1. Choosing My Primary IDE: VSCode with CUDA and Remote Development
Support
- Why I Chose It: VSCode is versatile, lightweight,
and I can easily customize it for heavy GPU development. It handles both
Python and C++ well, so it’s perfect for my projects that use
GPU-accelerated libraries.
- Key Benefits:
- Remote Development Support: VSCode makes it simple
to work on remote GPU machines, which helps if I want to scale my
projects or work with cloud GPUs.
- CUDA Extensions: Installing the C++ and
NVIDIA CUDA extensions allows me to dive into low-level GPU
programming.
- Python and Jupyter Extensions: For Python, VSCode
has extensions for Python, Jupyter,
and TensorFlow that ensure full GPU support for deep
learning tasks.
- Best For: This setup is ideal for Python-based deep
learning (e.g., TensorFlow, PyTorch) and low-level GPU programming in
CUDA and C++.
2. Setting Up Deep Learning Frameworks
- For deep learning, I rely on frameworks that can fully leverage the
GPU. My top choices:
- TensorFlow and PyTorch: Both offer excellent GPU
support. PyTorch is great for flexibility and debugging, while
TensorFlow shines in production-level deployment.
- Installation Steps: I install CUDA and cuDNN
(NVIDIA’s libraries for GPU support), and then set up my Python
environment for deep learning.
- VSCode Setup:
- I use the Python extension.
- Then, I set up a Python environment (like Miniforge or Conda) with
TensorFlow or PyTorch.
- Adding Jupyter provides interactive notebook
support.
3. Using JupyterLab or Jupyter Notebooks for Interactive Work
- Why I Use It: JupyterLab is perfect for
interactive, exploratory work, common in data science and machine
learning. It lets me work with code in cells, visualize data, and handle
large datasets directly on the GPU.
- Installation:
- I install JupyterLab in my Python environment.
- Then, I confirm GPU support by testing
torch.cuda.is_available()
(for PyTorch) or
tf.config.list_physical_devices('GPU')
(for
TensorFlow).
- Best For: Experimenting with data, training models,
quick tests, and visualization.
4. NVIDIA RAPIDS for GPU-Accelerated Data Science
- Why: RAPIDS, a suite of libraries from NVIDIA,
powers end-to-end data science pipelines on the GPU. Libraries like
cuDF (Pandas-like DataFrame on GPU),
cuML (GPU-accelerated machine learning), and
cuGraph enable a fully GPU-accelerated workflow.
- Installation: I use Conda or Docker to install
RAPIDS, with NVIDIA recommending Conda for ease of setup.
- Best For: This is ideal for data preprocessing,
analysis, and tasks traditionally CPU-bound (like using Pandas or
scikit-learn).
5. NVIDIA Nsight for Profiling and Debugging
- Why: NVIDIA Nsight is invaluable for profiling and
debugging GPU-accelerated applications, especially with CUDA
programming.
- Installation: I download NVIDIA Nsight from the
developer tools site. It’s compatible with both C++/CUDA applications on
NVIDIA GPUs.
- Best For: Profiling performance, monitoring memory
usage, and optimizing CUDA code to maximize GPU utilization.
6. Docker with NVIDIA Docker for Containerized GPU Workloads
- Why: Docker lets me containerize applications,
making reproducibility and dependency management straightforward.
- Installation: I set up Docker along with the NVIDIA
Docker toolkit, allowing me to pull pre-configured Docker images with
GPU support (like TensorFlow, PyTorch, and RAPIDS).
- Best For: This setup is useful for managing
environments, reproducibility, and deploying projects with specific
dependencies in deep learning or data science.
My Suggested Workflow
- Install CUDA and cuDNN:
- I ensure CUDA and cuDNN are installed and configured correctly.
These libraries are essential for running deep learning frameworks on
NVIDIA GPUs.
- Select My Primary IDE:
- I go with VSCode for a flexible, high-performance
setup across Python and C++ with full GPU support.
- I set up Python environments with TensorFlow or PyTorch in VSCode
for deep learning.
- For C++ and CUDA, I install the C++ and CUDA extensions to handle
low-level GPU programming.
- Use JupyterLab for Interactive Work:
- I keep JupyterLab alongside VSCode to prototype or visualize data,
accessing the same Python environment with GPU capabilities.
- Install RAPIDS for Accelerated Data Science:
- I add the RAPIDS libraries when working with large datasets or tasks
that benefit from GPU acceleration.
- Use NVIDIA Nsight for Profiling (Optional):
- When I need to work directly with CUDA or optimize code, NVIDIA
Nsight is my go-to tool for profiling and debugging at the GPU
level.
Final Recommendation
For a powerful, GPU-focused workflow, VSCode with
TensorFlow/PyTorch, RAPIDS, and
JupyterLab gives me flexibility and GPU acceleration
for machine learning and data science. These tools also provide support
for remote development if I decide to connect to additional GPU
resources down the road.
LS0tDQp0aXRsZTogIkdQVSBTZXR1cCINCmF1dGhvcjogIkplc3NpY2EgTWNQaHVhbCIgIA0Kb3V0cHV0OiBodG1sX25vdGVib29rDQplZGl0b3Jfb3B0aW9uczogDQogIG1hcmtkb3duOiANCiAgICB3cmFwOiA3Mg0KLS0tDQoNCiMjIyAxLiBDaG9vc2luZyBNeSBQcmltYXJ5IElERTogVlNDb2RlIHdpdGggQ1VEQSBhbmQgUmVtb3RlIERldmVsb3BtZW50IFN1cHBvcnQNCiAgIC0gKipXaHkgSSBDaG9zZSBJdCoqOiBWU0NvZGUgaXMgdmVyc2F0aWxlLCBsaWdodHdlaWdodCwgYW5kIEkgY2FuIGVhc2lseSBjdXN0b21pemUgaXQgZm9yIGhlYXZ5IEdQVSBkZXZlbG9wbWVudC4gSXQgaGFuZGxlcyBib3RoIFB5dGhvbiBhbmQgQysrIHdlbGwsIHNvIGl04oCZcyBwZXJmZWN0IGZvciBteSBwcm9qZWN0cyB0aGF0IHVzZSBHUFUtYWNjZWxlcmF0ZWQgbGlicmFyaWVzLg0KICAgLSAqKktleSBCZW5lZml0cyoqOg0KICAgICAtICoqUmVtb3RlIERldmVsb3BtZW50IFN1cHBvcnQqKjogVlNDb2RlIG1ha2VzIGl0IHNpbXBsZSB0byB3b3JrIG9uIHJlbW90ZSBHUFUgbWFjaGluZXMsIHdoaWNoIGhlbHBzIGlmIEkgd2FudCB0byBzY2FsZSBteSBwcm9qZWN0cyBvciB3b3JrIHdpdGggY2xvdWQgR1BVcy4NCiAgICAgLSAqKkNVREEgRXh0ZW5zaW9ucyoqOiBJbnN0YWxsaW5nIHRoZSAqKkMrKyBhbmQgTlZJRElBIENVREEgZXh0ZW5zaW9ucyoqIGFsbG93cyBtZSB0byBkaXZlIGludG8gbG93LWxldmVsIEdQVSBwcm9ncmFtbWluZy4NCiAgICAgLSAqKlB5dGhvbiBhbmQgSnVweXRlciBFeHRlbnNpb25zKio6IEZvciBQeXRob24sIFZTQ29kZSBoYXMgZXh0ZW5zaW9ucyBmb3IgKipQeXRob24qKiwgKipKdXB5dGVyKiosIGFuZCAqKlRlbnNvckZsb3cqKiB0aGF0IGVuc3VyZSBmdWxsIEdQVSBzdXBwb3J0IGZvciBkZWVwIGxlYXJuaW5nIHRhc2tzLg0KDQogICAtICoqQmVzdCBGb3IqKjogVGhpcyBzZXR1cCBpcyBpZGVhbCBmb3IgUHl0aG9uLWJhc2VkIGRlZXAgbGVhcm5pbmcgKGUuZy4sIFRlbnNvckZsb3csIFB5VG9yY2gpIGFuZCBsb3ctbGV2ZWwgR1BVIHByb2dyYW1taW5nIGluIENVREEgYW5kIEMrKy4NCg0KIyMjIDIuIFNldHRpbmcgVXAgRGVlcCBMZWFybmluZyBGcmFtZXdvcmtzDQogICAtIEZvciBkZWVwIGxlYXJuaW5nLCBJIHJlbHkgb24gZnJhbWV3b3JrcyB0aGF0IGNhbiBmdWxseSBsZXZlcmFnZSB0aGUgR1BVLiBNeSB0b3AgY2hvaWNlczoNCiAgICAgLSAqKlRlbnNvckZsb3cgYW5kIFB5VG9yY2gqKjogQm90aCBvZmZlciBleGNlbGxlbnQgR1BVIHN1cHBvcnQuIFB5VG9yY2ggaXMgZ3JlYXQgZm9yIGZsZXhpYmlsaXR5IGFuZCBkZWJ1Z2dpbmcsIHdoaWxlIFRlbnNvckZsb3cgc2hpbmVzIGluIHByb2R1Y3Rpb24tbGV2ZWwgZGVwbG95bWVudC4NCiAgICAgLSAqKkluc3RhbGxhdGlvbiBTdGVwcyoqOiBJIGluc3RhbGwgQ1VEQSBhbmQgY3VETk4gKE5WSURJQeKAmXMgbGlicmFyaWVzIGZvciBHUFUgc3VwcG9ydCksIGFuZCB0aGVuIHNldCB1cCBteSBQeXRob24gZW52aXJvbm1lbnQgZm9yIGRlZXAgbGVhcm5pbmcuDQogICAgIC0gKipWU0NvZGUgU2V0dXAqKjoNCiAgICAgICAtIEkgdXNlIHRoZSAqKlB5dGhvbioqIGV4dGVuc2lvbi4NCiAgICAgICAtIFRoZW4sIEkgc2V0IHVwIGEgUHl0aG9uIGVudmlyb25tZW50IChsaWtlIE1pbmlmb3JnZSBvciBDb25kYSkgd2l0aCBUZW5zb3JGbG93IG9yIFB5VG9yY2guDQogICAgICAgLSBBZGRpbmcgKipKdXB5dGVyKiogcHJvdmlkZXMgaW50ZXJhY3RpdmUgbm90ZWJvb2sgc3VwcG9ydC4NCg0KIyMjIDMuIFVzaW5nIEp1cHl0ZXJMYWIgb3IgSnVweXRlciBOb3RlYm9va3MgZm9yIEludGVyYWN0aXZlIFdvcmsNCiAgIC0gKipXaHkgSSBVc2UgSXQqKjogSnVweXRlckxhYiBpcyBwZXJmZWN0IGZvciBpbnRlcmFjdGl2ZSwgZXhwbG9yYXRvcnkgd29yaywgY29tbW9uIGluIGRhdGEgc2NpZW5jZSBhbmQgbWFjaGluZSBsZWFybmluZy4gSXQgbGV0cyBtZSB3b3JrIHdpdGggY29kZSBpbiBjZWxscywgdmlzdWFsaXplIGRhdGEsIGFuZCBoYW5kbGUgbGFyZ2UgZGF0YXNldHMgZGlyZWN0bHkgb24gdGhlIEdQVS4NCiAgIC0gKipJbnN0YWxsYXRpb24qKjoNCiAgICAgLSBJIGluc3RhbGwgKipKdXB5dGVyTGFiKiogaW4gbXkgUHl0aG9uIGVudmlyb25tZW50Lg0KICAgICAtIFRoZW4sIEkgY29uZmlybSBHUFUgc3VwcG9ydCBieSB0ZXN0aW5nIGB0b3JjaC5jdWRhLmlzX2F2YWlsYWJsZSgpYCAoZm9yIFB5VG9yY2gpIG9yIGB0Zi5jb25maWcubGlzdF9waHlzaWNhbF9kZXZpY2VzKCdHUFUnKWAgKGZvciBUZW5zb3JGbG93KS4NCiAgIC0gKipCZXN0IEZvcioqOiBFeHBlcmltZW50aW5nIHdpdGggZGF0YSwgdHJhaW5pbmcgbW9kZWxzLCBxdWljayB0ZXN0cywgYW5kIHZpc3VhbGl6YXRpb24uDQoNCiMjIyA0LiBOVklESUEgUkFQSURTIGZvciBHUFUtQWNjZWxlcmF0ZWQgRGF0YSBTY2llbmNlDQogICAtICoqV2h5Kio6IFJBUElEUywgYSBzdWl0ZSBvZiBsaWJyYXJpZXMgZnJvbSBOVklESUEsIHBvd2VycyBlbmQtdG8tZW5kIGRhdGEgc2NpZW5jZSBwaXBlbGluZXMgb24gdGhlIEdQVS4gTGlicmFyaWVzIGxpa2UgKipjdURGKiogKFBhbmRhcy1saWtlIERhdGFGcmFtZSBvbiBHUFUpLCAqKmN1TUwqKiAoR1BVLWFjY2VsZXJhdGVkIG1hY2hpbmUgbGVhcm5pbmcpLCBhbmQgKipjdUdyYXBoKiogZW5hYmxlIGEgZnVsbHkgR1BVLWFjY2VsZXJhdGVkIHdvcmtmbG93Lg0KICAgLSAqKkluc3RhbGxhdGlvbioqOiBJIHVzZSBDb25kYSBvciBEb2NrZXIgdG8gaW5zdGFsbCBSQVBJRFMsIHdpdGggTlZJRElBIHJlY29tbWVuZGluZyBDb25kYSBmb3IgZWFzZSBvZiBzZXR1cC4NCiAgIC0gKipCZXN0IEZvcioqOiBUaGlzIGlzIGlkZWFsIGZvciBkYXRhIHByZXByb2Nlc3NpbmcsIGFuYWx5c2lzLCBhbmQgdGFza3MgdHJhZGl0aW9uYWxseSBDUFUtYm91bmQgKGxpa2UgdXNpbmcgUGFuZGFzIG9yIHNjaWtpdC1sZWFybikuDQoNCiMjIyA1LiBOVklESUEgTnNpZ2h0IGZvciBQcm9maWxpbmcgYW5kIERlYnVnZ2luZw0KICAgLSAqKldoeSoqOiBOVklESUEgTnNpZ2h0IGlzIGludmFsdWFibGUgZm9yIHByb2ZpbGluZyBhbmQgZGVidWdnaW5nIEdQVS1hY2NlbGVyYXRlZCBhcHBsaWNhdGlvbnMsIGVzcGVjaWFsbHkgd2l0aCBDVURBIHByb2dyYW1taW5nLg0KICAgLSAqKkluc3RhbGxhdGlvbioqOiBJIGRvd25sb2FkIE5WSURJQSBOc2lnaHQgZnJvbSB0aGUgZGV2ZWxvcGVyIHRvb2xzIHNpdGUuIEl04oCZcyBjb21wYXRpYmxlIHdpdGggYm90aCBDKysvQ1VEQSBhcHBsaWNhdGlvbnMgb24gTlZJRElBIEdQVXMuDQogICAtICoqQmVzdCBGb3IqKjogUHJvZmlsaW5nIHBlcmZvcm1hbmNlLCBtb25pdG9yaW5nIG1lbW9yeSB1c2FnZSwgYW5kIG9wdGltaXppbmcgQ1VEQSBjb2RlIHRvIG1heGltaXplIEdQVSB1dGlsaXphdGlvbi4NCg0KIyMjIDYuIERvY2tlciB3aXRoIE5WSURJQSBEb2NrZXIgZm9yIENvbnRhaW5lcml6ZWQgR1BVIFdvcmtsb2Fkcw0KICAgLSAqKldoeSoqOiBEb2NrZXIgbGV0cyBtZSBjb250YWluZXJpemUgYXBwbGljYXRpb25zLCBtYWtpbmcgcmVwcm9kdWNpYmlsaXR5IGFuZCBkZXBlbmRlbmN5IG1hbmFnZW1lbnQgc3RyYWlnaHRmb3J3YXJkLg0KICAgLSAqKkluc3RhbGxhdGlvbioqOiBJIHNldCB1cCBEb2NrZXIgYWxvbmcgd2l0aCB0aGUgTlZJRElBIERvY2tlciB0b29sa2l0LCBhbGxvd2luZyBtZSB0byBwdWxsIHByZS1jb25maWd1cmVkIERvY2tlciBpbWFnZXMgd2l0aCBHUFUgc3VwcG9ydCAobGlrZSBUZW5zb3JGbG93LCBQeVRvcmNoLCBhbmQgUkFQSURTKS4NCiAgIC0gKipCZXN0IEZvcioqOiBUaGlzIHNldHVwIGlzIHVzZWZ1bCBmb3IgbWFuYWdpbmcgZW52aXJvbm1lbnRzLCByZXByb2R1Y2liaWxpdHksIGFuZCBkZXBsb3lpbmcgcHJvamVjdHMgd2l0aCBzcGVjaWZpYyBkZXBlbmRlbmNpZXMgaW4gZGVlcCBsZWFybmluZyBvciBkYXRhIHNjaWVuY2UuDQoNCiMjIyBNeSBTdWdnZXN0ZWQgV29ya2Zsb3cNCg0KMS4gKipJbnN0YWxsIENVREEgYW5kIGN1RE5OKio6DQogICAtIEkgZW5zdXJlIENVREEgYW5kIGN1RE5OIGFyZSBpbnN0YWxsZWQgYW5kIGNvbmZpZ3VyZWQgY29ycmVjdGx5LiBUaGVzZSBsaWJyYXJpZXMgYXJlIGVzc2VudGlhbCBmb3IgcnVubmluZyBkZWVwIGxlYXJuaW5nIGZyYW1ld29ya3Mgb24gTlZJRElBIEdQVXMuDQoNCjIuICoqU2VsZWN0IE15IFByaW1hcnkgSURFKio6DQogICAtIEkgZ28gd2l0aCAqKlZTQ29kZSoqIGZvciBhIGZsZXhpYmxlLCBoaWdoLXBlcmZvcm1hbmNlIHNldHVwIGFjcm9zcyBQeXRob24gYW5kIEMrKyB3aXRoIGZ1bGwgR1BVIHN1cHBvcnQuDQogICAtIEkgc2V0IHVwIFB5dGhvbiBlbnZpcm9ubWVudHMgd2l0aCBUZW5zb3JGbG93IG9yIFB5VG9yY2ggaW4gVlNDb2RlIGZvciBkZWVwIGxlYXJuaW5nLg0KICAgLSBGb3IgQysrIGFuZCBDVURBLCBJIGluc3RhbGwgdGhlIEMrKyBhbmQgQ1VEQSBleHRlbnNpb25zIHRvIGhhbmRsZSBsb3ctbGV2ZWwgR1BVIHByb2dyYW1taW5nLg0KDQozLiAqKlVzZSBKdXB5dGVyTGFiIGZvciBJbnRlcmFjdGl2ZSBXb3JrKio6DQogICAtIEkga2VlcCBKdXB5dGVyTGFiIGFsb25nc2lkZSBWU0NvZGUgdG8gcHJvdG90eXBlIG9yIHZpc3VhbGl6ZSBkYXRhLCBhY2Nlc3NpbmcgdGhlIHNhbWUgUHl0aG9uIGVudmlyb25tZW50IHdpdGggR1BVIGNhcGFiaWxpdGllcy4NCg0KNC4gKipJbnN0YWxsIFJBUElEUyBmb3IgQWNjZWxlcmF0ZWQgRGF0YSBTY2llbmNlKio6DQogICAtIEkgYWRkIHRoZSBSQVBJRFMgbGlicmFyaWVzIHdoZW4gd29ya2luZyB3aXRoIGxhcmdlIGRhdGFzZXRzIG9yIHRhc2tzIHRoYXQgYmVuZWZpdCBmcm9tIEdQVSBhY2NlbGVyYXRpb24uDQoNCjUuICoqVXNlIE5WSURJQSBOc2lnaHQgZm9yIFByb2ZpbGluZyAoT3B0aW9uYWwpKio6DQogICAtIFdoZW4gSSBuZWVkIHRvIHdvcmsgZGlyZWN0bHkgd2l0aCBDVURBIG9yIG9wdGltaXplIGNvZGUsIE5WSURJQSBOc2lnaHQgaXMgbXkgZ28tdG8gdG9vbCBmb3IgcHJvZmlsaW5nIGFuZCBkZWJ1Z2dpbmcgYXQgdGhlIEdQVSBsZXZlbC4NCg0KIyMjIEZpbmFsIFJlY29tbWVuZGF0aW9uDQpGb3IgYSBwb3dlcmZ1bCwgR1BVLWZvY3VzZWQgd29ya2Zsb3csICoqVlNDb2RlKiogd2l0aCAqKlRlbnNvckZsb3cvUHlUb3JjaCoqLCAqKlJBUElEUyoqLCBhbmQgKipKdXB5dGVyTGFiKiogZ2l2ZXMgbWUgZmxleGliaWxpdHkgYW5kIEdQVSBhY2NlbGVyYXRpb24gZm9yIG1hY2hpbmUgbGVhcm5pbmcgYW5kIGRhdGEgc2NpZW5jZS4gVGhlc2UgdG9vbHMgYWxzbyBwcm92aWRlIHN1cHBvcnQgZm9yIHJlbW90ZSBkZXZlbG9wbWVudCBpZiBJIGRlY2lkZSB0byBjb25uZWN0IHRvIGFkZGl0aW9uYWwgR1BVIHJlc291cmNlcyBkb3duIHRoZSByb2FkLg0K