… some short words …
Needed libraries and data:
library(dplyr)
library(reshape2)
library(ggplot2)
attach("data/fjolst.RData")
… some short words …
Selected years (posterior selection)
Issues:
years <-
expand.grid(year = c(1932,1945,1949,1961,1968,1971,1974,1979,1983,
1986,1989,1992,1996,2000,2005,2010,2014,1927),
species.id = 1,
season = "feeding",
stringsAsFactors = FALSE) %>%
bind_rows(expand.grid(year = c(1932,1941, 1961,1968,1971,1979,1983,1986,1989,
1992,1996,2000,2005,2010,2014),
species.id = 1,
season = "spawning",
stringsAsFactors = FALSE)) %>%
bind_rows(expand.grid(year = c(1971,1979,1989,1992,1996,2000,2005,2010,2014,1982),
species.id = 3,
season = "spawning",
stringsAsFactors = FALSE)) %>%
bind_rows(expand.grid(year = c(1983,1986,1996,2000,2005,2010,2014,1980),
species.id = 5,
season = "spawning",
stringsAsFactors = FALSE)) %>%
bind_rows(expand.grid(year = c(1960,1971,1074,1996, 2000,2005,2010,2014),
species.id = 23,
season = "feeding",
stringsAsFactors = FALSE)) %>%
mutate(selected = TRUE)
Subselection:
d <- Fish %>%
filter(species.id %in% c(1, 3, 5, 23),
!is.na(age),
length %in% c(30:74)) %>%
inner_join(Station %>%
filter(year %in% 1920:2014) %>%
select(synis.id, year, month, square, gear.id, sample.class)) %>%
mutate(season = ifelse(month %in% 3:5, "spawning","feeding")) %>%
left_join(years) %>%
mutate(selected = ifelse(is.na(selected), FALSE, selected))
Selected seasons and squares (species dependent): (NO LONGER NEEDED)
d <-
d %>%
filter(( species.id == 1 & season == "spawning" & length %in% 65:74 & square %in% c(370:372)) |
(species.id == 1 & season == "feeding" & length %in% 65:74 & square %in% c(673,674)) |
(species.id == 3 & season == "spawning" & length %in% 65:74 & square %in% c(323,324)) |
(species.id == 5 & season == "spawning" & length %in% 30:39 & square %in% c(323,324)) |
(species.id == 23 & season == "feeding" & length %in% 40:49 & square %in% c(623,624))
)
d %>%
group_by(year, selected, season, species.id) %>%
summarise(n = 1) %>%
ggplot(aes(year, n, colour = selected)) +
geom_point() +
facet_wrap(~ species.id + season , scale = "free_y", ncol = 1) +
scale_colour_brewer(palette = "Set1")
species <- data_frame(species.id = c(1, 3, 5, 23),
species = c("Cod", "Saithe", "Golden redfish", "Plaice"))
tmp <-
d %>%
group_by(species.id, year, selected, season) %>%
summarise(n = n()) %>%
ungroup()
tmp %>%
filter(species.id == 1) %>%
ggplot(aes(year, n, colour = selected)) +
geom_hline(yintercept = 7, colour = "grey") +
geom_point() +
theme_bw() +
facet_grid(season ~ ., scale = "free_y") +
scale_colour_brewer(palette = "Set1") +
theme(legend.position = c(0.2, 0.8)) +
labs(x = NULL,
y = "Number of otoliths",
title = "Cod",
colour = "Years sampled") +
expand_limits(x = c(1925,2015), y = 0) +
scale_x_continuous(breaks = seq(1930, 2015, by = 10))
tmp %>%
filter(species.id == 3) %>%
ggplot(aes(year, n, colour = selected)) +
geom_hline(yintercept = 7, colour = "grey") +
geom_point() +
theme_bw() +
facet_grid(season ~ ., scale = "free_y") +
scale_colour_brewer(palette = "Set1") +
theme(legend.position = c(0.2, 0.8)) +
labs(x = NULL,
y = "Number of otoliths",
title = "Saithe",
colour = "Years sampled") +
expand_limits(x = c(1925,2015), y = 0) +
scale_x_continuous(breaks = seq(1930, 2015, by = 10))
tmp %>%
filter(species.id == 5) %>%
ggplot(aes(year, n, colour = selected)) +
geom_hline(yintercept = 7, colour = "grey") +
geom_point() +
theme_bw() +
facet_grid(season ~ ., scale = "free_y") +
scale_colour_brewer(palette = "Set1") +
theme(legend.position = c(0.2, 0.8)) +
labs(x = NULL,
y = "Number of otoliths",
title = "Golden redfish",
colour = "Years sampled") +
expand_limits(x = c(1925,2015), y = 0) +
scale_x_continuous(breaks = seq(1930, 2015, by = 10))
tmp %>%
filter(species.id == 23) %>%
ggplot(aes(year, n, colour = selected)) +
geom_hline(yintercept = 7, colour = "grey") +
geom_point() +
theme_bw() +
facet_grid(season ~ ., scale = "free_y") +
scale_colour_brewer(palette = "Set1") +
theme(legend.position = c(0.2, 0.8)) +
labs(x = NULL,
y = "Number of otoliths",
title = "Plaice",
colour = "Years sampled") +
expand_limits(x = c(1925,2015), y = 0) +
scale_x_continuous(breaks = seq(1930, 2015, by = 10))
samples <-
d %>%
filter(selected == TRUE) %>%
select(species.id, year, season, synis.id, nr, age, length, square) %>%
group_by(year, species.id, season) %>%
sample_n(size = 7, replace = FALSE) %>%
ungroup() %>%
arrange(year, season, species.id, synis.id, nr)
write.csv(sample, file = "data/sampled.cvs")
library(DT)
datatable(samples)