This map shows county-level vote shifts by party for the 2016 and 2020 elections. In 2016, Trump beat Democratic nominee Hillary Clinton. In 2020, Trump lost to Democratic nominee Joe Biden.
This map shows county-level vote shifts by party for the 2020 and 2024 elections. In 2020, Trump lost to Democratic nominee Joe Biden. In 2024, Trump beat to Democratic nominee Kamala Harris.
# Required packages
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("mapview"))
install.packages("mapview")
if (!require("sf"))
install.packages("sf")
if (!require("leaflet"))
install.packages("leaflet")
if (!require("leaflet.extras2"))
install.packages("leaflet.extras2")
if (!require("plotly"))
install.packages("plotly")
if (!require("tidycensus"))
install.packages("tidycensus")
library(tidyverse)
library(mapview)
library(sf)
library(leaflet)
library(leafpop)
library(readxl)
library(plotly)
library(tidycensus)
census_api_key("b2e8a23fc464f596c54a776db4b502ad30cde5ca")
# Download and import election data
# from TN Secretary of State web site:
# https://sos.tn.gov/elections/results
# Get 2016 data
download.file(
"https://sos-tn-gov-files.s3.amazonaws.com/StateGeneralbyPrecinctNov2016.xlsx",
"RawElectionData2016.xlsx",
quiet = TRUE,
mode = "wb"
)
RawElectionData2016 <- read_xlsx("RawElectionData2016.xlsx")
# Filter, calculate, and select
# to get data of interest
# then store results in MyData dataframe
MyData2016 <- RawElectionData2016%>%
filter(OFFICENAME == "United States President",
CANDGROUP == "1") %>%
mutate(
Rep16 = PVTALLY1,
Dem16 = PVTALLY2,
Total16 = Rep16 + Dem16) %>%
select(COUNTY, PRECINCT, OFFICENAME, Rep16, Dem16, Total16)
CountyData2016 <- MyData2016 %>%
select(COUNTY, Rep16, Dem16, Total16) %>%
group_by(COUNTY) %>%
summarize(across(everything(), sum))
# Get 2020 data
download.file(
"https://sos-tn-gov-files.tnsosfiles.com/Nov2020PrecinctDetail.xlsx",
"RawElectionData2020.xlsx",
quiet = TRUE,
mode = "wb"
)
RawElectionData2020 <- read_xlsx("RawElectionData2020.xlsx", sheet = "SOFFICEL")
# Filter, calculate, and select
# to get data of interest
# then store results in MyData dataframe
MyData2020 <- RawElectionData2020%>%
filter(OFFICENAME == "United States President",
CANDGROUP == "1") %>%
mutate(
Rep20 = PVTALLY1,
Dem20 = PVTALLY2,
Total20 = Rep20 + Dem20) %>%
select(COUNTY, PRECINCT, OFFICENAME, Rep20, Dem20, Total20)
MyData2020 <- MyData2020 %>%
mutate(COUNTY = case_when(COUNTY == "Dekalb" ~ "DeKalb",
TRUE ~ COUNTY))
CountyData2020 <- MyData2020%>%
select(COUNTY, Rep20, Dem20, Total20) %>%
group_by(COUNTY) %>%
summarize(across(everything(), sum))
CountyData2024 <- read_csv("https://raw.githubusercontent.com/drkblake/Data/refs/heads/main/CountyData2024.csv")
# Merge Data Files
AllData <- left_join(CountyData2016, CountyData2020, by = "COUNTY")
AllData <- left_join(AllData, CountyData2024, by = "COUNTY")
AllData <- AllData %>%
mutate(
Rep16to20 = Rep20-Rep16,
Dem16to20 = Dem20-Dem16,
Rep20to24 = Rep24-Rep20,
Dem20to24 = Dem24-Dem20,
Rep20finish = case_when(
Rep16to20 < 0 ~ "Loss",
Rep16to20 > 0~ "Gain",
TRUE ~ "No change"),
Dem20finish = case_when(
Dem16to20 < 0 ~ "Loss",
Dem16to20 > 0~ "Gain",
TRUE ~ "No change"),
Rep24finish = case_when(
Rep20to24 < 0 ~ "Loss",
Rep20to24 > 0~ "Gain",
TRUE ~ "No change"),
Dem24finish = case_when(
Dem20to24 < 0 ~ "Loss",
Dem20to24 > 0~ "Gain",
TRUE ~ "No change"))
# Get a county map
CountyMap <- get_acs(geography = "county",
state = "TN",
variables = c(Japanese_ = "DP05_0048"),
year = 2022,
survey = "acs5",
output = "wide",
geometry = TRUE)
CountyMap <- CountyMap %>%
mutate(COUNTY = (str_remove(NAME," County, Tennessee"))) %>%
left_join(AllData, CountyMap, by = "COUNTY") %>%
select(COUNTY,
Rep16, Dem16, Total16,
Rep20, Dem20, Total20,
Rep24, Dem24, Total24,
Rep16to20, Dem16to20,
Rep20to24, Dem20to24,
Rep20finish,Dem20finish,
Rep24finish,Dem24finish,
geometry)
# 2020 Map
Map16to20Rep <- mapview(
CountyMap,
zcol = "Rep20finish",
col.regions = "red",
layer.name = "Rep 2020",
popup = popupTable(
CountyMap,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("COUNTY", "Rep16", "Rep20", "Rep16to20")
)
)
mypalette = colorRampPalette(c('blue', 'lightblue'))
Map16to20Dem <- mapview(
CountyMap,
zcol = "Dem20finish",
col.regions = mypalette,
layer.name = "Dem 2020",
popup = popupTable(
CountyMap,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("COUNTY", "Dem16", "Dem20", "Dem16to20")
)
)
Map16to20Dem | Map16to20Rep
# 2024 Map
mypalette = colorRampPalette(c('red', 'pink'))
Map20to24Rep <- mapview(
CountyMap,
zcol = "Rep24finish",
col.regions = mypalette,
layer.name = "Rep 2024",
popup = popupTable(
CountyMap,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("COUNTY", "Rep20", "Rep24", "Rep20to24")
)
)
mypalette = colorRampPalette(c('blue', 'lightblue'))
Map20to24Dem <- mapview(
CountyMap,
zcol = "Dem24finish",
col.regions = mypalette,
layer.name = "Dem 2024",
popup = popupTable(
CountyMap,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("COUNTY", "Dem20", "Dem24", "Dem20to24")
)
)
Map20to24Dem | Map20to24Rep