# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the performance of your portfolio in terms of Sharpe Ratio.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("AAPL", "TSLA", "NFLX", "DIS", "MTN")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AAPL" "DIS" "MTN" "NFLX" "TSLA"
weight <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weight
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weight)
w_tbl
## # A tibble: 5 × 2
## symbols weight
## <chr> <dbl>
## 1 AAPL 0.25
## 2 DIS 0.25
## 3 MTN 0.2
## 4 NFLX 0.2
## 5 TSLA 0.1
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.102
## 2 2013-02-28 0.0242
## 3 2013-03-28 0.0451
## 4 2013-04-30 0.0806
## 5 2013-05-31 0.0871
## 6 2013-06-28 -0.0431
## 7 2013-07-31 0.108
## 8 2013-08-30 0.0608
## 9 2013-09-30 0.0437
## 10 2013-10-31 0.0315
## # ℹ 50 more rows
rfr <- 0.0003
portfolio_sharpe_tbl <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
Rf = rfr,
performance_fun = SharpeRatio,
FUN = "StdDev")
portfolio_sharpe_tbl
## # A tibble: 1 × 1
## `StdDevSharpe(Rf=0%,p=95%)`
## <dbl>
## 1 0.521
calculate_rolling_sharpeRatio <- function(df) {
SharpeRatio(df,
Rf = rfr,
FUN = "StdDev")
}
window <- 24
rolling_sharpe_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
align = "right",
FUN = calculate_rolling_sharpeRatio,
col_rename = "sharpeRatio") %>%
na.omit()
rolling_sharpe_tbl
## # A tibble: 37 × 3
## date returns sharpeRatio
## <date> <dbl> <dbl>
## 1 2014-12-31 -0.0146 0.712
## 2 2015-01-30 0.0412 0.690
## 3 2015-02-27 0.0721 0.723
## 4 2015-03-31 -0.00563 0.668
## 5 2015-04-30 0.0780 0.668
## 6 2015-05-29 0.0571 0.657
## 7 2015-06-30 0.0273 0.766
## 8 2015-07-31 0.0451 0.756
## 9 2015-08-31 -0.0667 0.568
## 10 2015-09-30 -0.0327 0.482
## # ℹ 27 more rows
rolling_sharpe_tbl %>%
ggplot(aes(date, sharpeRatio)) +
geom_line(color = "cornflowerblue") +
labs(title = paste0("Rolling ", window, "-Month Sharpe Ratio"),
y = "rolling Sharpe Ratio",
x = NULL) +
theme(plot.title = element_text(hjust = 0.5)) +
annotate(geom = "text",
x = as.Date("2016-06-01"), y = 0.5,
label = "",
size = 5, color = "red")
How has your portfolio performed over time? Provide dates of the structural breaks, if any. The Code Along Assignment 9 had one structural break in November 2016. What do you think the reason is?
My portfolios Sharpe ratio has decreased from 2015 to 2016 and then slowly started to increase again. The Sharpe of my portfolio is not very good and the decline in 2015-2016 was not good at all. The structual break in assignment nine could have been caused by the presidencial election as shifts in the market tend to happen around that time.