library(dplyr)
library(wooldridge)
data("wage2")

(i)

model1 <- lm(log(wage) ~ educ + exper + tenure + married + black + south + urban, data = wage2)
summary(model1)
## 
## Call:
## lm(formula = log(wage) ~ educ + exper + tenure + married + black + 
##     south + urban, data = wage2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.98069 -0.21996  0.00707  0.24288  1.22822 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.395497   0.113225  47.653  < 2e-16 ***
## educ         0.065431   0.006250  10.468  < 2e-16 ***
## exper        0.014043   0.003185   4.409 1.16e-05 ***
## tenure       0.011747   0.002453   4.789 1.95e-06 ***
## married      0.199417   0.039050   5.107 3.98e-07 ***
## black       -0.188350   0.037667  -5.000 6.84e-07 ***
## south       -0.090904   0.026249  -3.463 0.000558 ***
## urban        0.183912   0.026958   6.822 1.62e-11 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3655 on 927 degrees of freedom
## Multiple R-squared:  0.2526, Adjusted R-squared:  0.2469 
## F-statistic: 44.75 on 7 and 927 DF,  p-value: < 2.2e-16

Holding other factors fixed, the approximate difference in monthly salary between blacks and nonblacks is -18.85%. In other words, black people approximately received 18.85% less in salary in comparison with nonblack people, holding other factors fixed. The p-value indicate that this is a statistically significant difference.

(ii)

model2 <- lm(log(wage) ~ educ + exper + tenure + married + black + south + urban + I(exper^2) + I(tenure^2), data = wage2)
summary(model2)
## 
## Call:
## lm(formula = log(wage) ~ educ + exper + tenure + married + black + 
##     south + urban + I(exper^2) + I(tenure^2), data = wage2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.98236 -0.21972 -0.00036  0.24078  1.25127 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.3586756  0.1259143  42.558  < 2e-16 ***
## educ         0.0642761  0.0063115  10.184  < 2e-16 ***
## exper        0.0172146  0.0126138   1.365 0.172665    
## tenure       0.0249291  0.0081297   3.066 0.002229 ** 
## married      0.1985470  0.0391103   5.077 4.65e-07 ***
## black       -0.1906636  0.0377011  -5.057 5.13e-07 ***
## south       -0.0912153  0.0262356  -3.477 0.000531 ***
## urban        0.1854241  0.0269585   6.878 1.12e-11 ***
## I(exper^2)  -0.0001138  0.0005319  -0.214 0.830622    
## I(tenure^2) -0.0007964  0.0004710  -1.691 0.091188 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3653 on 925 degrees of freedom
## Multiple R-squared:  0.255,  Adjusted R-squared:  0.2477 
## F-statistic: 35.17 on 9 and 925 DF,  p-value: < 2.2e-16
anova(model2, lm(log(wage) ~ educ + exper + tenure + married + black + south + urban, data = wage2))
## Analysis of Variance Table
## 
## Model 1: log(wage) ~ educ + exper + tenure + married + black + south + 
##     urban + I(exper^2) + I(tenure^2)
## Model 2: log(wage) ~ educ + exper + tenure + married + black + south + 
##     urban
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1    925 123.42                           
## 2    927 123.82 -2  -0.39756 1.4898  0.226

(iii)

model3 <- lm(log(wage) ~ educ + exper + tenure + married + black + south + urban + educ*black, data = wage2)
summary(model3)
## 
## Call:
## lm(formula = log(wage) ~ educ + exper + tenure + married + black + 
##     south + urban + educ * black, data = wage2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.97782 -0.21832  0.00475  0.24136  1.23226 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  5.374817   0.114703  46.859  < 2e-16 ***
## educ         0.067115   0.006428  10.442  < 2e-16 ***
## exper        0.013826   0.003191   4.333 1.63e-05 ***
## tenure       0.011787   0.002453   4.805 1.80e-06 ***
## married      0.198908   0.039047   5.094 4.25e-07 ***
## black        0.094809   0.255399   0.371 0.710561    
## south       -0.089450   0.026277  -3.404 0.000692 ***
## urban        0.183852   0.026955   6.821 1.63e-11 ***
## educ:black  -0.022624   0.020183  -1.121 0.262603    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3654 on 926 degrees of freedom
## Multiple R-squared:  0.2536, Adjusted R-squared:  0.2471 
## F-statistic: 39.32 on 8 and 926 DF,  p-value: < 2.2e-16
anova(model3, lm(log(wage) ~ educ + exper + tenure + married + black + south + urban, data = wage2))
## Analysis of Variance Table
## 
## Model 1: log(wage) ~ educ + exper + tenure + married + black + south + 
##     urban + educ * black
## Model 2: log(wage) ~ educ + exper + tenure + married + black + south + 
##     urban
##   Res.Df    RSS Df Sum of Sq      F Pr(>F)
## 1    926 123.65                           
## 2    927 123.82 -1  -0.16778 1.2565 0.2626

The return to education does not significantly depend on race in this data.

(iv)

model4 <- lm(log(wage) ~ educ + exper + tenure + married + black + south + urban + married:black, data = wage2)
summary(model4)
## 
## Call:
## lm(formula = log(wage) ~ educ + exper + tenure + married + black + 
##     south + urban + married:black, data = wage2)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.98013 -0.21780  0.01057  0.24219  1.22889 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    5.403793   0.114122  47.351  < 2e-16 ***
## educ           0.065475   0.006253  10.471  < 2e-16 ***
## exper          0.014146   0.003191   4.433 1.04e-05 ***
## tenure         0.011663   0.002458   4.745 2.41e-06 ***
## married        0.188915   0.042878   4.406 1.18e-05 ***
## black         -0.240820   0.096023  -2.508 0.012314 *  
## south         -0.091989   0.026321  -3.495 0.000497 ***
## urban          0.184350   0.026978   6.833 1.50e-11 ***
## married:black  0.061354   0.103275   0.594 0.552602    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3656 on 926 degrees of freedom
## Multiple R-squared:  0.2528, Adjusted R-squared:  0.2464 
## F-statistic: 39.17 on 8 and 926 DF,  p-value: < 2.2e-16

Holding other factors constant, the estimated wage differential between married blacks and married nonblacks is 6.14%. However, since the p-value is 0.5526, this difference is not statistically significant, meaning there is no strong evidence to suggest that the wage differential between married blacks and married nonblacks is different from zero in this sample.