# for Core packages
library(tidyverse)
## Warning: package 'ggplot2' was built under R version 4.3.3
## Warning: package 'forcats' was built under R version 4.3.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
# for financial analysis
library(tidyquant)
## Loading required package: PerformanceAnalytics
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## 
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## 
## 
## ######################### Warning from 'xts' package ##########################
## #                                                                             #
## # The dplyr lag() function breaks how base R's lag() function is supposed to  #
## # work, which breaks lag(my_xts). Calls to lag(my_xts) that you type or       #
## # source() into this session won't work correctly.                            #
## #                                                                             #
## # Use stats::lag() to make sure you're not using dplyr::lag(), or you can add #
## # conflictRules('dplyr', exclude = 'lag') to your .Rprofile to stop           #
## # dplyr from breaking base R's lag() function.                                #
## #                                                                             #
## # Code in packages is not affected. It's protected by R's namespace mechanism #
## # Set `options(xts.warn_dplyr_breaks_lag = FALSE)` to suppress this warning.  #
## #                                                                             #
## ###############################################################################
## 
## Attaching package: 'xts'
## 
## The following objects are masked from 'package:dplyr':
## 
##     first, last
## 
## 
## Attaching package: 'PerformanceAnalytics'
## 
## The following object is masked from 'package:graphics':
## 
##     legend
## 
## Loading required package: quantmod
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
# for times series
library(timetk)
## Warning: package 'timetk' was built under R version 4.3.3

Goal: Apply Matt Dancho’s tutorial to state unemployment initial claims of New England states.

The following is the replication of Matt Dancho’s tutorial on this page

start_date <- "1989-01-01"

symbols_txt <- c("CTICLAIMS", # Connecticut
                 "MEICLAIMS", # Maine
                 "MAICLAIMS", # Massachusetts
                 "NHICLAIMS", # New Hampshire
                 "RIICLAIMS", # Rhode Island
                 "VTICLAIMS") # Vermont

claims_tbl <- tq_get(symbols_txt, get = "economic.data", from = start_date) %>%
    mutate(symbol = fct_recode(symbol,
                               "Connecticut"   = "CTICLAIMS",
                               "Maine"         = "MEICLAIMS",
                               "Massachusetts" = "MAICLAIMS",
                               "New Hampshire" = "NHICLAIMS",
                               "Rhode Island"  = "RIICLAIMS",
                               "Vermont"       = "VTICLAIMS")) %>%
    rename(claims = price)

Plotting time series

Box plots

claims_tbl %>%
    group_by(symbol) %>%
    plot_time_series_boxplot(date, claims, 
                             .period = "1 years",
                             .facet_ncol = 2)

Regression plots

claims_tbl %>%
    group_by(symbol) %>%
    plot_time_series_regression(
        .date_var     = date,
        .formula      = log(claims) ~ as.numeric(date) + month(date, label = TRUE),
        .facet_ncol   = 2,
        .show_summary = FALSE)

Plotting Seasonality and Correlation

Correlation Plots

# ACF
claims_tbl %>%
    group_by(symbol) %>%
    plot_acf_diagnostics(
        date, claims,              
        .lags = "12 months")
# CCF
claims_tbl %>%
    select(symbol, date, claims) %>%
    group_by(symbol) %>%
    plot_acf_diagnostics(
        date, claims,
        .ccf_vars    = c(claims),   
        .lags        = "12 months")

Seasonality

claims_tbl %>%
    plot_seasonal_diagnostics(date, claims)
# Grouped
claims_tbl %>%
    group_by(symbol) %>%
    plot_seasonal_diagnostics(date, claims)

STL Diagnostics

claims_tbl %>%
    group_by(symbol) %>%
    plot_stl_diagnostics(
        date, claims,
        .feature_set = c("observed", "season", "trend", "remainder"))
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year
## frequency = 13 observations per 1 quarter
## trend = 53 observations per 1 year

Time Series Data Wrangling

Summarize by Time

claims_tbl %>%
  group_by(symbol) %>%
  summarise_by_time(
    date, 
    .by    = "quarter",
    volume = sum(claims)
  ) %>%
  plot_time_series(date, volume, .facet_ncol = 2, .interactive = FALSE)

claims_tbl %>%
  group_by(symbol) %>%
  summarise_by_time(date, .by = "month", adjusted = first(claims)) %>%
  plot_time_series(date, adjusted, .facet_ncol = 2, .interactive = FALSE)

Filter By Time

claims_tbl %>%
  group_by(symbol) %>%
  filter_by_time(date, "2024-01-07", "2024") %>%
  plot_time_series(date, claims, .facet_ncol = 2, .interactive = FALSE)

Padding Data

claims_tbl%>%
  group_by(symbol) %>%
  pad_by_time(date, .by = "day", .pad_value = 0)
## # A tibble: 78,504 × 3
## # Groups:   symbol [6]
##    symbol      date       claims
##    <fct>       <date>      <int>
##  1 Connecticut 1989-01-07   8345
##  2 Connecticut 1989-01-08      0
##  3 Connecticut 1989-01-09      0
##  4 Connecticut 1989-01-10      0
##  5 Connecticut 1989-01-11      0
##  6 Connecticut 1989-01-12      0
##  7 Connecticut 1989-01-13      0
##  8 Connecticut 1989-01-14   6503
##  9 Connecticut 1989-01-15      0
## 10 Connecticut 1989-01-16      0
## # ℹ 78,494 more rows

Sliding (Rolling) Calculations

rolling <-claims_tbl %>%
    head(10) %>%
    mutate(rolling_avg = slidify_vec(claims, mean, .period = 2, 
                                       .align = "right",
                                       .partial = TRUE))