermale}) \\ = 3.7434 + 0.07416 \times \text{bty\_avg} + 0.17239 \]
The decision to call the indicator variable gendermale
instead of genderfemale
has no deeper meaning. R simply
codes the category that comes first alphabetically as a \(0\). (You can change the reference level of
a categorical variable, which is the level that is coded as a 0, using
therelevel()
function. Use ?relevel
to learn
more.)
m_bty_rank
with
gender
removed and rank
added in. How does R
appear to handle categorical variables that have more than two levels?
Note that the rank variable has three levels: teaching
,
tenure track
, tenured
.Answer:
R created additional dummy variables to help encode the bew categorical variable.
##
## Call:
## lm(formula = score ~ bty_avg + rank, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8713 -0.3642 0.1489 0.4103 0.9525
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.98155 0.09078 43.860 < 2e-16 ***
## bty_avg 0.06783 0.01655 4.098 4.92e-05 ***
## ranktenure track -0.16070 0.07395 -2.173 0.0303 *
## ranktenured -0.12623 0.06266 -2.014 0.0445 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5328 on 459 degrees of freedom
## Multiple R-squared: 0.04652, Adjusted R-squared: 0.04029
## F-statistic: 7.465 on 3 and 459 DF, p-value: 6.88e-05
The interpretation of the coefficients in multiple regression is
slightly different from that of simple regression. The estimate for
bty_avg
reflects how much higher a group of professors is
expected to score if they have a beauty rating that is one point higher
while holding all other variables constant. In this case, that
translates into considering only professors of the same rank with
bty_avg
scores that are one point apart.
We will start with a full model that predicts professor score based on rank, gender, ethnicity, language of the university where they got their degree, age, proportion of students that filled out evaluations, class size, course level, number of professors, number of credits, average beauty rating, outfit, and picture color.
Answer: cls_profssingle
has the highest p-value, coming
in at 0.778
linear_r <- lm(score ~ rank + gender + ethnicity + language + age + cls_perc_eval
+ cls_students + cls_level + cls_profs + cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(linear_r)
##
## Call:
## lm(formula = score ~ rank + gender + ethnicity + language + age +
## cls_perc_eval + cls_students + cls_level + cls_profs + cls_credits +
## bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.77397 -0.32432 0.09067 0.35183 0.95036
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0952141 0.2905277 14.096 < 2e-16 ***
## ranktenure track -0.1475932 0.0820671 -1.798 0.07278 .
## ranktenured -0.0973378 0.0663296 -1.467 0.14295
## gendermale 0.2109481 0.0518230 4.071 5.54e-05 ***
## ethnicitynot minority 0.1234929 0.0786273 1.571 0.11698
## languagenon-english -0.2298112 0.1113754 -2.063 0.03965 *
## age -0.0090072 0.0031359 -2.872 0.00427 **
## cls_perc_eval 0.0053272 0.0015393 3.461 0.00059 ***
## cls_students 0.0004546 0.0003774 1.205 0.22896
## cls_levelupper 0.0605140 0.0575617 1.051 0.29369
## cls_profssingle -0.0146619 0.0519885 -0.282 0.77806
## cls_creditsone credit 0.5020432 0.1159388 4.330 1.84e-05 ***
## bty_avg 0.0400333 0.0175064 2.287 0.02267 *
## pic_outfitnot formal -0.1126817 0.0738800 -1.525 0.12792
## pic_colorcolor -0.2172630 0.0715021 -3.039 0.00252 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.498 on 448 degrees of freedom
## Multiple R-squared: 0.1871, Adjusted R-squared: 0.1617
## F-statistic: 7.366 on 14 and 448 DF, p-value: 6.552e-14
Let’s run the model…
m_full <- lm(score ~ rank + gender + ethnicity + language + age + cls_perc_eval
+ cls_students + cls_level + cls_profs + cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(m_full)
##
## Call:
## lm(formula = score ~ rank + gender + ethnicity + language + age +
## cls_perc_eval + cls_students + cls_level + cls_profs + cls_credits +
## bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.77397 -0.32432 0.09067 0.35183 0.95036
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0952141 0.2905277 14.096 < 2e-16 ***
## ranktenure track -0.1475932 0.0820671 -1.798 0.07278 .
## ranktenured -0.0973378 0.0663296 -1.467 0.14295
## gendermale 0.2109481 0.0518230 4.071 5.54e-05 ***
## ethnicitynot minority 0.1234929 0.0786273 1.571 0.11698
## languagenon-english -0.2298112 0.1113754 -2.063 0.03965 *
## age -0.0090072 0.0031359 -2.872 0.00427 **
## cls_perc_eval 0.0053272 0.0015393 3.461 0.00059 ***
## cls_students 0.0004546 0.0003774 1.205 0.22896
## cls_levelupper 0.0605140 0.0575617 1.051 0.29369
## cls_profssingle -0.0146619 0.0519885 -0.282 0.77806
## cls_creditsone credit 0.5020432 0.1159388 4.330 1.84e-05 ***
## bty_avg 0.0400333 0.0175064 2.287 0.02267 *
## pic_outfitnot formal -0.1126817 0.0738800 -1.525 0.12792
## pic_colorcolor -0.2172630 0.0715021 -3.039 0.00252 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.498 on 448 degrees of freedom
## Multiple R-squared: 0.1871, Adjusted R-squared: 0.1617
## F-statistic: 7.366 on 14 and 448 DF, p-value: 6.552e-14
See above.
Answer: The coefficient for a particular ethnicity, such as African American, is 0.1235. This means that, compared to the reference ethnicity, professors of this ethnicity are estimated to have a score about 0.1235 units higher on average, assuming all other variables are constant.
##
## Call:
## lm(formula = score ~ rank + gender + ethnicity + language + age +
## cls_perc_eval + cls_students + cls_level + cls_credits +
## bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7836 -0.3257 0.0859 0.3513 0.9551
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0872523 0.2888562 14.150 < 2e-16 ***
## ranktenure track -0.1476746 0.0819824 -1.801 0.072327 .
## ranktenured -0.0973829 0.0662614 -1.470 0.142349
## gendermale 0.2101231 0.0516873 4.065 5.66e-05 ***
## ethnicitynot minority 0.1274458 0.0772887 1.649 0.099856 .
## languagenon-english -0.2282894 0.1111305 -2.054 0.040530 *
## age -0.0089992 0.0031326 -2.873 0.004262 **
## cls_perc_eval 0.0052888 0.0015317 3.453 0.000607 ***
## cls_students 0.0004687 0.0003737 1.254 0.210384
## cls_levelupper 0.0606374 0.0575010 1.055 0.292200
## cls_creditsone credit 0.5061196 0.1149163 4.404 1.33e-05 ***
## bty_avg 0.0398629 0.0174780 2.281 0.023032 *
## pic_outfitnot formal -0.1083227 0.0721711 -1.501 0.134080
## pic_colorcolor -0.2190527 0.0711469 -3.079 0.002205 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4974 on 449 degrees of freedom
## Multiple R-squared: 0.187, Adjusted R-squared: 0.1634
## F-statistic: 7.943 on 13 and 449 DF, p-value: 2.336e-14
Answer:
## Start: AIC=-630.9
## score ~ rank + gender + ethnicity + language + age + cls_perc_eval +
## cls_students + cls_level + cls_profs + cls_credits + bty_avg +
## pic_outfit + pic_color
##
## Df Sum of Sq RSS AIC
## - cls_profs 1 0.0197 111.11 -632.82
## - cls_level 1 0.2740 111.36 -631.76
## - cls_students 1 0.3599 111.44 -631.40
## - rank 2 0.8930 111.98 -631.19
## <none> 111.08 -630.90
## - pic_outfit 1 0.5768 111.66 -630.50
## - ethnicity 1 0.6117 111.70 -630.36
## - language 1 1.0557 112.14 -628.52
## - bty_avg 1 1.2967 112.38 -627.53
## - age 1 2.0456 113.13 -624.45
## - pic_color 1 2.2893 113.37 -623.46
## - cls_perc_eval 1 2.9698 114.06 -620.69
## - gender 1 4.1085 115.19 -616.09
## - cls_credits 1 4.6495 115.73 -613.92
##
## Step: AIC=-632.82
## score ~ rank + gender + ethnicity + language + age + cls_perc_eval +
## cls_students + cls_level + cls_credits + bty_avg + pic_outfit +
## pic_color
##
## Df Sum of Sq RSS AIC
## - cls_level 1 0.2752 111.38 -633.67
## - cls_students 1 0.3893 111.49 -633.20
## - rank 2 0.8939 112.00 -633.11
## <none> 111.11 -632.82
## - pic_outfit 1 0.5574 111.66 -632.50
## - ethnicity 1 0.6728 111.78 -632.02
## - language 1 1.0442 112.15 -630.49
## - bty_avg 1 1.2872 112.39 -629.49
## - age 1 2.0422 113.15 -626.39
## - pic_color 1 2.3457 113.45 -625.15
## - cls_perc_eval 1 2.9502 114.06 -622.69
## - gender 1 4.0895 115.19 -618.08
## - cls_credits 1 4.7999 115.90 -615.24
##
## Step: AIC=-633.67
## score ~ rank + gender + ethnicity + language + age + cls_perc_eval +
## cls_students + cls_credits + bty_avg + pic_outfit + pic_color
##
## Df Sum of Sq RSS AIC
## - cls_students 1 0.2459 111.63 -634.65
## - rank 2 0.8140 112.19 -634.30
## <none> 111.38 -633.67
## - pic_outfit 1 0.6618 112.04 -632.93
## - ethnicity 1 0.8698 112.25 -632.07
## - language 1 0.9015 112.28 -631.94
## - bty_avg 1 1.3694 112.75 -630.02
## - age 1 1.9342 113.31 -627.70
## - pic_color 1 2.0777 113.46 -627.12
## - cls_perc_eval 1 3.0290 114.41 -623.25
## - gender 1 3.8989 115.28 -619.74
## - cls_credits 1 4.5296 115.91 -617.22
##
## Step: AIC=-634.65
## score ~ rank + gender + ethnicity + language + age + cls_perc_eval +
## cls_credits + bty_avg + pic_outfit + pic_color
##
## Df Sum of Sq RSS AIC
## - rank 2 0.7892 112.42 -635.39
## <none> 111.63 -634.65
## - ethnicity 1 0.8832 112.51 -633.00
## - pic_outfit 1 0.9700 112.60 -632.65
## - language 1 1.0338 112.66 -632.38
## - bty_avg 1 1.5783 113.20 -630.15
## - pic_color 1 1.9477 113.57 -628.64
## - age 1 2.1163 113.74 -627.96
## - cls_perc_eval 1 2.7922 114.42 -625.21
## - gender 1 4.0945 115.72 -619.97
## - cls_credits 1 4.5163 116.14 -618.29
##
## Step: AIC=-635.39
## score ~ gender + ethnicity + language + age + cls_perc_eval +
## cls_credits + bty_avg + pic_outfit + pic_color
##
## Df Sum of Sq RSS AIC
## <none> 112.42 -635.39
## - pic_outfit 1 0.7141 113.13 -634.46
## - ethnicity 1 1.1790 113.59 -632.56
## - language 1 1.3403 113.75 -631.90
## - age 1 1.6847 114.10 -630.50
## - pic_color 1 1.7841 114.20 -630.10
## - bty_avg 1 1.8553 114.27 -629.81
## - cls_perc_eval 1 2.9147 115.33 -625.54
## - gender 1 4.0577 116.47 -620.97
## - cls_credits 1 6.1208 118.54 -612.84
##
## Call:
## lm(formula = score ~ gender + ethnicity + language + age + cls_perc_eval +
## cls_credits + bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8455 -0.3221 0.1013 0.3745 0.9051
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.907030 0.244889 15.954 < 2e-16 ***
## gendermale 0.202597 0.050102 4.044 6.18e-05 ***
## ethnicitynot minority 0.163818 0.075158 2.180 0.029798 *
## languagenon-english -0.246683 0.106146 -2.324 0.020567 *
## age -0.006925 0.002658 -2.606 0.009475 **
## cls_perc_eval 0.004942 0.001442 3.427 0.000666 ***
## cls_creditsone credit 0.517205 0.104141 4.966 9.68e-07 ***
## bty_avg 0.046732 0.017091 2.734 0.006497 **
## pic_outfitnot formal -0.113939 0.067168 -1.696 0.090510 .
## pic_colorcolor -0.180870 0.067456 -2.681 0.007601 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4982 on 453 degrees of freedom
## Multiple R-squared: 0.1774, Adjusted R-squared: 0.161
## F-statistic: 10.85 on 9 and 453 DF, p-value: 2.441e-15
Model equation: \[ \hat{\text{score}} = \hat{\beta}_0 + \hat{\beta}_1 \times \text{gendermale} + \hat{\beta}_2 \times \text{ethnicitynot minority} + \hat{\beta}_3 \times \text{languagenon-english} + \hat{\beta}_4 \times \text{age} + \hat{\beta}_5 \times \text{cls\_perc\_eval} + \hat{\beta}_6 \times \text{cls\_reditsone\_credit} + \hat{\beta}_7 \times \text{bty\_avg} + \hat{\beta}_8 \times \text{pic\_outfitnot formal} + \hat{\beta}_9 \times \text{pic\_colorcolor} \]
Answer:
Answer: Student evaluations are most heavily influenced by their academic performance in the course, which manifests as grade inflation. Until this relationship can be established or controlled for, the rest of this data is more interesting than statistically useful.
Answer: The interpretation of these characteristics depends on the
values and coefficients from final_model
, including factors
like ethnicity, gender, language of instruction, age, class size,
average beauty ratings, and picture attributes. Each of these variables
affects the score, holding all else equal.
Answer: This observational dataset comes from a single university, so
it may not capture the diversity of professors and courses across all
institutions, which could limit the generalizability of findings. That
said, professors’ appearance or perceived attractiveness, similar to the
bty_avg
variable in the evals
dataset, tends
to be a major factor in student evaluation scores.