These maps show the way Republican Donald Trump overwhelmingly won in Tennessee during the 2020 and 2024 elections. By moving the slider left or right, you can view the change in voters between previous elections with whether the counties leaned more Democrat or Republican.
This map shows Tennessee counties and which way they leaned in the 2016-2020 election. Notice how some counties moved more Democrat and others moved more Republican. In this election in Tennessee, Hillary Clinton lost to Donald Trump.
This map shows Tennessee counties and which way they leaned in the 2020-2024 election. Notice how most counties this election moved overwhelmingly Republican. In this election in Tennessee, Kamala Harris lost to Donald Trump.
# Required packages
if (!require("tidyverse"))
install.packages("tidyverse")
if (!require("mapview"))
install.packages("mapview")
if (!require("sf"))
install.packages("sf")
if (!require("leaflet"))
install.packages("leaflet")
if (!require("leaflet.extras2"))
install.packages("leaflet.extras2")
if (!require("plotly"))
install.packages("plotly")
if (!require("tidycensus"))
install.packages("tidycensus")
library(tidyverse)
library(mapview)
library(sf)
library(leaflet)
library(leafpop)
library(readxl)
library(plotly)
library(tidycensus)
# Go ahead and transmit your Census API key
# so you don't forget to do it later when getting
# the map you will need:
census_api_key("e96c46601fca77f6f3fcb0f72b673a75aed0ff2a")
# Download and import election data
# from TN Secretary of State web site:
# https://sos.tn.gov/elections/results
# Get 2016 data
download.file(
"https://sos-tn-gov-files.s3.amazonaws.com/StateGeneralbyPrecinctNov2016.xlsx",
"RawElectionData2016.xlsx",
quiet = TRUE,
mode = "wb"
)
RawElectionData2016 <- read_xlsx("RawElectionData2016.xlsx")
# Filter, calculate, and select
# to get data of interest
# then store results in MyData dataframe
MyData2016 <- RawElectionData2016%>%
filter(OFFICENAME == "United States President",
CANDGROUP == "1") %>%
mutate(
Rep16 = PVTALLY1,
Dem16 = PVTALLY2,
Total16 = Rep16 + Dem16) %>%
select(COUNTY, PRECINCT, OFFICENAME, Rep16, Dem16, Total16)
CountyData2016 <- MyData2016 %>%
select(COUNTY, Rep16, Dem16, Total16) %>%
group_by(COUNTY) %>%
summarize(across(everything(), sum))
# Get 2020 data
download.file(
"https://sos-tn-gov-files.tnsosfiles.com/Nov2020PrecinctDetail.xlsx",
"RawElectionData2020.xlsx",
quiet = TRUE,
mode = "wb"
)
RawElectionData2020 <- read_xlsx("RawElectionData2020.xlsx", sheet = "SOFFICEL")
# Filter, calculate, and select
# to get data of interest
# then store results in MyData dataframe
MyData2020 <- RawElectionData2020%>%
filter(OFFICENAME == "United States President",
CANDGROUP == "1") %>%
mutate(
Rep20 = PVTALLY1,
Dem20 = PVTALLY2,
Total20 = Rep20 + Dem20) %>%
select(COUNTY, PRECINCT, OFFICENAME, Rep20, Dem20, Total20)
MyData2020 <- MyData2020 %>%
mutate(COUNTY = case_when(COUNTY == "Dekalb" ~ "DeKalb",
TRUE ~ COUNTY))
CountyData2020 <- MyData2020%>%
select(COUNTY, Rep20, Dem20, Total20) %>%
group_by(COUNTY) %>%
summarize(across(everything(), sum))
# Get 2024 data
CountyData2024 <- read_csv("https://raw.githubusercontent.com/drkblake/Data/refs/heads/main/CountyData2024.csv")
# Merge Data Files
AllData <- left_join(CountyData2016, CountyData2020, by = "COUNTY")
AllData <- left_join(AllData, CountyData2024, by = "COUNTY")
AllData <- AllData %>%
mutate(
Rep16to20 = Rep20-Rep16,
Dem16to20 = Dem20-Dem16,
Rep20to24 = Rep24-Rep20,
Dem20to24 = Dem24-Dem20,
Rep20finish = case_when(
Rep16to20 < 0 ~ "Loss",
Rep16to20 > 0~ "Gain",
TRUE ~ "No change"),
Dem20finish = case_when(
Dem16to20 < 0 ~ "Loss",
Dem16to20 > 0~ "Gain",
TRUE ~ "No change"),
Rep24finish = case_when(
Rep20to24 < 0 ~ "Loss",
Rep20to24 > 0~ "Gain",
TRUE ~ "No change"),
Dem24finish = case_when(
Dem20to24 < 0 ~ "Loss",
Dem20to24 > 0~ "Gain",
TRUE ~ "No change"))
# Get a county map
CountyMap <- get_acs(geography = "county",
state = "TN",
variables = c(Japanese_ = "DP05_0048"),
year = 2022,
survey = "acs5",
output = "wide",
geometry = TRUE)
CountyMap <- CountyMap %>%
mutate(COUNTY = (str_remove(NAME," County, Tennessee"))) %>%
left_join(AllData, CountyMap, by = "COUNTY") %>%
select(COUNTY,
Rep16, Dem16, Total16,
Rep20, Dem20, Total20,
Rep24, Dem24, Total24,
Rep16to20, Dem16to20,
Rep20to24, Dem20to24,
Rep20finish,Dem20finish,
Rep24finish,Dem24finish,
geometry)
# 2020 Map
Map16to20Rep <- mapview(
CountyMap,
zcol = "Rep20finish",
col.regions = "red",
layer.name = "Rep 2020",
popup = popupTable(
CountyMap,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("COUNTY", "Rep16", "Rep20", "Rep16to20")
)
)
mypalette = colorRampPalette(c('blue', 'lightblue'))
Map16to20Dem <- mapview(
CountyMap,
zcol = "Dem20finish",
col.regions = mypalette,
layer.name = "Dem 2020",
popup = popupTable(
CountyMap,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("COUNTY", "Dem16", "Dem20", "Dem16to20")
)
)
Map16to20Dem | Map16to20Rep
# 2024 Map
mypalette = colorRampPalette(c('red', 'pink'))
Map20to24Rep <- mapview(
CountyMap,
zcol = "Rep24finish",
col.regions = mypalette,
layer.name = "Rep 2024",
popup = popupTable(
CountyMap,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("COUNTY", "Rep20", "Rep24", "Rep20to24")
)
)
mypalette = colorRampPalette(c('blue', 'lightblue'))
Map20to24Dem <- mapview(
CountyMap,
zcol = "Dem24finish",
col.regions = mypalette,
layer.name = "Dem 2024",
popup = popupTable(
CountyMap,
feature.id = FALSE,
row.numbers = FALSE,
zcol = c("COUNTY", "Dem20", "Dem24", "Dem20to24")
)
)
Map20to24Dem | Map20to24Rep