Heller Phar7381 Wk12 GLM2 11-13-24 title: “PHAR7381 week12” output: html_document — #lirbaries

library(dplyr)
library(ggplot2)

#theme

my_theme<-function(x){theme_bw()+
    theme(text = element_text(size=20))+
    theme(axis.line.y = element_line(size = 2.0))+
    theme(axis.line.x = element_line(size = 2.0))+
    theme(axis.ticks = element_line(size = 1.5,colour="black"))+
    theme(axis.ticks.length=  unit(0.45, "cm"))+
    theme(axis.title.y =element_text(vjust=1.2))+
    theme(axis.title.x =element_text(vjust=-0.2))+
    theme(axis.text=element_text(colour="black"))+
    theme(panel.background = element_rect(fill ="white"))}

#import data

mydt<-read.csv("C:\\Heller\\PHAR7381\\week12\\glm2.csv") #stringsASFactors = F)
#mydt<-read.csv("/work/ac0837/PHAR7381/week12/glm1.csv",stringsAsFactors = F)

#Logistic regression models- Model 1

model1<-glm(nausea~1, data = mydt, family = binomial(link = "logit"))
summary(model1)
## 
## Call:
## glm(formula = nausea ~ 1, family = binomial(link = "logit"), 
##     data = mydt)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -0.5878     0.3220  -1.825    0.068 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 54.748  on 41  degrees of freedom
## Residual deviance: 54.748  on 41  degrees of freedom
## AIC: 56.748
## 
## Number of Fisher Scoring iterations: 4

#Logistic regression models- Model 2

model2<-glm(nausea~age, data = mydt, family = binomial(link = "logit"))
summary(model2)
## 
## Call:
## glm(formula = nausea ~ age, family = binomial(link = "logit"), 
##     data = mydt)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -3.82339    2.08626  -1.833   0.0669 .
## age          0.05671    0.03561   1.593   0.1113  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 54.748  on 41  degrees of freedom
## Residual deviance: 51.936  on 40  degrees of freedom
## AIC: 55.936
## 
## Number of Fisher Scoring iterations: 4

#Logistic regression models- Model 3

#model1<-glm(nausea~1, data = mydt, family = binomial(link = "logit"))
model3<-glm(nausea ~ auc, data = mydt, family = binomial(link = "logit"))
summary(model3)
## 
## Call:
## glm(formula = nausea ~ auc, family = binomial(link = "logit"), 
##     data = mydt)
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -1.4372688  0.6225920  -2.309   0.0210 *
## auc          0.0002172  0.0001283   1.693   0.0904 .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 54.748  on 41  degrees of freedom
## Residual deviance: 51.718  on 40  degrees of freedom
## AIC: 55.718
## 
## Number of Fisher Scoring iterations: 4

#Logistic regression models- Model 4

model4<-glm(nausea~sex, data = mydt, family = binomial(link = "logit"))
summary(model4)
## 
## Call:
## glm(formula = nausea ~ sex, family = binomial(link = "logit"), 
##     data = mydt)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept)  -1.2809     0.5055  -2.534   0.0113 *
## sex           1.3863     0.6831   2.029   0.0424 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 54.748  on 41  degrees of freedom
## Residual deviance: 50.372  on 40  degrees of freedom
## AIC: 54.372
## 
## Number of Fisher Scoring iterations: 4
model5<-glm(nausea~sex + auc, data = mydt, family = binomial(link = "logit"))
summary(model5)
## 
## Call:
## glm(formula = nausea ~ sex + auc, family = binomial(link = "logit"), 
##     data = mydt)
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)   
## (Intercept) -2.6663116  0.9499150  -2.807   0.0050 **
## sex          1.7753142  0.7857733   2.259   0.0239 * 
## auc          0.0003034  0.0001534   1.978   0.0479 * 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 54.748  on 41  degrees of freedom
## Residual deviance: 45.782  on 39  degrees of freedom
## AIC: 51.782
## 
## Number of Fisher Scoring iterations: 4
model6<-glm(nausea~sex + age, data = mydt, family = binomial(link = "logit"))
summary(model6)
## 
## Call:
## glm(formula = nausea ~ sex + age, family = binomial(link = "logit"), 
##     data = mydt)
## 
## Coefficients:
##             Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -4.06831    2.16531  -1.879   0.0603 .
## sex          1.28987    0.70000   1.843   0.0654 .
## age          0.04984    0.03689   1.351   0.1767  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 54.748  on 41  degrees of freedom
## Residual deviance: 48.388  on 39  degrees of freedom
## AIC: 54.388
## 
## Number of Fisher Scoring iterations: 4
model7<-glm(nausea~sex + auc + age, data = mydt, family = binomial(link = "logit"))
summary(model7)
## 
## Call:
## glm(formula = nausea ~ sex + auc + age, family = binomial(link = "logit"), 
##     data = mydt)
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -5.1421805  2.3803321  -2.160   0.0308 *
## sex          1.6954373  0.8008377   2.117   0.0343 *
## auc          0.0002942  0.0001562   1.884   0.0596 .
## age          0.0448605  0.0381555   1.176   0.2397  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 54.748  on 41  degrees of freedom
## Residual deviance: 44.299  on 38  degrees of freedom
## AIC: 52.299
## 
## Number of Fisher Scoring iterations: 4

#test for completeness:

model8<-glm(nausea~ auc + age, data = mydt, family = binomial(link = "logit"))
summary(model8)
## 
## Call:
## glm(formula = nausea ~ auc + age, family = binomial(link = "logit"), 
##     data = mydt)
## 
## Coefficients:
##               Estimate Std. Error z value Pr(>|z|)  
## (Intercept) -4.3709737  2.1587190  -2.025   0.0429 *
## auc          0.0002070  0.0001333   1.553   0.1205  
## age          0.0522730  0.0360045   1.452   0.1465  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 54.748  on 41  degrees of freedom
## Residual deviance: 49.403  on 39  degrees of freedom
## AIC: 55.403
## 
## Number of Fisher Scoring iterations: 4