# for Core packages
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# for financial analysis
library(tidyquant)
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## 
## ######################### Warning from 'xts' package ##########################
## #                                                                             #
## # The dplyr lag() function breaks how base R's lag() function is supposed to  #
## # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or       #
## # source() into this session won't work correctly.                            #
## #                                                                             #
## # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
## # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop           #
## # dplyr from breaking base R's lag() function.                                #
## #                                                                             #
## # Code in packages is not affected. It's protected by R's namespace mechanism #
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning.  #
## #                                                                             #
## ###############################################################################
## 
## Attaching package: 'xts'
## 
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## 
## Attaching package: 'PerformanceAnalytics'
## 
## The following object is masked from 'package:graphics':
## 
##     legend
## 
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
# for times series
library(timetk)

Goal: Apply Matt Dancho’s tutorial to state unemployment initial claims of New England states.

The following is the replication of Matt Dancho’s tutorial on this page

start_date <- "1989-01-01"

symbols_txt <- c("CTICLAIMS", # Connecticut
                 "MEICLAIMS", # Maine
                 "MAICLAIMS", # Massachusetts
                 "NHICLAIMS", # New Hampshire
                 "RIICLAIMS", # Rhode Island
                 "VTICLAIMS") # Vermont

claims_tbl <- tq_get(symbols_txt, get = "economic.data", from = start_date) %>%
    mutate(symbol = fct_recode(symbol,
                               "Connecticut"   = "CTICLAIMS",
                               "Maine"         = "MEICLAIMS",
                               "Massachusetts" = "MAICLAIMS",
                               "New Hampshire" = "NHICLAIMS",
                               "Rhode Island"  = "RIICLAIMS",
                               "Vermont"       = "VTICLAIMS")) %>%
    rename(claims = price)

Plotting time series

claims_tbl
## # A tibble: 11,226 × 3
##    symbol      date       claims
##    <fct>       <date>      <int>
##  1 Connecticut 1989-01-07   8345
##  2 Connecticut 1989-01-14   6503
##  3 Connecticut 1989-01-21   3821
##  4 Connecticut 1989-01-28   4663
##  5 Connecticut 1989-02-04   4162
##  6 Connecticut 1989-02-11   4337
##  7 Connecticut 1989-02-18   4079
##  8 Connecticut 1989-02-25   3556
##  9 Connecticut 1989-03-04   3826
## 10 Connecticut 1989-03-11   3515
## # ℹ 11,216 more rows
claims_tbl %>%
    plot_time_series(.date_var = date, .value = log(claims))
claims_tbl %>% count(symbol)
## # A tibble: 6 × 2
##   symbol            n
##   <fct>         <int>
## 1 Connecticut    1871
## 2 Massachusetts  1871
## 3 Maine          1871
## 4 New Hampshire  1871
## 5 Rhode Island   1871
## 6 Vermont        1871
claims_tbl %>%
    group_by(symbol) %>%
    plot_time_series(
        .date_var     = date,
        .value        = log(claims),
        .facet_ncol   = 2,
        .facet_scales = "free",
        .interactive  = FALSE)

Visualizing transformations and sub-groups

claims_tbl %>% count(symbol)
## # A tibble: 6 × 2
##   symbol            n
##   <fct>         <int>
## 1 Connecticut    1871
## 2 Massachusetts  1871
## 3 Maine          1871
## 4 New Hampshire  1871
## 5 Rhode Island   1871
## 6 Vermont        1871
claims_tbl <- claims_tbl %>%
    mutate(decade = floor(year(date) / 10) * 10)

claims_tbl %>% 
    group_by(symbol) %>%
    plot_time_series(.date_var     = date,
                     .value        = log(claims),
                     .facet_ncol   = 2,
                     .facet_scales = "free", 
                     .color_var    = decade)

Static ggplot2 visualization & customization

claims_tbl %>%
    plot_time_series(date, log(claims), 
                     .color_var = decade,
                     
                     # Return static ggplot
                     .interactive = FALSE, 
                     
                     # Customize
                     .title = "Jobless claims", 
                     .x_lab = "Dacade", 
                     .y_lab = "Number (log-adjusted)", 
                     .color_lab = "Dacade")

Box plots

claims_tbl %>% count(symbol)
## # A tibble: 6 × 2
##   symbol            n
##   <fct>         <int>
## 1 Connecticut    1871
## 2 Massachusetts  1871
## 3 Maine          1871
## 4 New Hampshire  1871
## 5 Rhode Island   1871
## 6 Vermont        1871
claims_tbl %>%
    filter_by_time(.date_var = date, .end_date = "1995") %>%
    group_by(symbol) %>%
    plot_time_series_boxplot(.date_var   = date, 
                             .value      = log(claims), 
                             .period     = "1 year", 
                             .facet_ncol = 2)

Regression plots

claims_tbl %>%
    group_by(symbol) %>%
    plot_time_series_regression(
        .date_var = date, 
        .facet_ncol = 3, 
        .formula = log(claims) ~ as.numeric(date) + month(date, label = TRUE), 
        .show_summary = FALSE)

Plotting Seasonality and Correlation

Correlation Plots

claims_tbl %>%
    group_by(symbol) %>%
    plot_acf_diagnostics(date, claims, 
                         .lags = "1 years") 

Seasonality

claims_tbl %>%
    plot_seasonal_diagnostics(date, log(claims))
claims_tbl %>% count(symbol)
## # A tibble: 6 × 2
##   symbol            n
##   <fct>         <int>
## 1 Connecticut    1871
## 2 Massachusetts  1871
## 3 Maine          1871
## 4 New Hampshire  1871
## 5 Rhode Island   1871
## 6 Vermont        1871
claims_tbl %>%
    group_by(symbol) %>%
    plot_seasonal_diagnostics(date, log(claims))

STL Diagnostics

claims_tbl %>%
    group_by(symbol) %>%
    plot_stl_diagnostics(
        date, claims, 
        .feature_set = c("observed", "season", "trend", "remainder"))
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year

Time Series Data Wrangling

Summarize by Time

Daily data

claims_tbl %>%
    group_by(symbol) %>%
    plot_time_series(date, log(claims), .facet_ncol = 2, .interactive = FALSE)

Summarize it by quarter

claims_tbl %>%
    group_by(symbol) %>%
    summarise_by_time(.date_var = date, volume = sum(log(claims)), .by = "year") %>%
    plot_time_series(date, volume, .facet_ncol = 2, .interactive = FALSE)

claims_tbl %>%
    group_by(symbol) %>%
    summarise_by_time(.date_var = date, claims = mean(log(claims)), .by = "year") %>%
    plot_time_series(date, claims, .facet_ncol = 2, .interactive = FALSE)

Filter by time

claims_tbl %>%
    group_by(symbol) %>%
    filter_by_time(.date_var = date, 
                   .start_date = "2022-01", 
                   .end_date = "2022") %>%
    plot_time_series(date, claims, .facet_ncol = 2)

Padding data

claims_tbl %>%
    group_by(symbol) %>%
    pad_by_time(date, .by = "week", .pad_value = 0)
## # A tibble: 11,226 × 4
## # Groups:   symbol [6]
##    symbol      date       claims decade
##    <fct>       <date>      <int>  <dbl>
##  1 Connecticut 1989-01-07   8345   1980
##  2 Connecticut 1989-01-14   6503   1980
##  3 Connecticut 1989-01-21   3821   1980
##  4 Connecticut 1989-01-28   4663   1980
##  5 Connecticut 1989-02-04   4162   1980
##  6 Connecticut 1989-02-11   4337   1980
##  7 Connecticut 1989-02-18   4079   1980
##  8 Connecticut 1989-02-25   3556   1980
##  9 Connecticut 1989-03-04   3826   1980
## 10 Connecticut 1989-03-11   3515   1980
## # ℹ 11,216 more rows

Sliding (rolling) calculations

claims_tbl %>%
    head(10) %>%
    mutate(rolling_avg_2 = slidify_vec(log(claims), mean, 
                                       .period = 2, 
                                       .align = "right", 
                                       .partial = TRUE))
## # A tibble: 10 × 5
##    symbol      date       claims decade rolling_avg_2
##    <fct>       <date>      <int>  <dbl>         <dbl>
##  1 Connecticut 1989-01-07   8345   1980          9.03
##  2 Connecticut 1989-01-14   6503   1980          8.90
##  3 Connecticut 1989-01-21   3821   1980          8.51
##  4 Connecticut 1989-01-28   4663   1980          8.35
##  5 Connecticut 1989-02-04   4162   1980          8.39
##  6 Connecticut 1989-02-11   4337   1980          8.35
##  7 Connecticut 1989-02-18   4079   1980          8.34
##  8 Connecticut 1989-02-25   3556   1980          8.24
##  9 Connecticut 1989-03-04   3826   1980          8.21
## 10 Connecticut 1989-03-11   3515   1980          8.21
# Rolling regressions are easy to implement using `.unlist = FALSE`
lm_roll <- slidify(~ lm(..1 ~ ..2 + ..3), .period = 90, 
                   .unlist = FALSE, .align = "right")


claims_tbl %>%
  select(symbol, date, claims) %>%
  group_by(symbol) %>%
  mutate(numeric_date = as.numeric(date)) %>%
  # Apply rolling regression
  mutate(rolling_lm = lm_roll(symbol, claims, numeric_date)) %>%
  filter(!is.na(rolling_lm))
lm_roll <- slidify(~ lm(..1 ~ ..2), .period = 90, 
                   .unlist = FALSE, .align = "right")

reg_results <- claims_tbl %>%
  select(symbol, date, claims) %>%
  group_by(symbol) %>%
  mutate(numeric_date = as.numeric(date)) %>%mutate(rolling_lm = lm_roll(claims, numeric_date)) %>%
  filter(!is.na(rolling_lm))

# Check rolling_lm
reg_results$rolling_lm %>% .[[1]] %>% broom::tidy()
## # A tibble: 2 × 5
##   term         estimate std.error statistic p.value
##   <chr>           <dbl>     <dbl>     <dbl>   <dbl>
## 1 (Intercept) -11225.    6974.        -1.61  0.111 
## 2 ..2              2.19     0.961      2.28  0.0248
# Check all rows
reg_coeff <- reg_results %>% mutate(rolling_lm = map(rolling_lm, broom::tidy)) %>% unnest(rolling_lm)

# Plot coefficient
reg_coeff %>% filter(term== "..2") %>% ggplot(aes(date, estimate)) + geom_line() + facet_wrap(~symbol)