Multilevel Bayesian Poisson Modelling with Overdispersion

The outcome variable is Q1_male (ack kind and friendly), boys rating boys

Models included here:

  1. Simple Bayesian Poisson model of nas predicting Q1_male
  2. Two-level Bayesian model with school (no class)
  3. Two-level Bayesian model with class (no school)
  4. Three-level Bayesian model
  5. Three-level glmer model

The meaning of various Greek symbols in the Bayesian Poisson models:

Adjusted coefficients:

Effects are on the logrithmic scale:

Plots depict Bayesian convergence diagnostics:

options(width = 200)

library(foreign)
acsY10nas <- read.spss("ACS_all_schools to 2013_merge_6.sav", use.value.labels = FALSE, 
    to.data.frame = TRUE)

library(car)
acsY10nas$SEXMAIN <- recode(acsY10nas$SEXMAIN, "1=0;2=1")
acsY10nas$znas8 <- scale(acsY10nas$nas8)
acsY10nas$zhope <- scale(acsY10nas$hpmean_10_2012)
acsY10nas$zswb <- scale(acsY10nas$swbmean_10_2012)
acsY10nas$nasT <- recode(acsY10nas$nas8, "0:4=0; 4.01:6=1")
acsY10nas$schoolMAIN <- as.factor(acsY10nas$schoolMAIN)
Girls <- subset(acsY10nas, acsY10nas$SEXMAIN == "1", select = c(1:3046))
Girls$zboys <- scale(Girls$n_boys)
Girls$zgirls <- scale(Girls$n_girls)

Boys <- subset(acsY10nas, acsY10nas$SEXMAIN == "0", select = c(1:3046))
Boys$zboys <- scale(Boys$n_boys)
Boys$zgirls <- scale(Boys$n_girls)
Boys$id <- c(as.factor(Boys$ID10))
Boys$znas8 <- as.numeric(Boys$znas8)
Boys$schoolMAIN <- as.factor(Boys$schoolMAIN)
Boys$zboys <- as.factor(Boys$zboys)

# subset data to get complete cases of boys class
Boys <- subset(Boys, complete.cases(Boys$zboys), select = c(1:3049))

library(car)
Boys$school <- recode(Boys$schoolMAIN, "1=1;36=2;8=3;5=4;2=5;3=6;11=7;20=8;6=9;10=10;7=11;22=12;28=13")


### Simple Poisson model of Q1_male predicted by znas8 (boys rating boys)

## ignoring school and class size in this model

Q1mBB.model <- function() {
    for (i in 1:n) {
        znas8[i] ~ dnorm(0, 0.01)
        Q1_male[i] ~ dpois(lambda[i])
        log(lambda[i]) <- mu + b.znas8 * znas8[i] + epsilon[i]
        epsilon[i] ~ dnorm(0, tau.epsilon)
    }
    mu ~ dnorm(0, 1e-04)
    tau.epsilon <- pow(sigma.epsilon, -2)
    sigma.epsilon ~ dunif(0, 100)
    b.znas8 ~ dnorm(0, 0.01)
    tau.znas8 <- pow(sigma.znas8, -2)
    sigma.znas8 ~ dunif(0, 100)
}

library(R2jags)
n <- length(Boys$id)  # of Y10 survey respondents
Q1_male <- Boys$Q1_male
znas8 <- Boys$znas8
Q1mBB.data <- list("n", "Q1_male", "znas8")
Q1mBB.params <- c("mu", "b.znas8", "sigma.znas8", "sigma.epsilon")
Q1mBB.inits <- function() {
    list(b.znas8 = c(0))
}
set.seed(999)
Q1mBB.fit <- jags(data = Q1mBB.data, inits = Q1mBB.inits, Q1mBB.params, model.file = Q1mBB.model, 
    n.chains = 4, n.iter = 1000, n.burnin = 100)
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
##    Graph Size: 5093
## 
## Initializing model

print(Q1mBB.fit)
## Inference for Bugs model at "/var/folders/mn/jsy0lvks0117hn0pl7ysl4380000gp/T//RtmpK6vUiv/model56233e891f8e.txt", fit using jags,
##  4 chains, each with 1000 iterations (first 100 discarded)
##  n.sims = 3600 iterations saved
##                mu.vect sd.vect     2.5%      25%      50%      75%    97.5%  Rhat n.eff
## b.znas8          0.062   0.020    0.025    0.048    0.062    0.075    0.101 1.006   490
## mu               0.669   0.030    0.609    0.649    0.670    0.689    0.727 1.012   240
## sigma.epsilon    0.428   0.036    0.353    0.406    0.428    0.452    0.497 1.036   110
## sigma.znas8     49.990  28.910    2.563   25.114   49.216   75.661   97.829 1.001  3600
## deviance      9478.144  43.826 9397.550 9449.318 9476.623 9505.190 9570.271 1.016   220
## 
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
## 
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 948.0 and DIC = 10426.2
## DIC is an estimate of expected predictive error (lower deviance is better).
plot(Q1mBB.fit)

plot of chunk unnamed-chunk-1


fit.mcmc <- as.mcmc(Q1mBB.fit)
summary(fit.mcmc)
## 
## Iterations = 1:900
## Thinning interval = 1 
## Number of chains = 4 
## Sample size per chain = 900 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                   Mean      SD Naive SE Time-series SE
## b.znas8       6.22e-02  0.0199 0.000332        0.00102
## deviance      9.48e+03 43.8263 0.730439        3.35483
## mu            6.69e-01  0.0300 0.000500        0.00153
## sigma.epsilon 4.28e-01  0.0357 0.000595        0.00369
## sigma.znas8   5.00e+01 28.9098 0.481830        0.51810
## 
## 2. Quantiles for each variable:
## 
##                   2.5%      25%      50%      75%    97.5%
## b.znas8          0.025 4.81e-02 6.19e-02 7.55e-02    0.101
## deviance      9397.550 9.45e+03 9.48e+03 9.51e+03 9570.271
## mu               0.609 6.49e-01 6.70e-01 6.89e-01    0.727
## sigma.epsilon    0.353 4.06e-01 4.28e-01 4.52e-01    0.497
## sigma.znas8      2.563 2.51e+01 4.92e+01 7.57e+01   97.829
xyplot(fit.mcmc)

plot of chunk unnamed-chunk-1

densityplot(fit.mcmc)

plot of chunk unnamed-chunk-1

# autocorr.plot(fit.mcmc)

Two-level model 1: Adding school (ignoring class in this model)

options(width = 200)

Q1mBBs.model <- function() {
    for (i in 1:n) {
        znas8[i] ~ dnorm(0, 0.01)
        Q1_male[i] ~ dpois(lambda[i])
        log(lambda[i]) <- mu + b.znas8 * znas8[i] + b.schoolMAIN[school[i]] + 
            epsilon[i]
        epsilon[i] ~ dnorm(0, tau.epsilon)
    }
    mu ~ dnorm(0, 1e-04)
    mu.adj <- mu + mean(b.schoolMAIN[])
    tau.epsilon <- pow(sigma.epsilon, -2)
    sigma.epsilon ~ dunif(0, 100)
    b.znas8 ~ dnorm(0, 0.01)
    tau.znas8 <- pow(sigma.znas8, -2)
    sigma.znas8 ~ dunif(0, 100)
    for (j in 1:n.school) {
        b.schoolMAIN[j] ~ dnorm(0, tau.schoolMAIN)
        b.schoolMAIN.adj[j] <- b.schoolMAIN[j] - mean(b.schoolMAIN[])
    }
    tau.schoolMAIN <- pow(sigma.schoolMAIN, -2)
    sigma.schoolMAIN ~ dunif(0, 100)
}

library(R2jags)
n <- length(Boys$id)  # of Y10 survey respondents
n.school <- length(unique(Boys$schoolMAIN))
Q1_male <- Boys$Q1_male
znas8 <- Boys$znas8
school <- Boys$school
Q1mBBs.data <- list("n", "n.school", "Q1_male", "znas8", "school")
Q1mBBs.params <- c("mu", "mu.adj", "b.znas8", "b.schoolMAIN", "b.schoolMAIN.adj", 
    "sigma.znas8", "sigma.schoolMAIN", "sigma.epsilon")
Q1mBBs.inits <- function() {
    list(b.znas8 = c(0), b.schoolMAIN = rnorm(n.school))
}
set.seed(999)
Q1mBBs.fit <- jags(data = Q1mBBs.data, inits = Q1mBBs.inits, Q1mBBs.params, 
    model.file = Q1mBBs.model, n.chains = 4, n.iter = 1000, n.burnin = 100)
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
##    Graph Size: 6118
## 
## Initializing model

print(Q1mBBs.fit)
## Inference for Bugs model at "/var/folders/mn/jsy0lvks0117hn0pl7ysl4380000gp/T//Rtmp1SRtO7/model56ec1d39b931.txt", fit using jags,
##  4 chains, each with 1000 iterations (first 100 discarded)
##  n.sims = 3600 iterations saved
##                       mu.vect sd.vect     2.5%      25%      50%      75%    97.5%  Rhat n.eff
## b.schoolMAIN[1]         0.030   0.059   -0.058   -0.003    0.016    0.056    0.164 1.033   150
## b.schoolMAIN[2]         0.020   0.055   -0.079   -0.009    0.007    0.046    0.146 1.036   140
## b.schoolMAIN[3]        -0.005   0.053   -0.116   -0.031   -0.002    0.020    0.097 1.019  2000
## b.schoolMAIN[4]        -0.002   0.056   -0.117   -0.029   -0.001    0.021    0.115 1.021   430
## b.schoolMAIN[5]        -0.005   0.065   -0.149   -0.032   -0.001    0.023    0.132 1.013  2800
## b.schoolMAIN[6]         0.000   0.059   -0.118   -0.027    0.000    0.026    0.127 1.019  2000
## b.schoolMAIN[7]        -0.021   0.054   -0.145   -0.050   -0.012    0.007    0.081 1.014   540
## b.schoolMAIN[8]        -0.028   0.056   -0.157   -0.058   -0.017    0.003    0.070 1.012   640
## b.schoolMAIN[9]         0.018   0.060   -0.088   -0.013    0.007    0.042    0.155 1.022   520
## b.schoolMAIN[10]       -0.017   0.054   -0.139   -0.042   -0.009    0.008    0.083 1.017   820
## b.schoolMAIN[11]       -0.043   0.064   -0.196   -0.079   -0.026    0.000    0.050 1.014   220
## b.schoolMAIN[12]        0.050   0.064   -0.036    0.002    0.036    0.083    0.192 1.043    83
## b.schoolMAIN[13]        0.029   0.054   -0.055   -0.002    0.017    0.053    0.156 1.033   210
## b.schoolMAIN.adj[1]     0.028   0.049   -0.054   -0.002    0.016    0.055    0.147 1.016   190
## b.schoolMAIN.adj[2]     0.018   0.049   -0.071   -0.008    0.008    0.044    0.134 1.023   220
## b.schoolMAIN.adj[3]    -0.007   0.048   -0.113   -0.031   -0.002    0.016    0.087 1.010  1200
## b.schoolMAIN.adj[4]    -0.004   0.049   -0.110   -0.028   -0.001    0.019    0.100 1.012   880
## b.schoolMAIN.adj[5]    -0.006   0.062   -0.146   -0.031   -0.001    0.021    0.117 1.014  3600
## b.schoolMAIN.adj[6]    -0.001   0.054   -0.113   -0.025    0.000    0.022    0.114 1.010  3600
## b.schoolMAIN.adj[7]    -0.023   0.050   -0.141   -0.049   -0.013    0.005    0.067 1.017   260
## b.schoolMAIN.adj[8]    -0.030   0.052   -0.152   -0.058   -0.018    0.001    0.055 1.015   240
## b.schoolMAIN.adj[9]     0.016   0.052   -0.084   -0.012    0.006    0.041    0.139 1.007  1200
## b.schoolMAIN.adj[10]   -0.019   0.049   -0.134   -0.044   -0.010    0.006    0.073 1.015   340
## b.schoolMAIN.adj[11]   -0.045   0.063   -0.198   -0.081   -0.028   -0.001    0.045 1.022   140
## b.schoolMAIN.adj[12]    0.048   0.055   -0.030    0.003    0.037    0.083    0.176 1.029    93
## b.schoolMAIN.adj[13]    0.027   0.046   -0.051   -0.001    0.017    0.052    0.136 1.010   440
## b.znas8                 0.058   0.021    0.018    0.045    0.058    0.072    0.102 1.022   120
## mu                      0.656   0.042    0.578    0.636    0.659    0.681    0.725 1.073   120
## mu.adj                  0.658   0.031    0.595    0.638    0.659    0.679    0.717 1.015   180
## sigma.epsilon           0.435   0.039    0.362    0.409    0.435    0.461    0.514 1.036    78
## sigma.schoolMAIN        0.058   0.043    0.001    0.028    0.053    0.080    0.150 1.283    18
## sigma.znas8            48.957  28.584    2.122   24.232   49.053   73.151   97.198 1.001  3600
## deviance             9471.816  44.947 9384.761 9441.019 9471.726 9503.325 9560.992 1.015   180
## 
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
## 
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 994.2 and DIC = 10466.0
## DIC is an estimate of expected predictive error (lower deviance is better).

plot(Q1mBBs.fit)

plot of chunk unnamed-chunk-2

# autocorr.plot(sfit.mcmc)
library(R2jags)
sfit.mcmc <- as.mcmc(Q1mBBs.fit)
summary(sfit.mcmc)
## 
## Iterations = 1:900
## Thinning interval = 1 
## Number of chains = 4 
## Sample size per chain = 900 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                           Mean      SD Naive SE Time-series SE
## b.schoolMAIN[1]       3.00e-02  0.0591 0.000984        0.00337
## b.schoolMAIN[2]       1.98e-02  0.0553 0.000922        0.00265
## b.schoolMAIN[3]      -5.19e-03  0.0531 0.000885        0.00180
## b.schoolMAIN[4]      -2.46e-03  0.0558 0.000930        0.00201
## b.schoolMAIN[5]      -4.54e-03  0.0650 0.001084        0.00175
## b.schoolMAIN[6]       4.39e-04  0.0593 0.000989        0.00203
## b.schoolMAIN[7]      -2.14e-02  0.0542 0.000903        0.00233
## b.schoolMAIN[8]      -2.79e-02  0.0561 0.000936        0.00246
## b.schoolMAIN[9]       1.75e-02  0.0603 0.001005        0.00261
## b.schoolMAIN[10]     -1.72e-02  0.0540 0.000900        0.00209
## b.schoolMAIN[11]     -4.30e-02  0.0637 0.001062        0.00385
## b.schoolMAIN[12]      5.01e-02  0.0644 0.001074        0.00482
## b.schoolMAIN[13]      2.86e-02  0.0541 0.000902        0.00290
## b.schoolMAIN.adj[1]   2.81e-02  0.0491 0.000818        0.00206
## b.schoolMAIN.adj[2]   1.79e-02  0.0490 0.000816        0.00163
## b.schoolMAIN.adj[3]  -7.09e-03  0.0477 0.000795        0.00122
## b.schoolMAIN.adj[4]  -4.36e-03  0.0491 0.000818        0.00127
## b.schoolMAIN.adj[5]  -6.45e-03  0.0617 0.001028        0.00157
## b.schoolMAIN.adj[6]  -1.46e-03  0.0535 0.000892        0.00121
## b.schoolMAIN.adj[7]  -2.33e-02  0.0503 0.000839        0.00203
## b.schoolMAIN.adj[8]  -2.98e-02  0.0518 0.000864        0.00207
## b.schoolMAIN.adj[9]   1.56e-02  0.0521 0.000869        0.00160
## b.schoolMAIN.adj[10] -1.91e-02  0.0486 0.000811        0.00134
## b.schoolMAIN.adj[11] -4.49e-02  0.0629 0.001048        0.00413
## b.schoolMAIN.adj[12]  4.82e-02  0.0554 0.000924        0.00425
## b.schoolMAIN.adj[13]  2.67e-02  0.0460 0.000767        0.00203
## b.znas8               5.84e-02  0.0207 0.000345        0.00111
## deviance              9.47e+03 44.9475 0.749124        2.88412
## mu                    6.56e-01  0.0421 0.000701        0.00252
## mu.adj                6.58e-01  0.0310 0.000517        0.00138
## sigma.epsilon         4.35e-01  0.0387 0.000645        0.00393
## sigma.schoolMAIN      5.80e-02  0.0426 0.000711        0.00504
## sigma.znas8           4.90e+01 28.5841 0.476402        0.47648
## 
## 2. Quantiles for each variable:
## 
##                           2.5%       25%       50%       75%    97.5%
## b.schoolMAIN[1]      -5.77e-02 -2.87e-03  1.65e-02  5.55e-02 1.64e-01
## b.schoolMAIN[2]      -7.88e-02 -8.94e-03  7.39e-03  4.64e-02 1.46e-01
## b.schoolMAIN[3]      -1.16e-01 -3.09e-02 -1.69e-03  1.96e-02 9.69e-02
## b.schoolMAIN[4]      -1.17e-01 -2.89e-02 -1.09e-03  2.06e-02 1.15e-01
## b.schoolMAIN[5]      -1.49e-01 -3.18e-02 -8.20e-04  2.34e-02 1.32e-01
## b.schoolMAIN[6]      -1.18e-01 -2.65e-02 -5.81e-05  2.55e-02 1.27e-01
## b.schoolMAIN[7]      -1.45e-01 -5.00e-02 -1.18e-02  6.55e-03 8.08e-02
## b.schoolMAIN[8]      -1.57e-01 -5.83e-02 -1.66e-02  3.01e-03 6.96e-02
## b.schoolMAIN[9]      -8.80e-02 -1.26e-02  6.62e-03  4.17e-02 1.55e-01
## b.schoolMAIN[10]     -1.39e-01 -4.23e-02 -9.33e-03  7.95e-03 8.32e-02
## b.schoolMAIN[11]     -1.96e-01 -7.92e-02 -2.56e-02 -5.91e-05 5.03e-02
## b.schoolMAIN[12]     -3.57e-02  2.47e-03  3.63e-02  8.32e-02 1.92e-01
## b.schoolMAIN[13]     -5.55e-02 -1.88e-03  1.69e-02  5.27e-02 1.56e-01
## b.schoolMAIN.adj[1]  -5.37e-02 -1.98e-03  1.60e-02  5.47e-02 1.47e-01
## b.schoolMAIN.adj[2]  -7.06e-02 -7.83e-03  7.77e-03  4.36e-02 1.34e-01
## b.schoolMAIN.adj[3]  -1.13e-01 -3.05e-02 -1.97e-03  1.65e-02 8.66e-02
## b.schoolMAIN.adj[4]  -1.10e-01 -2.85e-02 -1.23e-03  1.88e-02 9.96e-02
## b.schoolMAIN.adj[5]  -1.46e-01 -3.15e-02 -1.07e-03  2.13e-02 1.17e-01
## b.schoolMAIN.adj[6]  -1.13e-01 -2.54e-02 -3.09e-04  2.22e-02 1.14e-01
## b.schoolMAIN.adj[7]  -1.41e-01 -4.94e-02 -1.31e-02  4.58e-03 6.72e-02
## b.schoolMAIN.adj[8]  -1.52e-01 -5.75e-02 -1.85e-02  1.46e-03 5.47e-02
## b.schoolMAIN.adj[9]  -8.38e-02 -1.16e-02  6.30e-03  4.08e-02 1.39e-01
## b.schoolMAIN.adj[10] -1.34e-01 -4.36e-02 -1.03e-02  5.88e-03 7.29e-02
## b.schoolMAIN.adj[11] -1.98e-01 -8.10e-02 -2.82e-02 -5.87e-04 4.51e-02
## b.schoolMAIN.adj[12] -3.05e-02  3.07e-03  3.69e-02  8.30e-02 1.76e-01
## b.schoolMAIN.adj[13] -5.06e-02 -1.36e-03  1.73e-02  5.20e-02 1.36e-01
## b.znas8               1.84e-02  4.49e-02  5.80e-02  7.16e-02 1.02e-01
## deviance              9.38e+03  9.44e+03  9.47e+03  9.50e+03 9.56e+03
## mu                    5.78e-01  6.36e-01  6.59e-01  6.81e-01 7.25e-01
## mu.adj                5.95e-01  6.38e-01  6.59e-01  6.79e-01 7.17e-01
## sigma.epsilon         3.62e-01  4.09e-01  4.35e-01  4.61e-01 5.14e-01
## sigma.schoolMAIN      1.31e-03  2.77e-02  5.35e-02  7.99e-02 1.50e-01
## sigma.znas8           2.12e+00  2.42e+01  4.91e+01  7.32e+01 9.72e+01
xyplot(sfit.mcmc, layout = c(2, 10), aspect = "fill")

plot of chunk unnamed-chunk-3 plot of chunk unnamed-chunk-3

densityplot(sfit.mcmc)

plot of chunk unnamed-chunk-4

Two-level model 2: Adding class (ignoring school in this model)

options(width = 200)


Q1mBBc.model <- function() {
    for (i in 1:n) {
        znas8[i] ~ dnorm(0, 0.01)
        Q1_male[i] ~ dpois(lambda[i])
        log(lambda[i]) <- mu + b.znas8 * znas8[i] + b.boys[n_boys[i]] + epsilon[i]
        epsilon[i] ~ dnorm(0, tau.epsilon)
    }
    mu ~ dnorm(0, 1e-04)
    mu.adj <- mu + mean(b.boys[])
    tau.epsilon <- pow(sigma.epsilon, -2)
    sigma.epsilon ~ dunif(0, 100)
    b.znas8 ~ dnorm(0, 0.01)
    tau.znas8 <- pow(sigma.znas8, -2)
    sigma.znas8 ~ dunif(0, 100)
    for (j in 1:n.boys) {
        b.boys[j] ~ dnorm(0, tau.boys)
        b.boys.adj[j] <- b.boys[j] - mean(b.boys[])
    }
    tau.boys <- pow(sigma.boys, -2)
    sigma.boys ~ dunif(0, 100)
}

library(R2jags)
n <- length(Boys$id)  # of Y10 survey respondents
n.boys <- length(unique(Boys$n_boys))
Q1_male <- Boys$Q1_male
znas8 <- Boys$znas8
n_boys <- as.factor(Boys$zboys)
Q1mBBc.data <- list("n", "n.boys", "Q1_male", "znas8", "n_boys")
Q1mBBc.params <- c("mu", "mu.adj", "b.znas8", "b.boys", "b.boys.adj", "sigma.znas8", "sigma.boys", "sigma.epsilon")
Q1mBBc.inits <- function() {
    list(b.znas8 = c(0), b.boys = rnorm(n.boys))
}
set.seed(500)
Q1mBBc.fit <- jags(data = Q1mBBc.data, inits = Q1mBBc.inits, Q1mBBc.params, model.file = Q1mBBc.model, n.chains = 4, n.iter = 1000, n.burnin = 100)
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
##    Graph Size: 6140
## 
## Initializing model

print(Q1mBBc.fit)
## Inference for Bugs model at "/var/folders/mn/jsy0lvks0117hn0pl7ysl4380000gp/T//Rtmp1SRtO7/model56ec38ad4ef4.txt", fit using jags,
##  4 chains, each with 1000 iterations (first 100 discarded)
##  n.sims = 3600 iterations saved
##                 mu.vect sd.vect     2.5%      25%      50%      75%    97.5%  Rhat n.eff
## b.boys[1]        -0.028   0.083   -0.233   -0.055   -0.009    0.011    0.100 1.032   190
## b.boys[2]        -0.051   0.099   -0.328   -0.079   -0.019    0.003    0.068 1.047   100
## b.boys[3]         0.007   0.068   -0.119   -0.021    0.002    0.031    0.156 1.027  2000
## b.boys[4]         0.020   0.073   -0.107   -0.013    0.007    0.044    0.199 1.035   380
## b.boys[5]        -0.008   0.063   -0.148   -0.034   -0.003    0.020    0.112 1.021   790
## b.boys[6]         0.029   0.071   -0.076   -0.007    0.011    0.054    0.204 1.055   110
## b.boys[7]        -0.033   0.061   -0.174   -0.064   -0.019    0.002    0.065 1.038   120
## b.boys[8]        -0.013   0.058   -0.141   -0.038   -0.006    0.013    0.094 1.021   500
## b.boys[9]         0.000   0.055   -0.115   -0.026   -0.001    0.024    0.119 1.017  1800
## b.boys[10]        0.017   0.056   -0.082   -0.010    0.008    0.042    0.142 1.037   210
## b.boys[11]       -0.020   0.070   -0.182   -0.048   -0.007    0.012    0.103 1.025   250
## b.boys[12]       -0.014   0.056   -0.142   -0.040   -0.007    0.012    0.085 1.030   230
## b.boys[13]       -0.009   0.060   -0.152   -0.035   -0.003    0.016    0.109 1.019  1200
## b.boys[14]       -0.027   0.068   -0.188   -0.054   -0.013    0.007    0.078 1.027   170
## b.boys[15]        0.033   0.082   -0.083   -0.007    0.012    0.061    0.234 1.049   160
## b.boys[16]       -0.046   0.088   -0.288   -0.076   -0.019    0.003    0.076 1.048    78
## b.boys[17]        0.007   0.064   -0.114   -0.023    0.002    0.031    0.153 1.022  1100
## b.boys[18]       -0.003   0.059   -0.125   -0.029   -0.002    0.020    0.123 1.025  3600
## b.boys[19]        0.013   0.058   -0.083   -0.015    0.005    0.036    0.144 1.031   950
## b.boys[20]        0.013   0.064   -0.104   -0.017    0.004    0.037    0.162 1.030   370
## b.boys[21]        0.027   0.072   -0.086   -0.009    0.010    0.051    0.201 1.039   150
## b.boys[22]        0.052   0.076   -0.036    0.002    0.030    0.082    0.242 1.063    74
## b.boys[23]        0.019   0.067   -0.097   -0.014    0.006    0.045    0.176 1.031   260
## b.boys[24]        0.047   0.072   -0.048    0.000    0.025    0.079    0.220 1.055    74
## b.boys.adj[1]    -0.029   0.084   -0.237   -0.057   -0.010    0.011    0.096 1.036   170
## b.boys.adj[2]    -0.052   0.102   -0.334   -0.082   -0.019    0.003    0.065 1.056   100
## b.boys.adj[3]     0.006   0.062   -0.123   -0.021    0.002    0.030    0.151 1.024  1200
## b.boys.adj[4]     0.019   0.067   -0.106   -0.013    0.006    0.044    0.191 1.024   420
## b.boys.adj[5]    -0.009   0.060   -0.149   -0.033   -0.003    0.018    0.108 1.021   410
## b.boys.adj[6]     0.028   0.064   -0.075   -0.006    0.011    0.054    0.191 1.050    98
## b.boys.adj[7]    -0.034   0.056   -0.168   -0.064   -0.020    0.001    0.055 1.036   100
## b.boys.adj[8]    -0.014   0.052   -0.137   -0.037   -0.006    0.012    0.082 1.020   510
## b.boys.adj[9]    -0.002   0.051   -0.113   -0.025   -0.001    0.022    0.109 1.011  3600
## b.boys.adj[10]    0.016   0.049   -0.082   -0.009    0.009    0.040    0.131 1.023   210
## b.boys.adj[11]   -0.021   0.068   -0.188   -0.046   -0.008    0.011    0.098 1.024   230
## b.boys.adj[12]   -0.016   0.051   -0.138   -0.040   -0.008    0.011    0.079 1.026   230
## b.boys.adj[13]   -0.011   0.056   -0.145   -0.033   -0.003    0.016    0.095 1.017  1300
## b.boys.adj[14]   -0.028   0.063   -0.186   -0.054   -0.014    0.006    0.068 1.027   150
## b.boys.adj[15]    0.032   0.074   -0.079   -0.006    0.012    0.058    0.227 1.033   160
## b.boys.adj[16]   -0.048   0.091   -0.295   -0.075   -0.018    0.003    0.068 1.047    81
## b.boys.adj[17]    0.005   0.060   -0.119   -0.022    0.001    0.031    0.143 1.017  1400
## b.boys.adj[18]   -0.004   0.055   -0.127   -0.030   -0.002    0.020    0.112 1.015  3600
## b.boys.adj[19]    0.012   0.050   -0.083   -0.015    0.005    0.035    0.129 1.013   920
## b.boys.adj[20]    0.012   0.058   -0.101   -0.016    0.004    0.036    0.153 1.017   500
## b.boys.adj[21]    0.025   0.065   -0.081   -0.008    0.010    0.050    0.197 1.028   150
## b.boys.adj[22]    0.051   0.069   -0.034    0.002    0.030    0.082    0.232 1.059    62
## b.boys.adj[23]    0.017   0.062   -0.096   -0.014    0.007    0.044    0.170 1.021   310
## b.boys.adj[24]    0.045   0.065   -0.043    0.000    0.026    0.078    0.215 1.050    65
## b.znas8           0.059   0.020    0.021    0.046    0.059    0.072    0.101 1.014   200
## mu                0.661   0.039    0.592    0.641    0.663    0.685    0.725 1.093   580
## mu.adj            0.662   0.031    0.601    0.642    0.663    0.683    0.722 1.003  1100
## sigma.boys        0.062   0.051    0.003    0.024    0.051    0.086    0.182 1.128    30
## sigma.epsilon     0.429   0.036    0.352    0.406    0.430    0.453    0.494 1.029   120
## sigma.znas8      50.443  28.922    2.297   25.436   51.007   75.611   97.651 1.001  3600
## deviance       9475.433  43.133 9394.861 9445.884 9473.723 9503.671 9563.547 1.009   330
## 
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
## 
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 922.5 and DIC = 10397.9
## DIC is an estimate of expected predictive error (lower deviance is better).
plot(Q1mBBc.fit)

plot of chunk unnamed-chunk-5


cfit.mcmc <- as.mcmc(Q1mBBc.fit)
summary(cfit.mcmc)
## 
## Iterations = 1:900
## Thinning interval = 1 
## Number of chains = 4 
## Sample size per chain = 900 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                     Mean      SD Naive SE Time-series SE
## b.boys[1]      -2.81e-02  0.0826 0.001377        0.00369
## b.boys[2]      -5.07e-02  0.0988 0.001647        0.00705
## b.boys[3]       7.24e-03  0.0676 0.001126        0.00192
## b.boys[4]       2.04e-02  0.0728 0.001214        0.00316
## b.boys[5]      -7.63e-03  0.0627 0.001045        0.00181
## b.boys[6]       2.92e-02  0.0706 0.001177        0.00369
## b.boys[7]      -3.26e-02  0.0608 0.001014        0.00242
## b.boys[8]      -1.32e-02  0.0575 0.000959        0.00215
## b.boys[9]      -4.93e-04  0.0554 0.000924        0.00167
## b.boys[10]      1.74e-02  0.0561 0.000935        0.00235
## b.boys[11]     -2.02e-02  0.0702 0.001170        0.00236
## b.boys[12]     -1.44e-02  0.0560 0.000933        0.00233
## b.boys[13]     -9.27e-03  0.0603 0.001004        0.00227
## b.boys[14]     -2.70e-02  0.0680 0.001133        0.00275
## b.boys[15]      3.35e-02  0.0815 0.001359        0.00442
## b.boys[16]     -4.65e-02  0.0885 0.001474        0.00482
## b.boys[17]      6.51e-03  0.0639 0.001066        0.00152
## b.boys[18]     -2.91e-03  0.0591 0.000986        0.00190
## b.boys[19]      1.28e-02  0.0577 0.000962        0.00217
## b.boys[20]      1.29e-02  0.0644 0.001073        0.00283
## b.boys[21]      2.67e-02  0.0719 0.001198        0.00384
## b.boys[22]      5.19e-02  0.0758 0.001263        0.00550
## b.boys[23]      1.86e-02  0.0669 0.001115        0.00258
## b.boys[24]      4.65e-02  0.0723 0.001205        0.00433
## b.boys.adj[1]  -2.94e-02  0.0839 0.001399        0.00418
## b.boys.adj[2]  -5.20e-02  0.1021 0.001701        0.00817
## b.boys.adj[3]   5.95e-03  0.0624 0.001039        0.00133
## b.boys.adj[4]   1.91e-02  0.0672 0.001120        0.00264
## b.boys.adj[5]  -8.92e-03  0.0603 0.001005        0.00171
## b.boys.adj[6]   2.80e-02  0.0640 0.001066        0.00287
## b.boys.adj[7]  -3.39e-02  0.0558 0.000929        0.00256
## b.boys.adj[8]  -1.45e-02  0.0518 0.000863        0.00138
## b.boys.adj[9]  -1.78e-03  0.0510 0.000851        0.00114
## b.boys.adj[10]  1.61e-02  0.0491 0.000818        0.00181
## b.boys.adj[11] -2.15e-02  0.0679 0.001131        0.00263
## b.boys.adj[12] -1.57e-02  0.0515 0.000858        0.00151
## b.boys.adj[13] -1.05e-02  0.0558 0.000930        0.00157
## b.boys.adj[14] -2.82e-02  0.0626 0.001043        0.00250
## b.boys.adj[15]  3.22e-02  0.0744 0.001240        0.00374
## b.boys.adj[16] -4.78e-02  0.0907 0.001511        0.00534
## b.boys.adj[17]  5.23e-03  0.0600 0.001000        0.00130
## b.boys.adj[18] -4.19e-03  0.0552 0.000920        0.00117
## b.boys.adj[19]  1.15e-02  0.0503 0.000838        0.00157
## b.boys.adj[20]  1.16e-02  0.0576 0.000960        0.00193
## b.boys.adj[21]  2.54e-02  0.0648 0.001080        0.00362
## b.boys.adj[22]  5.07e-02  0.0686 0.001143        0.00471
## b.boys.adj[23]  1.74e-02  0.0618 0.001030        0.00179
## b.boys.adj[24]  4.52e-02  0.0654 0.001090        0.00389
## b.znas8         5.94e-02  0.0203 0.000339        0.00104
## deviance        9.48e+03 43.1334 0.718890        2.79290
## mu              6.61e-01  0.0392 0.000653        0.00223
## mu.adj          6.62e-01  0.0306 0.000510        0.00123
## sigma.boys      6.15e-02  0.0507 0.000845        0.00546
## sigma.epsilon   4.29e-01  0.0362 0.000603        0.00361
## sigma.znas8     5.04e+01 28.9221 0.482035        0.47312
## 
## 2. Quantiles for each variable:
## 
##                     2.5%       25%       50%      75%    97.5%
## b.boys[1]      -2.33e-01 -5.53e-02 -9.49e-03 1.10e-02 1.00e-01
## b.boys[2]      -3.28e-01 -7.95e-02 -1.89e-02 3.40e-03 6.84e-02
## b.boys[3]      -1.19e-01 -2.13e-02  1.57e-03 3.11e-02 1.56e-01
## b.boys[4]      -1.07e-01 -1.29e-02  6.76e-03 4.44e-02 1.99e-01
## b.boys[5]      -1.48e-01 -3.35e-02 -3.02e-03 1.96e-02 1.12e-01
## b.boys[6]      -7.61e-02 -7.13e-03  1.12e-02 5.37e-02 2.04e-01
## b.boys[7]      -1.74e-01 -6.45e-02 -1.90e-02 1.82e-03 6.52e-02
## b.boys[8]      -1.41e-01 -3.75e-02 -5.96e-03 1.27e-02 9.35e-02
## b.boys[9]      -1.15e-01 -2.60e-02 -8.19e-04 2.38e-02 1.19e-01
## b.boys[10]     -8.20e-02 -9.73e-03  8.28e-03 4.21e-02 1.42e-01
## b.boys[11]     -1.82e-01 -4.75e-02 -7.17e-03 1.23e-02 1.03e-01
## b.boys[12]     -1.42e-01 -4.05e-02 -7.16e-03 1.23e-02 8.48e-02
## b.boys[13]     -1.52e-01 -3.46e-02 -3.37e-03 1.64e-02 1.09e-01
## b.boys[14]     -1.88e-01 -5.44e-02 -1.33e-02 7.23e-03 7.83e-02
## b.boys[15]     -8.30e-02 -6.74e-03  1.24e-02 6.07e-02 2.34e-01
## b.boys[16]     -2.88e-01 -7.60e-02 -1.87e-02 2.98e-03 7.57e-02
## b.boys[17]     -1.14e-01 -2.27e-02  1.74e-03 3.14e-02 1.53e-01
## b.boys[18]     -1.25e-01 -2.91e-02 -2.12e-03 2.03e-02 1.23e-01
## b.boys[19]     -8.28e-02 -1.52e-02  4.92e-03 3.58e-02 1.44e-01
## b.boys[20]     -1.04e-01 -1.66e-02  4.37e-03 3.69e-02 1.62e-01
## b.boys[21]     -8.64e-02 -8.84e-03  9.79e-03 5.13e-02 2.01e-01
## b.boys[22]     -3.63e-02  1.86e-03  2.99e-02 8.22e-02 2.42e-01
## b.boys[23]     -9.69e-02 -1.41e-02  5.85e-03 4.47e-02 1.76e-01
## b.boys[24]     -4.77e-02 -2.20e-04  2.55e-02 7.93e-02 2.20e-01
## b.boys.adj[1]  -2.37e-01 -5.66e-02 -9.91e-03 1.10e-02 9.56e-02
## b.boys.adj[2]  -3.34e-01 -8.20e-02 -1.93e-02 3.32e-03 6.50e-02
## b.boys.adj[3]  -1.23e-01 -2.07e-02  1.72e-03 2.99e-02 1.51e-01
## b.boys.adj[4]  -1.06e-01 -1.26e-02  6.24e-03 4.43e-02 1.91e-01
## b.boys.adj[5]  -1.49e-01 -3.32e-02 -2.86e-03 1.83e-02 1.08e-01
## b.boys.adj[6]  -7.47e-02 -6.49e-03  1.15e-02 5.41e-02 1.91e-01
## b.boys.adj[7]  -1.68e-01 -6.45e-02 -2.00e-02 9.52e-04 5.45e-02
## b.boys.adj[8]  -1.37e-01 -3.72e-02 -5.90e-03 1.21e-02 8.18e-02
## b.boys.adj[9]  -1.13e-01 -2.52e-02 -1.04e-03 2.24e-02 1.09e-01
## b.boys.adj[10] -8.20e-02 -8.81e-03  8.60e-03 4.00e-02 1.31e-01
## b.boys.adj[11] -1.88e-01 -4.62e-02 -7.59e-03 1.15e-02 9.78e-02
## b.boys.adj[12] -1.38e-01 -4.02e-02 -8.02e-03 1.08e-02 7.85e-02
## b.boys.adj[13] -1.45e-01 -3.34e-02 -3.42e-03 1.56e-02 9.50e-02
## b.boys.adj[14] -1.86e-01 -5.39e-02 -1.38e-02 6.10e-03 6.85e-02
## b.boys.adj[15] -7.92e-02 -6.25e-03  1.21e-02 5.81e-02 2.27e-01
## b.boys.adj[16] -2.95e-01 -7.55e-02 -1.83e-02 3.25e-03 6.81e-02
## b.boys.adj[17] -1.19e-01 -2.19e-02  1.18e-03 3.10e-02 1.43e-01
## b.boys.adj[18] -1.27e-01 -2.96e-02 -2.13e-03 2.01e-02 1.12e-01
## b.boys.adj[19] -8.32e-02 -1.47e-02  5.13e-03 3.49e-02 1.29e-01
## b.boys.adj[20] -1.01e-01 -1.62e-02  4.23e-03 3.64e-02 1.53e-01
## b.boys.adj[21] -8.10e-02 -8.34e-03  9.81e-03 5.01e-02 1.97e-01
## b.boys.adj[22] -3.42e-02  2.08e-03  3.04e-02 8.24e-02 2.32e-01
## b.boys.adj[23] -9.62e-02 -1.41e-02  6.62e-03 4.36e-02 1.70e-01
## b.boys.adj[24] -4.31e-02  2.22e-04  2.57e-02 7.78e-02 2.15e-01
## b.znas8         2.10e-02  4.58e-02  5.85e-02 7.17e-02 1.01e-01
## deviance        9.39e+03  9.45e+03  9.47e+03 9.50e+03 9.56e+03
## mu              5.92e-01  6.41e-01  6.63e-01 6.85e-01 7.25e-01
## mu.adj          6.01e-01  6.42e-01  6.63e-01 6.83e-01 7.22e-01
## sigma.boys      3.04e-03  2.37e-02  5.06e-02 8.64e-02 1.82e-01
## sigma.epsilon   3.52e-01  4.06e-01  4.30e-01 4.53e-01 4.94e-01
## sigma.znas8     2.30e+00  2.54e+01  5.10e+01 7.56e+01 9.77e+01

# autocorr.plot(cfit.mcmc)
xyplot(cfit.mcmc, layout = c(2, 15), aspect = "fill")

plot of chunk unnamed-chunk-6 plot of chunk unnamed-chunk-6

densityplot(cfit.mcmc, layout = c(3, 10), aspect = "fill")

plot of chunk unnamed-chunk-7 plot of chunk unnamed-chunk-7

Three-level Bayesian Piosson model: students nested in classes nested in schools

I'm so proud of this one!

options(width = 200)

Q1mBBf.model <- function() {
    for (i in 1:n) {
        znas8[i] ~ dnorm(0, 0.01)
        Q1_male[i] ~ dpois(lambda[i])
        log(lambda[i]) <- mu + b.znas8 * znas8[i] + b.schoolMAIN[school[i]] + b.boys[zboys[i]] + epsilon[i]
        epsilon[i] ~ dnorm(0, tau.epsilon)
    }
    mu ~ dnorm(0, 1e-04)
    mu.adj <- mu + mean(b.schoolMAIN[])
    tau.epsilon <- pow(sigma.epsilon, -2)
    sigma.epsilon ~ dunif(0, 100)
    b.znas8 ~ dnorm(0, 0.01)
    tau.znas8 <- pow(sigma.znas8, -2)
    sigma.znas8 ~ dunif(0, 100)
    for (j in 1:n.boys) {
        b.boys[j] ~ dnorm(0, tau.boys)
        b.boys.adj[j] <- b.boys[j] - mean(b.boys[])
    }
    tau.boys <- pow(sigma.boys, -2)
    sigma.boys ~ dunif(0, 100)
    for (j in 1:n.school) {
        b.schoolMAIN[j] ~ dnorm(0, tau.schoolMAIN)
        b.schoolMAIN.adj[j] <- b.schoolMAIN[j] - mean(b.schoolMAIN[])
    }
    tau.schoolMAIN <- pow(sigma.schoolMAIN, -2)
    sigma.schoolMAIN ~ dunif(0, 100)
}

library(R2jags)
n <- length(Boys$id)
n.boys <- length(unique(Boys$zboys))
n.school <- length(unique(Boys$schoolMAIN))
Q1_male <- Boys$Q1_male
znas8 <- Boys$znas8
zboys <- Boys$zboys
school <- Boys$school
Q1mBBf.data <- list("n", "n.boys", "n.school", "Q1_male", "znas8", "zboys", "school")
Q1mBBf.params <- c("mu", "mu.adj", "b.znas8", "b.boys", "b.boys.adj", "b.schoolMAIN", "b.schoolMAIN.adj", "sigma.znas8", "sigma.boys", "sigma.schoolMAIN", "sigma.epsilon")
Q1mBBf.inits <- function() {
    list(b.znas8 = c(0), b.boys = rnorm(n.boys), b.schoolMAIN = rnorm(n.school))
}
set.seed(999)
Q1mBBf.fit <- jags(data = Q1mBBf.data, inits = Q1mBBf.inits, Q1mBBf.params, model.file = Q1mBBf.model, n.chains = 4, n.iter = 1000, n.burnin = 100)
## Compiling model graph
##    Resolving undeclared variables
##    Allocating nodes
##    Graph Size: 7164
## 
## Initializing model

print(Q1mBBf.fit)
## Inference for Bugs model at "/var/folders/mn/jsy0lvks0117hn0pl7ysl4380000gp/T//Rtmp1SRtO7/model56ec7a1a923d.txt", fit using jags,
##  4 chains, each with 1000 iterations (first 100 discarded)
##  n.sims = 3600 iterations saved
##                       mu.vect sd.vect     2.5%      25%      50%      75%    97.5%  Rhat n.eff
## b.boys[1]              -0.025   0.078   -0.219   -0.058   -0.011    0.015    0.111 1.020   340
## b.boys[2]              -0.053   0.091   -0.305   -0.087   -0.028    0.002    0.067 1.048    95
## b.boys[3]               0.004   0.068   -0.138   -0.028    0.002    0.036    0.156 1.015  3600
## b.boys[4]               0.020   0.072   -0.116   -0.016    0.011    0.054    0.193 1.021   410
## b.boys[5]              -0.011   0.065   -0.160   -0.042   -0.006    0.022    0.113 1.008  1500
## b.boys[6]               0.033   0.071   -0.083   -0.008    0.018    0.066    0.201 1.035   130
## b.boys[7]              -0.035   0.061   -0.183   -0.067   -0.024    0.003    0.066 1.020   190
## b.boys[8]              -0.012   0.061   -0.150   -0.041   -0.006    0.019    0.105 1.014  1200
## b.boys[9]               0.002   0.057   -0.115   -0.028    0.001    0.032    0.124 1.017  3600
## b.boys[10]              0.024   0.057   -0.074   -0.010    0.014    0.054    0.164 1.031   150
## b.boys[11]             -0.017   0.073   -0.191   -0.050   -0.008    0.019    0.118 1.020   500
## b.boys[12]             -0.015   0.057   -0.146   -0.045   -0.009    0.015    0.092 1.010   680
## b.boys[13]             -0.004   0.063   -0.146   -0.033   -0.002    0.027    0.121 1.021   710
## b.boys[14]             -0.033   0.066   -0.199   -0.068   -0.018    0.007    0.076 1.030   160
## b.boys[15]              0.031   0.074   -0.092   -0.011    0.016    0.065    0.209 1.031   150
## b.boys[16]             -0.045   0.081   -0.249   -0.079   -0.024    0.004    0.074 1.039    96
## b.boys[17]              0.007   0.068   -0.125   -0.028    0.003    0.037    0.165 1.021  1700
## b.boys[18]             -0.009   0.062   -0.146   -0.042   -0.004    0.024    0.116 1.013  1200
## b.boys[19]              0.008   0.057   -0.105   -0.022    0.004    0.036    0.141 1.023   300
## b.boys[20]              0.015   0.061   -0.102   -0.016    0.008    0.045    0.159 1.016   630
## b.boys[21]              0.022   0.069   -0.104   -0.015    0.011    0.056    0.184 1.030   270
## b.boys[22]              0.050   0.069   -0.058    0.001    0.034    0.089    0.212 1.034    97
## b.boys[23]              0.019   0.069   -0.112   -0.017    0.009    0.052    0.184 1.026   330
## b.boys[24]              0.049   0.071   -0.052    0.001    0.031    0.087    0.220 1.046    77
## b.boys.adj[1]          -0.026   0.077   -0.211   -0.060   -0.012    0.014    0.105 1.022   290
## b.boys.adj[2]          -0.054   0.091   -0.296   -0.090   -0.029    0.001    0.064 1.052    88
## b.boys.adj[3]           0.003   0.067   -0.139   -0.027    0.001    0.034    0.151 1.014  3600
## b.boys.adj[4]           0.019   0.069   -0.114   -0.016    0.010    0.052    0.180 1.019   460
## b.boys.adj[5]          -0.012   0.064   -0.160   -0.042   -0.007    0.020    0.111 1.009  1100
## b.boys.adj[6]           0.032   0.067   -0.077   -0.008    0.018    0.063    0.197 1.033   120
## b.boys.adj[7]          -0.036   0.059   -0.181   -0.067   -0.025    0.001    0.062 1.022   160
## b.boys.adj[8]          -0.013   0.057   -0.147   -0.042   -0.007    0.018    0.095 1.012   800
## b.boys.adj[9]           0.001   0.055   -0.113   -0.028    0.000    0.030    0.116 1.015  3600
## b.boys.adj[10]          0.023   0.055   -0.069   -0.009    0.014    0.053    0.154 1.026   160
## b.boys.adj[11]         -0.018   0.070   -0.189   -0.051   -0.009    0.016    0.112 1.019   400
## b.boys.adj[12]         -0.016   0.054   -0.143   -0.044   -0.010    0.014    0.085 1.010   520
## b.boys.adj[13]         -0.005   0.061   -0.147   -0.033   -0.002    0.026    0.117 1.021   530
## b.boys.adj[14]         -0.034   0.064   -0.191   -0.068   -0.020    0.006    0.071 1.032   140
## b.boys.adj[15]          0.030   0.072   -0.089   -0.011    0.015    0.063    0.204 1.028   150
## b.boys.adj[16]         -0.046   0.079   -0.251   -0.080   -0.026    0.003    0.071 1.042    88
## b.boys.adj[17]          0.006   0.067   -0.132   -0.027    0.003    0.036    0.154 1.023  1800
## b.boys.adj[18]         -0.010   0.061   -0.143   -0.042   -0.005    0.023    0.108 1.014   820
## b.boys.adj[19]          0.007   0.054   -0.105   -0.021    0.004    0.033    0.134 1.021   320
## b.boys.adj[20]          0.014   0.059   -0.100   -0.016    0.007    0.043    0.152 1.013   750
## b.boys.adj[21]          0.021   0.067   -0.103   -0.014    0.011    0.053    0.178 1.027   290
## b.boys.adj[22]          0.049   0.067   -0.055    0.002    0.034    0.086    0.207 1.034    97
## b.boys.adj[23]          0.018   0.067   -0.109   -0.017    0.009    0.051    0.173 1.026   350
## b.boys.adj[24]          0.048   0.069   -0.052    0.001    0.031    0.083    0.216 1.046    77
## b.schoolMAIN[1]         0.024   0.055   -0.058   -0.007    0.012    0.046    0.149 1.032   610
## b.schoolMAIN[2]         0.021   0.055   -0.072   -0.008    0.011    0.042    0.149 1.023   250
## b.schoolMAIN[3]        -0.010   0.055   -0.135   -0.034   -0.005    0.015    0.098 1.002  1900
## b.schoolMAIN[4]        -0.001   0.051   -0.103   -0.025   -0.001    0.021    0.106 1.008   890
## b.schoolMAIN[5]         0.000   0.059   -0.123   -0.024   -0.001    0.023    0.129 1.006   990
## b.schoolMAIN[6]         0.001   0.056   -0.118   -0.023    0.000    0.025    0.121 1.005  2200
## b.schoolMAIN[7]        -0.017   0.052   -0.139   -0.043   -0.009    0.009    0.084 1.018   190
## b.schoolMAIN[8]        -0.023   0.054   -0.155   -0.048   -0.013    0.007    0.070 1.020   220
## b.schoolMAIN[9]         0.016   0.056   -0.079   -0.012    0.008    0.039    0.146 1.010  1100
## b.schoolMAIN[10]       -0.013   0.051   -0.131   -0.036   -0.007    0.013    0.087 1.009   810
## b.schoolMAIN[11]       -0.034   0.059   -0.186   -0.058   -0.019    0.002    0.054 1.018   170
## b.schoolMAIN[12]        0.040   0.063   -0.045    0.001    0.024    0.067    0.198 1.029   250
## b.schoolMAIN[13]        0.026   0.056   -0.060   -0.005    0.014    0.047    0.158 1.032   240
## b.schoolMAIN.adj[1]     0.021   0.047   -0.051   -0.006    0.011    0.045    0.134 1.005  1000
## b.schoolMAIN.adj[2]     0.018   0.048   -0.068   -0.008    0.010    0.041    0.134 1.009   420
## b.schoolMAIN.adj[3]    -0.012   0.051   -0.135   -0.034   -0.005    0.012    0.083 1.002  3600
## b.schoolMAIN.adj[4]    -0.003   0.046   -0.105   -0.025   -0.002    0.019    0.091 1.006  1700
## b.schoolMAIN.adj[5]    -0.002   0.055   -0.121   -0.025   -0.001    0.023    0.116 1.004  2200
## b.schoolMAIN.adj[6]    -0.001   0.052   -0.117   -0.023    0.000    0.021    0.109 1.006  1300
## b.schoolMAIN.adj[7]    -0.019   0.048   -0.136   -0.043   -0.010    0.007    0.067 1.015   250
## b.schoolMAIN.adj[8]    -0.025   0.052   -0.159   -0.050   -0.013    0.005    0.063 1.013   340
## b.schoolMAIN.adj[9]     0.014   0.049   -0.077   -0.012    0.007    0.037    0.130 1.007   870
## b.schoolMAIN.adj[10]   -0.015   0.048   -0.127   -0.037   -0.007    0.010    0.073 1.004  3600
## b.schoolMAIN.adj[11]   -0.036   0.057   -0.192   -0.059   -0.021    0.000    0.043 1.014   230
## b.schoolMAIN.adj[12]    0.037   0.055   -0.042    0.001    0.023    0.065    0.174 1.021   160
## b.schoolMAIN.adj[13]    0.023   0.046   -0.055   -0.005    0.013    0.046    0.135 1.010   280
## b.znas8                 0.059   0.020    0.020    0.045    0.058    0.072    0.100 1.002  1500
## mu                      0.654   0.046    0.566    0.629    0.657    0.683    0.728 1.059   440
## mu.adj                  0.656   0.037    0.582    0.633    0.657    0.681    0.724 1.003  3600
## sigma.boys              0.066   0.042    0.007    0.035    0.058    0.093    0.159 1.190    21
## sigma.epsilon           0.426   0.037    0.350    0.402    0.427    0.451    0.501 1.016   190
## sigma.schoolMAIN        0.054   0.040    0.005    0.025    0.045    0.072    0.149 1.082    48
## sigma.znas8            49.200  28.773    2.176   24.916   48.607   74.018   97.669 1.001  3600
## deviance             9476.712  43.896 9393.117 9447.341 9475.894 9505.949 9563.689 1.005   560
## 
## For each parameter, n.eff is a crude measure of effective sample size,
## and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
## 
## DIC info (using the rule, pD = var(deviance)/2)
## pD = 959.0 and DIC = 10435.7
## DIC is an estimate of expected predictive error (lower deviance is better).

ffit.mcmc <- as.mcmc(Q1mBBf.fit)
summary(ffit.mcmc)
## 
## Iterations = 1:900
## Thinning interval = 1 
## Number of chains = 4 
## Sample size per chain = 900 
## 
## 1. Empirical mean and standard deviation for each variable,
##    plus standard error of the mean:
## 
##                           Mean      SD Naive SE Time-series SE
## b.boys[1]            -2.51e-02  0.0778 0.001297       0.002629
## b.boys[2]            -5.35e-02  0.0910 0.001517       0.003948
## b.boys[3]             4.41e-03  0.0683 0.001139       0.001397
## b.boys[4]             2.01e-02  0.0717 0.001196       0.002226
## b.boys[5]            -1.13e-02  0.0647 0.001078       0.001482
## b.boys[6]             3.29e-02  0.0706 0.001176       0.002777
## b.boys[7]            -3.54e-02  0.0613 0.001022       0.002952
## b.boys[8]            -1.23e-02  0.0609 0.001015       0.002012
## b.boys[9]             2.08e-03  0.0574 0.000957       0.001600
## b.boys[10]            2.44e-02  0.0573 0.000954       0.002191
## b.boys[11]           -1.73e-02  0.0726 0.001210       0.001885
## b.boys[12]           -1.53e-02  0.0572 0.000953       0.001636
## b.boys[13]           -4.01e-03  0.0632 0.001053       0.001713
## b.boys[14]           -3.27e-02  0.0663 0.001105       0.002563
## b.boys[15]            3.11e-02  0.0738 0.001231       0.002560
## b.boys[16]           -4.49e-02  0.0807 0.001345       0.003531
## b.boys[17]            6.54e-03  0.0683 0.001139       0.001602
## b.boys[18]           -8.84e-03  0.0625 0.001041       0.001432
## b.boys[19]            7.76e-03  0.0570 0.000950       0.001514
## b.boys[20]            1.54e-02  0.0610 0.001017       0.001605
## b.boys[21]            2.21e-02  0.0690 0.001151       0.002258
## b.boys[22]            4.96e-02  0.0688 0.001147       0.003739
## b.boys[23]            1.86e-02  0.0687 0.001146       0.001846
## b.boys[24]            4.92e-02  0.0713 0.001188       0.004139
## b.boys.adj[1]        -2.61e-02  0.0769 0.001281       0.002710
## b.boys.adj[2]        -5.44e-02  0.0905 0.001509       0.004200
## b.boys.adj[3]         3.43e-03  0.0668 0.001113       0.001343
## b.boys.adj[4]         1.91e-02  0.0693 0.001154       0.001775
## b.boys.adj[5]        -1.23e-02  0.0638 0.001063       0.001467
## b.boys.adj[6]         3.19e-02  0.0672 0.001120       0.002479
## b.boys.adj[7]        -3.64e-02  0.0586 0.000977       0.002762
## b.boys.adj[8]        -1.33e-02  0.0574 0.000957       0.001732
## b.boys.adj[9]         1.09e-03  0.0547 0.000912       0.001363
## b.boys.adj[10]        2.35e-02  0.0546 0.000911       0.002065
## b.boys.adj[11]       -1.83e-02  0.0699 0.001165       0.002039
## b.boys.adj[12]       -1.63e-02  0.0543 0.000906       0.001382
## b.boys.adj[13]       -5.00e-03  0.0609 0.001015       0.001359
## b.boys.adj[14]       -3.37e-02  0.0641 0.001068       0.002555
## b.boys.adj[15]        3.01e-02  0.0720 0.001200       0.002564
## b.boys.adj[16]       -4.59e-02  0.0794 0.001323       0.004270
## b.boys.adj[17]        5.55e-03  0.0669 0.001114       0.001534
## b.boys.adj[18]       -9.82e-03  0.0605 0.001009       0.001370
## b.boys.adj[19]        6.77e-03  0.0545 0.000908       0.001388
## b.boys.adj[20]        1.44e-02  0.0587 0.000978       0.001505
## b.boys.adj[21]        2.11e-02  0.0668 0.001114       0.002165
## b.boys.adj[22]        4.86e-02  0.0666 0.001109       0.004007
## b.boys.adj[23]        1.76e-02  0.0666 0.001110       0.001762
## b.boys.adj[24]        4.83e-02  0.0691 0.001152       0.003858
## b.schoolMAIN[1]       2.36e-02  0.0550 0.000917       0.003648
## b.schoolMAIN[2]       2.07e-02  0.0552 0.000919       0.002728
## b.schoolMAIN[3]      -9.86e-03  0.0551 0.000918       0.001794
## b.schoolMAIN[4]      -9.87e-04  0.0513 0.000855       0.002275
## b.schoolMAIN[5]       3.90e-05  0.0588 0.000979       0.001798
## b.schoolMAIN[6]       7.91e-04  0.0556 0.000927       0.002050
## b.schoolMAIN[7]      -1.71e-02  0.0524 0.000874       0.002339
## b.schoolMAIN[8]      -2.29e-02  0.0544 0.000906       0.001975
## b.schoolMAIN[9]       1.62e-02  0.0563 0.000938       0.003508
## b.schoolMAIN[10]     -1.31e-02  0.0515 0.000858       0.001973
## b.schoolMAIN[11]     -3.36e-02  0.0586 0.000977       0.002455
## b.schoolMAIN[12]      3.96e-02  0.0629 0.001049       0.004848
## b.schoolMAIN[13]      2.55e-02  0.0557 0.000929       0.003461
## b.schoolMAIN.adj[1]   2.14e-02  0.0467 0.000778       0.002585
## b.schoolMAIN.adj[2]   1.85e-02  0.0481 0.000802       0.001528
## b.schoolMAIN.adj[3]  -1.21e-02  0.0507 0.000845       0.001277
## b.schoolMAIN.adj[4]  -3.21e-03  0.0459 0.000764       0.000921
## b.schoolMAIN.adj[5]  -2.18e-03  0.0554 0.000923       0.001193
## b.schoolMAIN.adj[6]  -1.43e-03  0.0519 0.000864       0.001186
## b.schoolMAIN.adj[7]  -1.94e-02  0.0482 0.000803       0.001570
## b.schoolMAIN.adj[8]  -2.51e-02  0.0524 0.000874       0.002684
## b.schoolMAIN.adj[9]   1.40e-02  0.0493 0.000822       0.001390
## b.schoolMAIN.adj[10] -1.54e-02  0.0477 0.000795       0.001627
## b.schoolMAIN.adj[11] -3.58e-02  0.0574 0.000957       0.002674
## b.schoolMAIN.adj[12]  3.73e-02  0.0546 0.000910       0.002897
## b.schoolMAIN.adj[13]  2.33e-02  0.0463 0.000772       0.002319
## b.znas8               5.89e-02  0.0200 0.000333       0.001024
## deviance              9.48e+03 43.8957 0.731595       3.378171
## mu                    6.54e-01  0.0459 0.000766       0.003750
## mu.adj                6.56e-01  0.0367 0.000612       0.001888
## sigma.boys            6.64e-02  0.0415 0.000692       0.004167
## sigma.epsilon         4.26e-01  0.0369 0.000614       0.003925
## sigma.schoolMAIN      5.36e-02  0.0405 0.000674       0.004041
## sigma.znas8           4.92e+01 28.7727 0.479544       0.473893
## 
## 2. Quantiles for each variable:
## 
##                           2.5%       25%       50%      75%    97.5%
## b.boys[1]            -2.19e-01 -5.79e-02 -1.08e-02 1.52e-02 1.11e-01
## b.boys[2]            -3.05e-01 -8.70e-02 -2.83e-02 1.69e-03 6.72e-02
## b.boys[3]            -1.38e-01 -2.83e-02  2.24e-03 3.56e-02 1.56e-01
## b.boys[4]            -1.16e-01 -1.58e-02  1.09e-02 5.35e-02 1.93e-01
## b.boys[5]            -1.60e-01 -4.18e-02 -5.61e-03 2.17e-02 1.13e-01
## b.boys[6]            -8.32e-02 -8.40e-03  1.79e-02 6.62e-02 2.01e-01
## b.boys[7]            -1.83e-01 -6.74e-02 -2.40e-02 2.58e-03 6.63e-02
## b.boys[8]            -1.50e-01 -4.07e-02 -6.31e-03 1.93e-02 1.05e-01
## b.boys[9]            -1.15e-01 -2.78e-02  8.03e-04 3.16e-02 1.24e-01
## b.boys[10]           -7.42e-02 -9.99e-03  1.42e-02 5.44e-02 1.64e-01
## b.boys[11]           -1.91e-01 -4.95e-02 -8.49e-03 1.90e-02 1.18e-01
## b.boys[12]           -1.46e-01 -4.47e-02 -8.63e-03 1.51e-02 9.25e-02
## b.boys[13]           -1.46e-01 -3.34e-02 -1.68e-03 2.70e-02 1.21e-01
## b.boys[14]           -1.99e-01 -6.83e-02 -1.80e-02 7.27e-03 7.56e-02
## b.boys[15]           -9.24e-02 -1.14e-02  1.56e-02 6.50e-02 2.09e-01
## b.boys[16]           -2.49e-01 -7.85e-02 -2.42e-02 4.29e-03 7.42e-02
## b.boys[17]           -1.25e-01 -2.82e-02  2.95e-03 3.66e-02 1.65e-01
## b.boys[18]           -1.46e-01 -4.17e-02 -4.10e-03 2.40e-02 1.16e-01
## b.boys[19]           -1.05e-01 -2.16e-02  4.08e-03 3.58e-02 1.41e-01
## b.boys[20]           -1.02e-01 -1.62e-02  8.01e-03 4.48e-02 1.59e-01
## b.boys[21]           -1.04e-01 -1.48e-02  1.13e-02 5.58e-02 1.84e-01
## b.boys[22]           -5.76e-02  1.38e-03  3.37e-02 8.87e-02 2.12e-01
## b.boys[23]           -1.12e-01 -1.72e-02  9.15e-03 5.24e-02 1.84e-01
## b.boys[24]           -5.20e-02  8.59e-04  3.10e-02 8.69e-02 2.20e-01
## b.boys.adj[1]        -2.11e-01 -6.03e-02 -1.16e-02 1.38e-02 1.05e-01
## b.boys.adj[2]        -2.96e-01 -9.03e-02 -2.85e-02 1.03e-03 6.38e-02
## b.boys.adj[3]        -1.39e-01 -2.74e-02  1.33e-03 3.41e-02 1.51e-01
## b.boys.adj[4]        -1.14e-01 -1.61e-02  9.78e-03 5.18e-02 1.80e-01
## b.boys.adj[5]        -1.60e-01 -4.23e-02 -6.80e-03 2.00e-02 1.11e-01
## b.boys.adj[6]        -7.72e-02 -7.62e-03  1.78e-02 6.26e-02 1.97e-01
## b.boys.adj[7]        -1.81e-01 -6.74e-02 -2.49e-02 7.67e-04 6.16e-02
## b.boys.adj[8]        -1.47e-01 -4.19e-02 -7.09e-03 1.76e-02 9.52e-02
## b.boys.adj[9]        -1.13e-01 -2.79e-02  4.85e-04 3.00e-02 1.16e-01
## b.boys.adj[10]       -6.88e-02 -8.57e-03  1.45e-02 5.27e-02 1.54e-01
## b.boys.adj[11]       -1.89e-01 -5.05e-02 -9.25e-03 1.63e-02 1.12e-01
## b.boys.adj[12]       -1.43e-01 -4.44e-02 -1.02e-02 1.38e-02 8.48e-02
## b.boys.adj[13]       -1.47e-01 -3.34e-02 -2.25e-03 2.62e-02 1.17e-01
## b.boys.adj[14]       -1.91e-01 -6.82e-02 -1.97e-02 6.40e-03 7.15e-02
## b.boys.adj[15]       -8.85e-02 -1.08e-02  1.45e-02 6.31e-02 2.04e-01
## b.boys.adj[16]       -2.51e-01 -7.99e-02 -2.61e-02 2.98e-03 7.11e-02
## b.boys.adj[17]       -1.32e-01 -2.72e-02  2.52e-03 3.58e-02 1.54e-01
## b.boys.adj[18]       -1.43e-01 -4.22e-02 -5.33e-03 2.30e-02 1.08e-01
## b.boys.adj[19]       -1.05e-01 -2.14e-02  3.77e-03 3.33e-02 1.34e-01
## b.boys.adj[20]       -9.95e-02 -1.63e-02  7.47e-03 4.29e-02 1.52e-01
## b.boys.adj[21]       -1.03e-01 -1.40e-02  1.07e-02 5.34e-02 1.78e-01
## b.boys.adj[22]       -5.47e-02  1.89e-03  3.36e-02 8.63e-02 2.07e-01
## b.boys.adj[23]       -1.09e-01 -1.68e-02  8.75e-03 5.14e-02 1.73e-01
## b.boys.adj[24]       -5.18e-02  8.63e-04  3.05e-02 8.26e-02 2.16e-01
## b.schoolMAIN[1]      -5.77e-02 -6.71e-03  1.19e-02 4.56e-02 1.49e-01
## b.schoolMAIN[2]      -7.24e-02 -8.12e-03  1.06e-02 4.18e-02 1.49e-01
## b.schoolMAIN[3]      -1.35e-01 -3.42e-02 -4.67e-03 1.53e-02 9.78e-02
## b.schoolMAIN[4]      -1.03e-01 -2.53e-02 -1.36e-03 2.10e-02 1.06e-01
## b.schoolMAIN[5]      -1.23e-01 -2.44e-02 -9.23e-04 2.29e-02 1.29e-01
## b.schoolMAIN[6]      -1.18e-01 -2.26e-02  3.94e-04 2.46e-02 1.21e-01
## b.schoolMAIN[7]      -1.39e-01 -4.29e-02 -9.48e-03 9.21e-03 8.40e-02
## b.schoolMAIN[8]      -1.55e-01 -4.81e-02 -1.25e-02 6.95e-03 6.96e-02
## b.schoolMAIN[9]      -7.90e-02 -1.21e-02  8.25e-03 3.86e-02 1.46e-01
## b.schoolMAIN[10]     -1.31e-01 -3.63e-02 -6.55e-03 1.27e-02 8.69e-02
## b.schoolMAIN[11]     -1.86e-01 -5.79e-02 -1.90e-02 2.08e-03 5.42e-02
## b.schoolMAIN[12]     -4.55e-02  5.40e-04  2.36e-02 6.68e-02 1.98e-01
## b.schoolMAIN[13]     -5.95e-02 -4.86e-03  1.41e-02 4.66e-02 1.58e-01
## b.schoolMAIN.adj[1]  -5.12e-02 -6.15e-03  1.12e-02 4.50e-02 1.34e-01
## b.schoolMAIN.adj[2]  -6.84e-02 -7.64e-03  1.00e-02 4.09e-02 1.34e-01
## b.schoolMAIN.adj[3]  -1.35e-01 -3.43e-02 -5.05e-03 1.22e-02 8.29e-02
## b.schoolMAIN.adj[4]  -1.05e-01 -2.48e-02 -2.00e-03 1.88e-02 9.14e-02
## b.schoolMAIN.adj[5]  -1.21e-01 -2.50e-02 -5.43e-04 2.25e-02 1.16e-01
## b.schoolMAIN.adj[6]  -1.17e-01 -2.29e-02 -1.94e-04 2.13e-02 1.09e-01
## b.schoolMAIN.adj[7]  -1.36e-01 -4.34e-02 -1.02e-02 7.03e-03 6.72e-02
## b.schoolMAIN.adj[8]  -1.59e-01 -4.98e-02 -1.32e-02 4.90e-03 6.30e-02
## b.schoolMAIN.adj[9]  -7.74e-02 -1.20e-02  7.18e-03 3.67e-02 1.30e-01
## b.schoolMAIN.adj[10] -1.27e-01 -3.70e-02 -7.40e-03 1.03e-02 7.32e-02
## b.schoolMAIN.adj[11] -1.92e-01 -5.89e-02 -2.10e-02 4.96e-04 4.27e-02
## b.schoolMAIN.adj[12] -4.19e-02  8.82e-04  2.32e-02 6.45e-02 1.74e-01
## b.schoolMAIN.adj[13] -5.51e-02 -4.62e-03  1.34e-02 4.56e-02 1.35e-01
## b.znas8               2.03e-02  4.52e-02  5.84e-02 7.21e-02 1.00e-01
## deviance              9.39e+03  9.45e+03  9.48e+03 9.51e+03 9.56e+03
## mu                    5.66e-01  6.29e-01  6.57e-01 6.83e-01 7.28e-01
## mu.adj                5.82e-01  6.33e-01  6.57e-01 6.81e-01 7.24e-01
## sigma.boys            7.03e-03  3.54e-02  5.76e-02 9.27e-02 1.59e-01
## sigma.epsilon         3.50e-01  4.02e-01  4.27e-01 4.51e-01 5.01e-01
## sigma.schoolMAIN      4.54e-03  2.55e-02  4.46e-02 7.25e-02 1.49e-01
## sigma.znas8           2.18e+00  2.49e+01  4.86e+01 7.40e+01 9.77e+01

# autocorr.plot(ffit.mcmc)
plot(Q1mBBf.fit)

plot of chunk unnamed-chunk-9

xyplot(ffit.mcmc, layout = c(2, 21), aspect = "fill")

plot of chunk unnamed-chunk-10 plot of chunk unnamed-chunk-10

densityplot(ffit.mcmc, layout = c(2, 21), aspect = "fill")

plot of chunk unnamed-chunk-11 plot of chunk unnamed-chunk-11

Compare to a 3-level glmer Piosson model

options(width = 200)

library(lme4)
library(influence.ME)
# students within classes within schools; using individual-level random variable to deal with overdispersion
M8 <- glmer(Q1_male ~ znas8 + (1 + znas8 | zboys) + (1 + znas8 | schoolMAIN) + (1 | id), family = poisson, data = Boys)
summary(M8)
## Generalized linear mixed model fit by maximum likelihood ['glmerMod']
##  Family: poisson ( log )
## Formula: Q1_male ~ znas8 + (1 + znas8 | zboys) + (1 + znas8 | schoolMAIN) +      (1 | id) 
##    Data: Boys 
## 
##      AIC      BIC   logLik deviance 
##     3555     3599    -1769     3537 
## 
## Random effects:
##  Groups     Name        Variance Std.Dev. Corr 
##  id         (Intercept) 1.90e-01 4.35e-01      
##  zboys      (Intercept) 1.86e-04 1.37e-02      
##             znas8       1.11e-03 3.34e-02 -1.00
##  schoolMAIN (Intercept) 3.42e-13 5.85e-07      
##             znas8       5.63e-11 7.50e-06 -0.62
## Number of obs: 947, groups: id, 947; zboys, 24; schoolMAIN, 13
## 
## Fixed effects:
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   0.6774     0.0271   24.95  < 2e-16 ***
## znas8         0.0963     0.0285    3.38  0.00074 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##       (Intr)
## znas8 -0.131
coef(M8)  # estimated model within each class (see $zboys coefficients)
## $id
##      (Intercept)   znas8
## 2         0.6620 0.09628
## 3         0.7925 0.09628
## 4         0.3804 0.09628
## 5         0.5456 0.09628
## 6         0.4052 0.09628
## 7         0.8185 0.09628
## 8         0.9403 0.09628
## 9         0.8478 0.09628
## 10        0.6398 0.09628
## 11        0.6779 0.09628
## 12        0.8243 0.09628
## 13        0.8261 0.09628
## 14        0.7791 0.09628
## 15        1.1274 0.09628
## 16        0.6727 0.09628
## 17        0.6692 0.09628
## 18        0.8068 0.09628
## 19        0.9189 0.09628
## 20        0.7019 0.09628
## 21        0.3530 0.09628
## 22        0.8322 0.09628
## 23        0.5583 0.09628
## 24        0.6789 0.09628
## 25        0.7630 0.09628
## 26        0.3766 0.09628
## 27        0.5743 0.09628
## 28        0.3778 0.09628
## 29        0.4105 0.09628
## 30        0.3804 0.09628
## 31        0.8262 0.09628
## 32        0.5234 0.09628
## 33        0.8791 0.09628
## 34        0.5298 0.09628
## 35        0.5091 0.09628
## 36        0.3738 0.09628
## 37        0.5182 0.09628
## 38        0.5582 0.09628
## 39        0.5549 0.09628
## 40        0.5358 0.09628
## 41        0.3724 0.09628
## 42        0.6290 0.09628
## 43        0.6914 0.09628
## 44        0.9318 0.09628
## 45        0.7992 0.09628
## 46        0.8173 0.09628
## 47        0.5703 0.09628
## 48        0.8068 0.09628
## 49        0.8484 0.09628
## 50        0.6796 0.09628
## 51        0.7667 0.09628
## 52        0.7705 0.09628
## 54        0.4027 0.09628
## 55        0.7546 0.09628
## 56        0.8243 0.09628
## 57        0.6757 0.09628
## 58        0.8963 0.09628
## 59        0.6820 0.09628
## 60        0.5527 0.09628
## 61        0.6461 0.09628
## 62        0.7100 0.09628
## 63        0.4060 0.09628
## 64        0.8104 0.09628
## 65        0.3589 0.09628
## 66        0.6510 0.09628
## 67        0.6945 0.09628
## 68        0.5610 0.09628
## 69        0.3530 0.09628
## 70        0.6903 0.09628
## 71        0.8265 0.09628
## 72        1.4972 0.09628
## 73        0.8484 0.09628
## 74        0.6883 0.09628
## 75        0.4182 0.09628
## 76        0.5500 0.09628
## 77        0.9189 0.09628
## 78        1.0844 0.09628
## 79        1.5402 0.09628
## 80        0.9549 0.09628
## 81        0.6595 0.09628
## 83        0.6933 0.09628
## 84        0.8335 0.09628
## 85        0.5637 0.09628
## 86        0.6914 0.09628
## 87        0.6868 0.09628
## 88        0.7214 0.09628
## 89        0.6833 0.09628
## 90        0.6725 0.09628
## 91        0.4078 0.09628
## 92        1.0762 0.09628
## 93        0.7006 0.09628
## 94        0.7913 0.09628
## 95        0.8068 0.09628
## 96        0.4190 0.09628
## 97        0.5234 0.09628
## 98        0.7751 0.09628
## 99        1.1684 0.09628
## 100       0.4078 0.09628
## 101       0.5234 0.09628
## 102       0.5549 0.09628
## 103       0.7132 0.09628
## 104       1.7468 0.09628
## 105       1.2961 0.09628
## 106       1.0646 0.09628
## 107       0.9933 0.09628
## 108       0.9242 0.09628
## 109       0.7040 0.09628
## 110       0.7992 0.09628
## 111       0.6692 0.09628
## 112       0.8226 0.09628
## 113       0.8210 0.09628
## 116       0.6881 0.09628
## 117       0.4161 0.09628
## 118       1.0097 0.09628
## 119       0.5532 0.09628
## 129       0.5668 0.09628
## 131       0.4344 0.09628
## 132       0.4864 0.09628
## 133       0.5755 0.09628
## 137       0.6728 0.09628
## 139       0.8883 0.09628
## 140       0.6390 0.09628
## 141       0.9320 0.09628
## 145       0.8384 0.09628
## 146       0.7065 0.09628
## 147       0.4194 0.09628
## 150       0.6866 0.09628
## 153       0.5263 0.09628
## 155       1.0844 0.09628
## 156       0.9498 0.09628
## 158       0.9289 0.09628
## 160       0.5549 0.09628
## 161       0.7587 0.09628
## 168       0.8198 0.09628
## 169       0.6179 0.09628
## 170       0.4098 0.09628
## 171       0.4009 0.09628
## 172       0.8157 0.09628
## 174       0.9453 0.09628
## 175       0.6546 0.09628
## 178       0.3854 0.09628
## 184       0.9520 0.09628
## 185       0.9587 0.09628
## 186       0.4326 0.09628
## 189       0.8392 0.09628
## 190       0.4131 0.09628
## 196       1.0554 0.09628
## 197       0.6840 0.09628
## 202       0.5469 0.09628
## 206       0.8178 0.09628
## 207       0.5401 0.09628
## 208       0.9656 0.09628
## 209       0.7078 0.09628
## 210       0.7699 0.09628
## 211       0.3829 0.09628
## 212       0.3819 0.09628
## 215       0.9704 0.09628
## 216       0.5656 0.09628
## 218       0.9315 0.09628
## 219       0.7065 0.09628
## 228       0.8032 0.09628
## 230       0.6571 0.09628
## 231       0.7137 0.09628
## 232       0.9540 0.09628
## 233       0.7902 0.09628
## 234       0.6725 0.09628
## 235       0.7164 0.09628
## 236       0.6852 0.09628
## 237       0.4985 0.09628
## 238       0.5053 0.09628
## 240       0.5986 0.09628
## 241       0.6914 0.09628
## 243       0.3937 0.09628
## 244       0.5622 0.09628
## 247       0.6892 0.09628
## 250       0.9453 0.09628
## 252       1.0709 0.09628
## 253       0.9034 0.09628
## 254       0.9804 0.09628
## 256       0.8193 0.09628
## 258       0.8492 0.09628
## 259       0.6947 0.09628
## 262       0.4202 0.09628
## 265       0.5332 0.09628
## 266       0.8073 0.09628
## 267       0.5104 0.09628
## 276       0.5467 0.09628
## 277       0.3676 0.09628
## 279       0.7239 0.09628
## 280       1.0548 0.09628
## 283       0.5051 0.09628
## 287       0.7054 0.09628
## 288       1.2974 0.09628
## 291       0.9362 0.09628
## 297       0.4871 0.09628
## 304       0.4236 0.09628
## 305       0.4214 0.09628
## 308       0.3920 0.09628
## 309       0.7958 0.09628
## 313       0.5264 0.09628
## 315       0.3634 0.09628
## 316       0.8799 0.09628
## 319       0.5656 0.09628
## 323       0.6824 0.09628
## 325       0.8219 0.09628
## 326       0.5562 0.09628
## 328       0.3747 0.09628
## 329       0.3886 0.09628
## 330       0.7819 0.09628
## 331       0.5432 0.09628
## 333       1.2275 0.09628
## 334       0.7123 0.09628
## 335       0.5182 0.09628
## 336       0.3948 0.09628
## 344       0.4094 0.09628
## 345       0.4496 0.09628
## 346       0.5434 0.09628
## 347       0.5448 0.09628
## 356       0.3999 0.09628
## 359       0.3977 0.09628
## 360       0.6837 0.09628
## 362       0.5583 0.09628
## 364       0.6838 0.09628
## 368       0.8394 0.09628
## 369       0.5121 0.09628
## 370       0.9180 0.09628
## 371       0.5194 0.09628
## 375       0.7071 0.09628
## 380       0.4319 0.09628
## 381       0.5331 0.09628
## 382       0.6878 0.09628
## 383       0.7109 0.09628
## 384       0.6911 0.09628
## 386       0.5656 0.09628
## 387       0.5298 0.09628
## 388       0.7006 0.09628
## 389       0.5451 0.09628
## 390       0.5402 0.09628
## 391       0.5673 0.09628
## 393       0.5427 0.09628
## 396       0.5398 0.09628
## 397       0.7378 0.09628
## 398       0.5477 0.09628
## 400       0.8353 0.09628
## 401       0.7054 0.09628
## 402       0.5566 0.09628
## 403       0.6152 0.09628
## 404       0.3970 0.09628
## 406       0.6860 0.09628
## 407       0.4137 0.09628
## 408       0.9716 0.09628
## 412       0.8071 0.09628
## 413       0.7107 0.09628
## 414       0.5331 0.09628
## 415       0.8193 0.09628
## 416       0.9289 0.09628
## 420       0.8157 0.09628
## 421       0.7021 0.09628
## 422       0.7946 0.09628
## 423       0.7021 0.09628
## 424       0.5552 0.09628
## 427       0.9716 0.09628
## 429       1.0422 0.09628
## 430       0.6652 0.09628
## 433       1.1149 0.09628
## 435       0.9627 0.09628
## 436       1.0244 0.09628
## 437       0.3824 0.09628
## 440       0.3975 0.09628
## 444       0.9713 0.09628
## 445       1.1465 0.09628
## 450       0.6841 0.09628
## 451       0.5395 0.09628
## 455       0.5562 0.09628
## 456       0.8071 0.09628
## 457       0.5204 0.09628
## 459       0.8249 0.09628
## 460       0.3667 0.09628
## 462       0.7879 0.09628
## 464       0.9786 0.09628
## 465       0.5159 0.09628
## 466       0.5521 0.09628
## 469       0.4062 0.09628
## 471       0.5598 0.09628
## 475       0.5673 0.09628
## 476       0.7946 0.09628
## 486       0.7902 0.09628
## 496       0.8815 0.09628
## 498       1.1891 0.09628
## 501       0.5610 0.09628
## 502       0.3950 0.09628
## 503       0.5439 0.09628
## 504       0.7050 0.09628
## 506       0.4354 0.09628
## 507       0.5187 0.09628
## 508       0.4195 0.09628
## 511       0.6866 0.09628
## 512       0.9598 0.09628
## 513       0.6932 0.09628
## 514       1.0400 0.09628
## 515       0.5121 0.09628
## 516       0.6079 0.09628
## 519       0.5565 0.09628
## 520       0.8422 0.09628
## 522       0.8307 0.09628
## 523       0.5597 0.09628
## 530       0.6689 0.09628
## 531       0.5725 0.09628
## 532       0.8245 0.09628
## 534       1.1569 0.09628
## 538       0.6455 0.09628
## 539       0.5629 0.09628
## 540       0.9935 0.09628
## 541       0.6689 0.09628
## 542       0.8842 0.09628
## 544       0.6766 0.09628
## 547       0.7867 0.09628
## 548       0.9022 0.09628
## 551       0.6988 0.09628
## 560       0.7060 0.09628
## 561       0.6230 0.09628
## 564       0.4344 0.09628
## 566       0.7180 0.09628
## 567       0.5263 0.09628
## 568       0.8357 0.09628
## 570       0.4195 0.09628
## 571       0.6961 0.09628
## 572       0.6925 0.09628
## 573       0.4035 0.09628
## 574       0.3981 0.09628
## 575       1.0927 0.09628
## 576       0.3872 0.09628
## 577       0.9498 0.09628
## 582       0.5467 0.09628
## 583       0.8383 0.09628
## 589       0.4113 0.09628
## 591       0.9170 0.09628
## 593       0.5075 0.09628
## 594       0.9072 0.09628
## 595       0.3914 0.09628
## 596       0.5049 0.09628
## 603       0.4222 0.09628
## 604       1.1842 0.09628
## 609       0.5551 0.09628
## 610       0.7213 0.09628
## 611       0.8534 0.09628
## 612       0.3821 0.09628
## 614       0.9588 0.09628
## 615       0.9362 0.09628
## 617       0.6163 0.09628
## 618       0.4193 0.09628
## 620       0.3481 0.09628
## 621       0.6231 0.09628
## 622       0.4551 0.09628
## 623       0.6987 0.09628
## 624       0.3819 0.09628
## 628       0.4151 0.09628
## 631       0.6757 0.09628
## 632       0.6691 0.09628
## 633       0.5154 0.09628
## 634       0.6803 0.09628
## 635       0.8278 0.09628
## 641       0.4963 0.09628
## 654       1.0492 0.09628
## 656       0.4007 0.09628
## 658       0.5422 0.09628
## 671       0.6262 0.09628
## 672       0.7943 0.09628
## 673       1.0448 0.09628
## 674       0.5121 0.09628
## 676       1.0501 0.09628
## 693       0.5700 0.09628
## 694       0.6803 0.09628
## 697       0.7945 0.09628
## 698       0.5367 0.09628
## 699       0.8484 0.09628
## 702       0.5790 0.09628
## 705       0.7596 0.09628
## 706       0.6567 0.09628
## 707       1.0339 0.09628
## 708       0.8317 0.09628
## 710       0.5585 0.09628
## 713       0.3823 0.09628
## 716       0.6567 0.09628
## 717       0.6651 0.09628
## 719       0.8104 0.09628
## 722       0.8450 0.09628
## 723       0.9411 0.09628
## 724       0.6285 0.09628
## 728       0.4074 0.09628
## 729       0.8450 0.09628
## 730       0.8278 0.09628
## 731       0.7021 0.09628
## 738       1.0339 0.09628
## 739       0.6803 0.09628
## 741       0.5597 0.09628
## 756       0.7479 0.09628
## 757       1.0698 0.09628
## 769       0.9892 0.09628
## 770       0.6853 0.09628
## 771       0.9682 0.09628
## 772       1.1894 0.09628
## 773       0.3760 0.09628
## 774       0.5532 0.09628
## 777       0.7987 0.09628
## 779       0.5391 0.09628
## 781       0.3987 0.09628
## 782       0.9408 0.09628
## 783       0.6567 0.09628
## 784       0.3714 0.09628
## 819       0.9499 0.09628
## 820       0.6612 0.09628
## 821       0.4448 0.09628
## 822       0.6604 0.09628
## 823       0.9982 0.09628
## 825       0.5476 0.09628
## 826       0.3631 0.09628
## 828       0.9490 0.09628
## 829       0.3999 0.09628
## 830       0.9522 0.09628
## 831       0.7814 0.09628
## 832       0.6581 0.09628
## 833       0.3486 0.09628
## 836       0.8448 0.09628
## 837       0.5467 0.09628
## 838       0.3992 0.09628
## 841       0.4138 0.09628
## 842       0.7142 0.09628
## 843       0.6617 0.09628
## 844       1.0500 0.09628
## 845       0.6990 0.09628
## 847       0.5298 0.09628
## 850       0.9405 0.09628
## 852       0.6834 0.09628
## 854       1.0741 0.09628
## 855       0.3767 0.09628
## 856       0.5129 0.09628
## 857       0.3736 0.09628
## 860       0.4001 0.09628
## 861       1.1156 0.09628
## 862       0.5095 0.09628
## 867       0.6951 0.09628
## 868       0.9588 0.09628
## 876       0.6869 0.09628
## 878       0.5656 0.09628
## 879       1.0504 0.09628
## 880       0.3744 0.09628
## 881       0.4236 0.09628
## 882       0.5451 0.09628
## 885       0.6798 0.09628
## 893       0.7045 0.09628
## 894       0.5587 0.09628
## 895       0.9423 0.09628
## 896       0.5199 0.09628
## 897       0.5434 0.09628
## 898       0.8190 0.09628
## 900       0.5553 0.09628
## 905       0.6763 0.09628
## 907       0.8418 0.09628
## 908       0.8637 0.09628
## 910       0.4195 0.09628
## 912       0.3736 0.09628
## 913       0.4027 0.09628
## 914       0.6750 0.09628
## 923       0.5352 0.09628
## 924       0.3977 0.09628
## 925       0.4113 0.09628
## 926       0.8538 0.09628
## 927       0.4222 0.09628
## 928       0.4412 0.09628
## 929       0.5258 0.09628
## 930       0.4551 0.09628
## 931       0.7784 0.09628
## 934       0.6878 0.09628
## 936       0.7457 0.09628
## 937       0.3763 0.09628
## 938       1.1142 0.09628
## 939       0.6693 0.09628
## 940       0.5548 0.09628
## 941       0.5412 0.09628
## 942       0.5385 0.09628
## 943       0.5440 0.09628
## 944       0.8033 0.09628
## 945       1.1468 0.09628
## 946       1.3303 0.09628
## 947       0.5431 0.09628
## 948       0.9362 0.09628
## 949       0.6837 0.09628
## 950       0.6878 0.09628
## 951       0.6909 0.09628
## 952       0.5591 0.09628
## 953       0.9581 0.09628
## 954       0.6980 0.09628
## 955       0.5654 0.09628
## 956       0.5126 0.09628
## 957       0.3475 0.09628
## 959       1.3354 0.09628
## 960       0.6577 0.09628
## 961       0.4990 0.09628
## 962       0.4003 0.09628
## 963       0.3754 0.09628
## 964       0.3701 0.09628
## 965       1.0502 0.09628
## 966       0.3885 0.09628
## 967       0.8136 0.09628
## 968       0.6909 0.09628
## 969       0.6538 0.09628
## 970       0.5591 0.09628
## 971       0.9169 0.09628
## 972       0.5412 0.09628
## 973       0.5494 0.09628
## 974       0.5365 0.09628
## 975       0.9227 0.09628
## 976       0.8030 0.09628
## 977       0.6938 0.09628
## 978       0.9507 0.09628
## 979       0.7255 0.09628
## 980       0.5272 0.09628
## 981       0.8030 0.09628
## 982       1.0838 0.09628
## 983       0.8428 0.09628
## 984       0.9283 0.09628
## 985       0.9321 0.09628
## 986       0.8896 0.09628
## 987       0.5467 0.09628
## 988       0.7906 0.09628
## 989       1.3456 0.09628
## 990       0.4060 0.09628
## 991       0.5300 0.09628
## 992       0.5351 0.09628
## 993       0.7106 0.09628
## 994       0.3974 0.09628
## 995       0.7016 0.09628
## 996       0.8141 0.09628
## 997       0.6823 0.09628
## 998       0.7045 0.09628
## 999       0.6615 0.09628
## 1000      1.0255 0.09628
## 1001      0.8331 0.09628
## 1002      0.5559 0.09628
## 1003      0.9090 0.09628
## 1004      0.9507 0.09628
## 1005      0.6855 0.09628
## 1006      1.3300 0.09628
## 1007      1.3159 0.09628
## 1008      0.6980 0.09628
## 1009      0.7734 0.09628
## 1010      0.3872 0.09628
## 1011      1.3639 0.09628
## 1012      0.7864 0.09628
## 1013      0.5463 0.09628
## 1014      0.4065 0.09628
## 1015      1.0291 0.09628
## 1016      0.7734 0.09628
## 1017      0.5298 0.09628
## 1018      0.5654 0.09628
## 1019      0.5264 0.09628
## 1020      0.8069 0.09628
## 1021      0.5300 0.09628
## 1022      0.7696 0.09628
## 1023      0.7120 0.09628
## 1024      0.5239 0.09628
## 1025      0.5126 0.09628
## 1026      0.5447 0.09628
## 1027      0.3508 0.09628
## 1028      0.6887 0.09628
## 1029      0.3540 0.09628
## 1030      0.7120 0.09628
## 1032      1.0355 0.09628
## 1033      0.5298 0.09628
## 1034      0.5496 0.09628
## 1035      1.6816 0.09628
## 1036      0.7016 0.09628
## 1037      0.5856 0.09628
## 1038      0.6758 0.09628
## 1039      0.9710 0.09628
## 1040      0.3794 0.09628
## 1041      0.5923 0.09628
## 1042      0.9406 0.09628
## 1043      0.9538 0.09628
## 1044      0.6980 0.09628
## 1045      0.9406 0.09628
## 1046      1.3255 0.09628
## 1047      1.0696 0.09628
## 1048      0.5365 0.09628
## 1049      1.0355 0.09628
## 1051      0.4173 0.09628
## 1052      0.6727 0.09628
## 1053      0.6980 0.09628
## 1054      0.6725 0.09628
## 1055      0.3910 0.09628
## 1056      0.5835 0.09628
## 1057      1.3138 0.09628
## 1058      0.4936 0.09628
## 1059      0.5062 0.09628
## 1060      0.6830 0.09628
## 1061      0.5443 0.09628
## 1062      0.4921 0.09628
## 1063      0.3702 0.09628
## 1064      0.5575 0.09628
## 1065      0.5271 0.09628
## 1067      1.2082 0.09628
## 1068      0.9548 0.09628
## 1069      0.9487 0.09628
## 1070      0.9245 0.09628
## 1071      1.2046 0.09628
## 1072      0.5440 0.09628
## 1073      0.9511 0.09628
## 1074      1.1085 0.09628
## 1075      1.2863 0.09628
## 1076      0.5212 0.09628
## 1077      0.6746 0.09628
## 1078      0.3884 0.09628
## 1079      0.6102 0.09628
## 1081      0.4208 0.09628
## 1082      0.9473 0.09628
## 1083      1.0178 0.09628
## 1084      0.7992 0.09628
## 1086      0.6967 0.09628
## 1087      0.3982 0.09628
## 1088      0.8207 0.09628
## 1089      0.5038 0.09628
## 1090      1.0514 0.09628
## 1091      0.9165 0.09628
## 1093      1.3236 0.09628
## 1094      0.9435 0.09628
## 1095      0.7034 0.09628
## 1096      1.0514 0.09628
## 1098      0.4553 0.09628
## 1099      0.5725 0.09628
## 1100      1.1977 0.09628
## 1101      0.5498 0.09628
## 1102      0.5004 0.09628
## 1103      0.5425 0.09628
## 1104      0.7268 0.09628
## 1105      0.6691 0.09628
## 1106      0.8434 0.09628
## 1107      0.6724 0.09628
## 1109      0.7164 0.09628
## 1110      1.1730 0.09628
## 1111      0.3934 0.09628
## 1112      0.5202 0.09628
## 1113      0.7787 0.09628
## 1114      0.3643 0.09628
## 1116      0.8170 0.09628
## 1117      1.0224 0.09628
## 1118      1.0138 0.09628
## 1119      0.4078 0.09628
## 1121      0.4383 0.09628
## 1122      0.8203 0.09628
## 1123      0.6501 0.09628
## 1124      0.7094 0.09628
## 1125      0.9282 0.09628
## 1126      0.3969 0.09628
## 1127      1.5610 0.09628
## 1128      0.5243 0.09628
## 1129      0.5385 0.09628
## 1130      1.1254 0.09628
## 1131      0.6819 0.09628
## 1133      0.3918 0.09628
## 1134      0.8365 0.09628
## 1135      0.8343 0.09628
## 1136      0.8207 0.09628
## 1138      0.7914 0.09628
## 1139      0.4219 0.09628
## 1141      0.9696 0.09628
## 1142      0.6848 0.09628
## 1143      0.6661 0.09628
## 1144      0.4023 0.09628
## 1145      0.6967 0.09628
## 1146      0.5456 0.09628
## 1149      0.3982 0.09628
## 1150      0.6656 0.09628
## 1151      0.8102 0.09628
## 1152      0.5170 0.09628
## 1153      0.8103 0.09628
## 1154      0.3940 0.09628
## 1155      0.5455 0.09628
## 1156      0.8824 0.09628
## 1157      0.6728 0.09628
## 1158      0.9485 0.09628
## 1159      1.0915 0.09628
## 1160      0.5521 0.09628
## 1161      0.4970 0.09628
## 1162      0.9359 0.09628
## 1163      0.9651 0.09628
## 1164      0.9030 0.09628
## 1165      0.5553 0.09628
## 1166      1.5764 0.09628
## 1168      0.8966 0.09628
## 1169      0.8014 0.09628
## 1170      0.3725 0.09628
## 1171      0.8303 0.09628
## 1173      0.7913 0.09628
## 1174      0.7707 0.09628
## 1175      0.3857 0.09628
## 1176      0.6463 0.09628
## 1177      0.6501 0.09628
## 1178      0.5153 0.09628
## 1179      0.5439 0.09628
## 1180      0.9507 0.09628
## 1181      0.8412 0.09628
## 1182      0.4079 0.09628
## 1183      1.5390 0.09628
## 1184      0.3778 0.09628
## 1185      0.3857 0.09628
## 1186      0.3540 0.09628
## 1187      0.4182 0.09628
## 1188      0.7835 0.09628
## 1189      0.9598 0.09628
## 1190      0.4156 0.09628
## 1191      0.5599 0.09628
## 1192      0.4059 0.09628
## 1194      0.5548 0.09628
## 1195      0.5576 0.09628
## 1196      1.1734 0.09628
## 1197      0.9840 0.09628
## 1198      0.8146 0.09628
## 1199      0.3710 0.09628
## 1200      0.7031 0.09628
## 1201      0.9890 0.09628
## 1202      0.3934 0.09628
## 1203      0.5215 0.09628
## 1205      0.3985 0.09628
## 1206      0.5234 0.09628
## 1207      0.6693 0.09628
## 1208      0.5123 0.09628
## 1209      0.5123 0.09628
## 1210      0.5452 0.09628
## 1211      0.9204 0.09628
## 1212      0.6693 0.09628
## 1213      0.4006 0.09628
## 1214      0.6534 0.09628
## 1223      1.0801 0.09628
## 1225      0.4082 0.09628
## 1229      0.7054 0.09628
## 1231      0.9318 0.09628
## 1232      0.5053 0.09628
## 1233      0.8994 0.09628
## 1234      0.7946 0.09628
## 1235      0.9112 0.09628
## 1236      0.8600 0.09628
## 1237      1.0252 0.09628
## 1245      0.7988 0.09628
## 1246      0.5785 0.09628
## 1247      0.7910 0.09628
## 1248      0.3879 0.09628
## 1249      0.4036 0.09628
## 1250      0.7602 0.09628
## 1255      0.3570 0.09628
## 1256      0.9088 0.09628
## 1257      0.4925 0.09628
## 1264      0.6576 0.09628
## 1265      0.3989 0.09628
## 1266      0.5132 0.09628
## 1267      1.0457 0.09628
## 1268      0.4231 0.09628
## 1269      0.6454 0.09628
## 1270      0.5297 0.09628
## 1272      1.0246 0.09628
## 1276      0.5394 0.09628
## 1281      0.9532 0.09628
## 1283      0.3645 0.09628
## 1284      0.9083 0.09628
## 1285      0.9435 0.09628
## 1286      1.1569 0.09628
## 1290      1.0600 0.09628
## 1292      0.6955 0.09628
## 1294      0.3971 0.09628
## 1295      0.9451 0.09628
## 1296      0.9226 0.09628
## 1298      0.3793 0.09628
## 1299      0.6459 0.09628
## 1302      0.4119 0.09628
## 1303      0.7140 0.09628
## 1305      0.6618 0.09628
## 1306      0.6811 0.09628
## 1307      0.6614 0.09628
## 1308      0.6432 0.09628
## 1312      0.5415 0.09628
## 1322      0.7123 0.09628
## 1323      0.6651 0.09628
## 1324      0.6770 0.09628
## 1325      0.4312 0.09628
## 1327      0.9364 0.09628
## 1332      0.6961 0.09628
## 1333      0.6913 0.09628
## 1334      0.4082 0.09628
## 1339      0.8442 0.09628
## 1344      0.9548 0.09628
## 1345      0.5471 0.09628
## 1346      0.4007 0.09628
## 1347      0.8442 0.09628
## 1348      0.8207 0.09628
## 1349      0.9840 0.09628
## 1350      0.8113 0.09628
## 1351      0.6943 0.09628
## 1352      0.8068 0.09628
## 1353      0.6660 0.09628
## 1355      0.3885 0.09628
## 1356      0.6851 0.09628
## 1357      0.6396 0.09628
## 1360      0.9499 0.09628
## 1361      0.9009 0.09628
## 1362      0.6255 0.09628
## 1363      0.3556 0.09628
## 1365      0.8431 0.09628
## 1366      1.0471 0.09628
## 1367      0.8899 0.09628
## 1368      0.4871 0.09628
## 1369      0.5593 0.09628
## 1370      0.6765 0.09628
## 1371      0.7459 0.09628
## 1372      0.5562 0.09628
## 1373      0.8218 0.09628
## 1374      0.9224 0.09628
## 1378      0.6638 0.09628
## 1379      0.6574 0.09628
## 1383      0.3823 0.09628
## 1384      0.6613 0.09628
## 1388      1.1838 0.09628
## 1389      0.8277 0.09628
## 1390      0.7816 0.09628
## 1395      0.9456 0.09628
## 1397      0.6553 0.09628
## 1401      0.3577 0.09628
## 1402      0.5597 0.09628
## 1403      0.4317 0.09628
## 1404      0.5157 0.09628
## 1410      0.3885 0.09628
## 1413      0.5228 0.09628
## 1414      0.5724 0.09628
## 1416      0.3465 0.09628
## 1417      0.5433 0.09628
## 1419      0.8071 0.09628
## 1420      0.6495 0.09628
## 1422      0.6253 0.09628
## 1423      0.5524 0.09628
## 1425      0.9804 0.09628
## 1430      0.8195 0.09628
## 1431      0.8317 0.09628
## 1435      0.3926 0.09628
## 1436      1.0649 0.09628
## 1437      0.9587 0.09628
## 1438      0.7859 0.09628
## 1439      0.5596 0.09628
## 1443      0.6941 0.09628
## 1444      0.5366 0.09628
## 1446      0.7334 0.09628
## 1447      0.5297 0.09628
## 1450      1.0809 0.09628
## 1453      0.7300 0.09628
## 1454      0.9408 0.09628
## 1457      0.4179 0.09628
## 1458      0.4235 0.09628
## 1464      1.1785 0.09628
## 1466      0.6840 0.09628
## 1467      0.7423 0.09628
## 1468      0.5467 0.09628
## 1469      0.9224 0.09628
## 1471      0.4123 0.09628
## 1472      0.5332 0.09628
## 1475      0.9935 0.09628
## 1481      0.8236 0.09628
## 1482      0.3916 0.09628
## 1484      0.6334 0.09628
## 1486      0.4449 0.09628
## 1487      0.6987 0.09628
## 1490      0.6574 0.09628
## 1492      0.6750 0.09628
## 1494      0.8645 0.09628
## 1495      0.9408 0.09628
## 1497      0.9423 0.09628
## 1498      0.3813 0.09628
## 1658      0.8329 0.09628
## 1660      0.7024 0.09628
## 1662      0.8938 0.09628
## 1663      0.8424 0.09628
## 1664      0.6648 0.09628
## 1667      0.9214 0.09628
## 1669      0.5541 0.09628
## 1670      0.4067 0.09628
## 1671      0.8399 0.09628
## 1672      0.6857 0.09628
## 1673      0.7935 0.09628
## 1675      0.8155 0.09628
## 1679      0.5561 0.09628
## 1686      0.5366 0.09628
## 1690      0.7337 0.09628
## 1692      0.5365 0.09628
## 1693      0.5452 0.09628
## 1695      0.6651 0.09628
## 1696      0.5404 0.09628
## 1698      0.8523 0.09628
## 1702      0.8255 0.09628
## 1707      0.7074 0.09628
## 1708      1.0811 0.09628
## 1715      0.3722 0.09628
## 1716      0.8554 0.09628
## 1717      0.7037 0.09628
## 1718      0.7795 0.09628
## 1719      0.7995 0.09628
## 1720      0.3993 0.09628
## 1725      0.5431 0.09628
## 1727      0.4206 0.09628
## 1728      0.5192 0.09628
## 1729      0.7883 0.09628
## 1730      1.0553 0.09628
## 1732      0.9342 0.09628
## 1733      0.3946 0.09628
## 1734      0.3977 0.09628
## 1736      0.6915 0.09628
## 1738      0.9483 0.09628
## 1739      1.0508 0.09628
## 1742      0.5778 0.09628
## 1743      0.8255 0.09628
## 1744      0.9316 0.09628
## 1745      0.7037 0.09628
## 1750      0.6443 0.09628
## 1751      0.5120 0.09628
## 1752      0.5332 0.09628
## 1756      0.8028 0.09628
## 1757      0.6604 0.09628
## 1758      0.8029 0.09628
## 1759      0.4082 0.09628
## 1760      0.5025 0.09628
## 1761      0.4237 0.09628
## 1762      0.3824 0.09628
## 1764      0.6409 0.09628
## 1766      0.8178 0.09628
## 1867      0.6688 0.09628
## 1868      0.5182 0.09628
## 1869      0.4018 0.09628
## 1870      0.6165 0.09628
## 1871      0.5444 0.09628
## 1872      0.9364 0.09628
## 1874      0.5143 0.09628
## 1875      0.7651 0.09628
## 1885      0.9798 0.09628
## 1889      0.7935 0.09628
## 1890      1.1553 0.09628
## 1891      0.4018 0.09628
## 1894      0.6971 0.09628
## 1895      0.5182 0.09628
## 1896      0.6561 0.09628
## 1897      0.8208 0.09628
## 1899      0.4354 0.09628
## 1904      0.6892 0.09628
## 
## $zboys
##                    (Intercept)   znas8
## -1.9403949176938        0.6777 0.09551
## -1.78915377536492       0.6756 0.10065
## -1.63791263303604       0.6810 0.08759
## -1.48667149070715       0.6791 0.09227
## -1.33543034837827       0.6741 0.10449
## -1.18418920604939       0.6802 0.08955
## -1.03294806372051       0.6712 0.11144
## -0.881706921391632      0.6748 0.10278
## -0.730465779062751      0.6730 0.10709
## -0.57922463673387       0.6750 0.10231
## -0.42798349440499       0.6766 0.09839
## -0.276742352076109      0.6755 0.10090
## -0.125501209747228      0.6861 0.07513
## 0.0257399325816523      0.6772 0.09687
## 0.176981074910533       0.6816 0.08596
## 0.479463359568294       0.6770 0.09725
## 0.630704501897175       0.6778 0.09547
## 0.781945644226056       0.6780 0.09492
## 0.933186786554936       0.6824 0.08403
## 1.08442792888382        0.6816 0.08598
## 1.2356690712127         0.6805 0.08881
## 1.38691021354158        0.6759 0.10000
## 1.53815135587046        0.6783 0.09420
## 1.68939249819934        0.6814 0.08660
## 
## $schoolMAIN
##    (Intercept)   znas8
## 1       0.6774 0.09628
## 2       0.6774 0.09628
## 3       0.6774 0.09628
## 5       0.6774 0.09628
## 6       0.6774 0.09628
## 7       0.6774 0.09628
## 8       0.6774 0.09628
## 10      0.6774 0.09628
## 11      0.6774 0.09628
## 20      0.6774 0.09628
## 22      0.6774 0.09628
## 28      0.6774 0.09628
## 36      0.6774 0.09628
## 
## attr(,"class")
## [1] "coef.mer"
fixef(M8)  # estimated model averaging over classes in schools
## (Intercept)       znas8 
##     0.67742     0.09628
ranef(M8)  # class-level and school-level errors
## $id
##      (Intercept)
## 2     -0.0154670
## 3      0.1151111
## 4     -0.2969983
## 5     -0.1318433
## 6     -0.2722149
## 7      0.1410902
## 8      0.2629126
## 9      0.1704071
## 10    -0.0376231
## 11     0.0004589
## 12     0.1468352
## 13     0.1486475
## 14     0.1017286
## 15     0.4499399
## 16    -0.0047613
## 17    -0.0081737
## 18     0.1294082
## 19     0.2414635
## 20     0.0244692
## 21    -0.3244344
## 22     0.1547878
## 23    -0.1191496
## 24     0.0014382
## 25     0.0855659
## 26    -0.3007705
## 27    -0.1031108
## 28    -0.2996590
## 29    -0.2669259
## 30    -0.2969983
## 31     0.1487664
## 32    -0.1540551
## 33     0.2016627
## 34    -0.1475714
## 35    -0.1683175
## 36    -0.3035802
## 37    -0.1592474
## 38    -0.1191712
## 39    -0.1225513
## 40    -0.1416208
## 41    -0.3050353
## 42    -0.0483782
## 43     0.0139831
## 44     0.2544054
## 45     0.1217482
## 46     0.1399235
## 47    -0.1071107
## 48     0.1294082
## 49     0.1709925
## 50     0.0021993
## 51     0.0893285
## 52     0.0930380
## 54    -0.2747348
## 55     0.0772112
## 56     0.1468352
## 57    -0.0017464
## 58     0.2188883
## 59     0.0046034
## 60    -0.1246718
## 61    -0.0312834
## 62     0.0325367
## 63    -0.2713868
## 64     0.1329330
## 65    -0.3185569
## 66    -0.0264639
## 67     0.0170711
## 68    -0.1164485
## 69    -0.3244344
## 70     0.0129039
## 71     0.1490713
## 72     0.8198155
## 73     0.1709925
## 74     0.0108758
## 75    -0.2592485
## 76    -0.1274500
## 77     0.2414635
## 78     0.4069694
## 79     0.8627781
## 80     0.2775238
## 81    -0.0179606
## 83     0.0159134
## 84     0.1561103
## 85    -0.1137206
## 86     0.0139831
## 87     0.0094192
## 88     0.0440031
## 89     0.0059104
## 90    -0.0049503
## 91    -0.2696106
## 92     0.3987992
## 93     0.0231896
## 94     0.1138927
## 95     0.1294082
## 96    -0.2583824
## 97    -0.1540083
## 98     0.0976525
## 99     0.4909658
## 100   -0.2696106
## 101   -0.1540551
## 102   -0.1225513
## 103    0.0357926
## 104    1.0694224
## 105    0.6187197
## 106    0.3871339
## 107    0.3159114
## 108    0.2468075
## 109    0.0266022
## 110    0.1217822
## 111   -0.0081737
## 112    0.1452296
## 113    0.1435683
## 116    0.0106550
## 117   -0.2613230
## 118    0.3323044
## 119   -0.1241762
## 129   -0.1106057
## 131   -0.2429969
## 132   -0.1910139
## 133   -0.1019333
## 137   -0.0046212
## 139    0.2108789
## 140   -0.0384359
## 141    0.2545832
## 145    0.1609345
## 146    0.0291192
## 147   -0.2580682
## 150    0.0091979
## 153   -0.1511517
## 155    0.4069597
## 156    0.2723711
## 158    0.2515203
## 160   -0.1225419
## 161    0.0812366
## 168    0.1424295
## 169   -0.0595371
## 170   -0.2675788
## 171   -0.2765432
## 172    0.1382384
## 174    0.2678825
## 175   -0.0227986
## 178   -0.2920044
## 184    0.2746049
## 185    0.2812650
## 186   -0.2447943
## 189    0.1617744
## 190   -0.2643280
## 196    0.3779548
## 197    0.0066019
## 202   -0.1305024
## 206    0.1403381
## 207   -0.1372753
## 208    0.2882089
## 209    0.0304078
## 210    0.0925011
## 211   -0.2944911
## 212   -0.2954939
## 215    0.2929581
## 216   -0.1117981
## 218    0.2540444
## 219    0.0291192
## 228    0.1258024
## 230   -0.0203498
## 231    0.0363100
## 232    0.2765548
## 233    0.1128083
## 234   -0.0048959
## 235    0.0390271
## 236    0.0077580
## 237   -0.1789287
## 238   -0.1721148
## 240   -0.0787878
## 241    0.0139757
## 243   -0.2837496
## 244   -0.1152643
## 247    0.0117778
## 250    0.2678825
## 252    0.3935118
## 253    0.2259346
## 254    0.3030150
## 256    0.1419268
## 258    0.1718123
## 259    0.0172952
## 262   -0.2571924
## 265   -0.1442504
## 266    0.1299106
## 267   -0.1670341
## 276   -0.1307632
## 277   -0.3098349
## 279    0.0465290
## 280    0.3774188
## 283   -0.1722714
## 287    0.0279337
## 288    0.6200227
## 291    0.2588223
## 297   -0.1903609
## 304   -0.2538169
## 305   -0.2559848
## 308   -0.2854328
## 309    0.1184078
## 313   -0.1510664
## 315   -0.3140403
## 316    0.2024819
## 319   -0.1118544
## 323    0.0049798
## 325    0.1445142
## 326   -0.1212583
## 328   -0.3027514
## 329   -0.2888596
## 330    0.1045144
## 331   -0.1342578
## 333    0.5501155
## 334    0.0348964
## 335   -0.1592631
## 336   -0.2826076
## 344   -0.2680401
## 345   -0.2278099
## 346   -0.1340425
## 347   -0.1326290
## 356   -0.2775376
## 359   -0.2797581
## 360    0.0062697
## 362   -0.1191496
## 364    0.0064220
## 368    0.1620269
## 369   -0.1653623
## 370    0.2405957
## 371   -0.1579875
## 375    0.0296841
## 380   -0.2454929
## 381   -0.1443408
## 382    0.0103778
## 383    0.0334942
## 384    0.0136969
## 386   -0.1117727
## 387   -0.1476638
## 388    0.0232136
## 389   -0.1323655
## 390   -0.1372139
## 391   -0.1100860
## 393   -0.1347463
## 396   -0.1375710
## 397    0.0603616
## 398   -0.1297207
## 400    0.1578582
## 401    0.0279337
## 402   -0.1208108
## 403   -0.0621853
## 404   -0.2803874
## 406    0.0086036
## 407   -0.2637452
## 408    0.2941643
## 412    0.1296975
## 413    0.0333077
## 414   -0.1442739
## 415    0.1419268
## 416    0.2514925
## 420    0.1383134
## 421    0.0246421
## 422    0.1172269
## 423    0.0246421
## 424   -0.1222169
## 427    0.2941643
## 429    0.3648168
## 430   -0.0122252
## 433    0.4374582
## 435    0.2852750
## 436    0.3470045
## 437   -0.2950107
## 440   -0.2799506
## 444    0.2938874
## 445    0.4690808
## 450    0.0066610
## 451   -0.1379025
## 455   -0.1212583
## 456    0.1296975
## 457   -0.1570244
## 459    0.1474794
## 460   -0.3106888
## 462    0.1105001
## 464    0.3011542
## 465   -0.1614804
## 466   -0.1253075
## 469   -0.2712069
## 471   -0.1176246
## 475   -0.1100860
## 476    0.1172269
## 486    0.1127399
## 496    0.2040940
## 498    0.5116665
## 501   -0.1164208
## 502   -0.2824586
## 503   -0.1335508
## 504    0.0275387
## 506   -0.2419783
## 507   -0.1587361
## 508   -0.2579037
## 511    0.0091444
## 512    0.2823965
## 513    0.0157657
## 514    0.3625304
## 515   -0.1652724
## 516   -0.0694753
## 519   -0.1209215
## 520    0.1647473
## 522    0.1532755
## 523   -0.1176927
## 530   -0.0084785
## 531   -0.1049567
## 532    0.1470542
## 534    0.4795008
## 538   -0.0318926
## 539   -0.1144897
## 540    0.3160359
## 541   -0.0085596
## 542    0.2067765
## 544   -0.0008541
## 547    0.1092551
## 548    0.2247957
## 551    0.0213652
## 560    0.0285550
## 561   -0.0543799
## 564   -0.2429969
## 566    0.0406112
## 567   -0.1511517
## 568    0.1582718
## 570   -0.2579037
## 571    0.0187214
## 572    0.0151165
## 573   -0.2738733
## 574   -0.2793185
## 575    0.4153299
## 576   -0.2902086
## 577    0.2723711
## 582   -0.1307632
## 583    0.1609267
## 589   -0.2661129
## 591    0.2396059
## 593   -0.1699654
## 594    0.2297628
## 595   -0.2860128
## 596   -0.1724928
## 603   -0.2551737
## 604    0.5067552
## 609   -0.1222882
## 610    0.0439268
## 611    0.1759917
## 612   -0.2952944
## 614    0.2813756
## 615    0.2587356
## 617   -0.0611387
## 618   -0.2580980
## 620   -0.3292909
## 621   -0.0543116
## 622   -0.2223487
## 623    0.0212420
## 624   -0.2954939
## 628   -0.2623052
## 631   -0.0016913
## 632   -0.0082806
## 633   -0.1620436
## 634    0.0029171
## 635    0.1503544
## 641   -0.1810945
## 654    0.3718122
## 656   -0.2767663
## 658   -0.1352452
## 671   -0.0512276
## 672    0.1168521
## 673    0.3673810
## 674   -0.1653623
## 676    0.3726594
## 693   -0.1073929
## 694    0.0029171
## 697    0.1170792
## 698   -0.1407311
## 699    0.1709653
## 702   -0.0983906
## 705    0.0821369
## 706   -0.0206966
## 707    0.3564783
## 708    0.1542763
## 710   -0.1188722
## 713   -0.2950757
## 716   -0.0206966
## 717   -0.0123054
## 719    0.1329936
## 722    0.1675381
## 723    0.2636822
## 724   -0.0488783
## 728   -0.2700621
## 729    0.1675381
## 730    0.1503544
## 731    0.0246474
## 738    0.3565094
## 739    0.0029171
## 741   -0.1176927
## 756    0.0704760
## 757    0.3924253
## 769    0.3117619
## 770    0.0079118
## 771    0.2907725
## 772    0.5119464
## 773   -0.3014116
## 774   -0.1241762
## 777    0.1212935
## 779   -0.1382812
## 781   -0.2787509
## 782    0.2633663
## 783   -0.0206966
## 784   -0.3060130
## 819    0.2724423
## 820   -0.0162125
## 821   -0.2326531
## 822   -0.0170344
## 823    0.3207640
## 825   -0.1298534
## 826   -0.3143513
## 828    0.2715961
## 829   -0.2774880
## 830    0.2747835
## 831    0.1039913
## 832   -0.0192915
## 833   -0.3288198
## 836    0.1673656
## 837   -0.1306952
## 838   -0.2781941
## 841   -0.2636447
## 842    0.0367865
## 843   -0.0156878
## 844    0.3726251
## 845    0.0216272
## 847   -0.1476017
## 850    0.2631061
## 852    0.0059586
## 854    0.3966454
## 855   -0.3007386
## 856   -0.1645157
## 857   -0.3038303
## 860   -0.2773394
## 861    0.4381408
## 862   -0.1679685
## 867    0.0177298
## 868    0.2813756
## 876    0.0094808
## 878   -0.1117981
## 879    0.3729479
## 880   -0.3030684
## 881   -0.2538169
## 882   -0.1322928
## 885    0.0024121
## 893    0.0271042
## 894   -0.1187431
## 895    0.2648914
## 896   -0.1575467
## 897   -0.1340425
## 898    0.1415756
## 900   -0.1221265
## 905   -0.0011589
## 907    0.1643313
## 908    0.1862459
## 910   -0.2579037
## 912   -0.3038303
## 913   -0.2746746
## 914   -0.0023791
## 923   -0.1421915
## 924   -0.2797581
## 925   -0.2660970
## 926    0.1763681
## 927   -0.2552176
## 928   -0.2362278
## 929   -0.1515863
## 930   -0.2223349
## 931    0.1009608
## 934    0.0103778
## 936    0.0682886
## 937   -0.3011096
## 938    0.4367475
## 939   -0.0081253
## 940   -0.1226062
## 941   -0.1361914
## 942   -0.1389612
## 943   -0.1334392
## 944    0.1259168
## 945    0.4693462
## 946    0.6528782
## 947   -0.1343607
## 948    0.2587711
## 949    0.0063077
## 950    0.0103673
## 951    0.0135198
## 952   -0.1183121
## 953    0.2807146
## 954    0.0206293
## 955   -0.1120654
## 956   -0.1648259
## 957   -0.3299586
## 959    0.6579841
## 960   -0.0197486
## 961   -0.1783968
## 962   -0.2771293
## 963   -0.3019788
## 964   -0.3073475
## 965    0.3728296
## 966   -0.2889265
## 967    0.1361792
## 968    0.0135198
## 969   -0.0235749
## 970   -0.1183121
## 971    0.2394588
## 972   -0.1361914
## 973   -0.1279876
## 974   -0.1409544
## 975    0.2452872
## 976    0.1255861
## 977    0.0163859
## 978    0.2732493
## 979    0.0480489
## 980   -0.1502177
## 981    0.1255861
## 982    0.4063615
## 983    0.1653355
## 984    0.2508906
## 985    0.2546638
## 986    0.2121306
## 987   -0.1307046
## 988    0.1131483
## 989    0.6681781
## 990   -0.2713737
## 991   -0.1474583
## 992   -0.1423553
## 993    0.0331768
## 994   -0.2800427
## 995    0.0241457
## 996    0.1366614
## 997    0.0048857
## 998    0.0270310
## 999   -0.0159484
## 1000   0.3480885
## 1001   0.1556440
## 1002  -0.1214723
## 1003   0.2315649
## 1004   0.2732493
## 1005   0.0081100
## 1006   0.6526104
## 1007   0.6384386
## 1008   0.0206293
## 1009   0.0959855
## 1010  -0.2902132
## 1011   0.6864844
## 1012   0.1089495
## 1013  -0.1311014
## 1014  -0.2709129
## 1015   0.3517293
## 1016   0.0959855
## 1017  -0.1476485
## 1018  -0.1120654
## 1019  -0.1510333
## 1020   0.1294530
## 1021  -0.1474583
## 1022   0.0921626
## 1023   0.0345419
## 1024  -0.1534856
## 1025  -0.1648259
## 1026  -0.1327373
## 1027  -0.3266537
## 1028   0.0113141
## 1029  -0.3233832
## 1030   0.0345419
## 1032   0.3580637
## 1033  -0.1476485
## 1034  -0.1278669
## 1035   1.0041874
## 1036   0.0241457
## 1037  -0.0918061
## 1038  -0.0016241
## 1039   0.2935631
## 1040  -0.2980273
## 1041  -0.0851565
## 1042   0.2632128
## 1043   0.2763789
## 1044   0.0206293
## 1045   0.2632128
## 1046   0.6480852
## 1047   0.3921490
## 1048  -0.1409544
## 1049   0.3580637
## 1051  -0.2601453
## 1052  -0.0047038
## 1053   0.0206293
## 1054  -0.0049095
## 1055  -0.2864389
## 1056  -0.0939096
## 1057   0.6363355
## 1058  -0.1838512
## 1059  -0.1711926
## 1060   0.0055715
## 1061  -0.1331529
## 1062  -0.1853487
## 1063  -0.3072254
## 1064  -0.1199417
## 1065  -0.1503173
## 1067   0.5307611
## 1068   0.2773762
## 1069   0.2712395
## 1070   0.2470987
## 1071   0.5271512
## 1072  -0.1334392
## 1073   0.2736324
## 1074   0.4310429
## 1075   0.6088637
## 1076  -0.1561877
## 1077  -0.0027747
## 1078  -0.2890019
## 1079  -0.0671754
## 1081  -0.2566423
## 1082   0.2698690
## 1083   0.3403770
## 1084   0.1218267
## 1086   0.0192841
## 1087  -0.2792188
## 1088   0.1432782
## 1089  -0.1735891
## 1090   0.3740019
## 1091   0.2390572
## 1093   0.6461434
## 1094   0.2660861
## 1095   0.0259936
## 1096   0.3740019
## 1098  -0.2221110
## 1099  -0.1049580
## 1100   0.5202859
## 1101  -0.1275794
## 1102  -0.1770467
## 1103  -0.1349420
## 1104   0.0494000
## 1105  -0.0083169
## 1106   0.1659654
## 1107  -0.0049976
## 1109   0.0390256
## 1110   0.4956177
## 1111  -0.2840134
## 1112  -0.1571791
## 1113   0.1013191
## 1114  -0.3130701
## 1116   0.1395629
## 1117   0.3449805
## 1118   0.3363745
## 1119  -0.2696106
## 1121  -0.2391326
## 1122   0.1429280
## 1123  -0.0272770
## 1124   0.0319575
## 1125   0.2507585
## 1126  -0.2805624
## 1127   0.8835900
## 1128  -0.1530764
## 1129  -0.1389612
## 1130   0.4480257
## 1131   0.0045246
## 1133  -0.2856261
## 1134   0.1590690
## 1135   0.1568502
## 1136   0.1432782
## 1138   0.1139977
## 1139  -0.2555275
## 1141   0.2921557
## 1142   0.0073307
## 1143  -0.0112714
## 1144  -0.2751574
## 1145   0.0192841
## 1146  -0.1318433
## 1149  -0.2792188
## 1150  -0.0118465
## 1151   0.1327770
## 1152  -0.1604338
## 1153   0.1328955
## 1154  -0.2834067
## 1155  -0.1319481
## 1156   0.2050006
## 1157  -0.0045735
## 1158   0.2711297
## 1159   0.4140449
## 1160  -0.1252882
## 1161  -0.1804375
## 1162   0.2584614
## 1163   0.2876795
## 1164   0.2255933
## 1165  -0.1220792
## 1166   0.8989439
## 1168   0.2191638
## 1169   0.1239430
## 1170  -0.3049289
## 1171   0.1529121
## 1173   0.1138927
## 1174   0.0933246
## 1175  -0.2916926
## 1176  -0.0311028
## 1177  -0.0272770
## 1178  -0.1621332
## 1179  -0.1335508
## 1180   0.2732493
## 1181   0.1638044
## 1182  -0.2695432
## 1183   0.8615991
## 1184  -0.2995922
## 1185  -0.2916926
## 1186  -0.3233832
## 1187  -0.2592251
## 1188   0.1060750
## 1189   0.2823668
## 1190  -0.2618383
## 1191  -0.1175367
## 1192  -0.2715191
## 1194  -0.1226062
## 1195  -0.1197901
## 1196   0.4959384
## 1197   0.3066224
## 1198   0.1372039
## 1199  -0.3064697
## 1200   0.0257187
## 1201   0.3116247
## 1202  -0.2840134
## 1203  -0.1559529
## 1205  -0.2789629
## 1206  -0.1540083
## 1207  -0.0081253
## 1208  -0.1651341
## 1209  -0.1651341
## 1210  -0.1322189
## 1211   0.2429772
## 1212  -0.0081620
## 1213  -0.2767748
## 1214  -0.0240391
## 1223   0.4027297
## 1225  -0.2691958
## 1229   0.0279337
## 1231   0.2543737
## 1232  -0.1721148
## 1233   0.2219692
## 1234   0.1172269
## 1235   0.2337983
## 1236   0.1825430
## 1237   0.3477950
## 1245   0.1214106
## 1246  -0.0989535
## 1247   0.1136070
## 1248  -0.2895663
## 1249  -0.2737997
## 1250   0.0828203
## 1255  -0.3203964
## 1256   0.2313363
## 1257  -0.1849678
## 1264  -0.0198689
## 1265  -0.2784782
## 1266  -0.1642237
## 1267   0.3683184
## 1268  -0.2543658
## 1269  -0.0320107
## 1270  -0.1476958
## 1272   0.3471803
## 1276  -0.1380464
## 1281   0.2757670
## 1283  -0.3129349
## 1284   0.2308577
## 1285   0.2660843
## 1286   0.4794894
## 1290   0.3825636
## 1292   0.0180858
## 1294  -0.2803627
## 1295   0.2677269
## 1296   0.2451850
## 1298  -0.2980965
## 1299  -0.0315335
## 1302  -0.2654981
## 1303   0.0366247
## 1305  -0.0156518
## 1306   0.0037062
## 1307  -0.0160338
## 1308  -0.0342084
## 1312  -0.1359692
## 1322   0.0349039
## 1323  -0.0123318
## 1324  -0.0003776
## 1325  -0.2462632
## 1327   0.2590237
## 1332   0.0186457
## 1333   0.0138356
## 1334  -0.2692594
## 1339   0.1668189
## 1344   0.2773723
## 1345  -0.1303598
## 1346  -0.2767663
## 1347   0.1668189
## 1348   0.1432753
## 1349   0.3066133
## 1350   0.1339149
## 1351   0.0169020
## 1352   0.1293953
## 1353  -0.0113807
## 1355  -0.2889131
## 1356   0.0076459
## 1357  -0.0378249
## 1360   0.2724423
## 1361   0.2234780
## 1362  -0.0519024
## 1363  -0.3218350
## 1365   0.1656640
## 1366   0.3696755
## 1367   0.2124944
## 1368  -0.1903609
## 1369  -0.1180714
## 1370  -0.0009579
## 1371   0.0684979
## 1372  -0.1212583
## 1373   0.1443306
## 1374   0.2450240
## 1378  -0.0135954
## 1379  -0.0200584
## 1383  -0.2950757
## 1384  -0.0161683
## 1388   0.5063860
## 1389   0.1502533
## 1390   0.1041835
## 1395   0.2682037
## 1397  -0.0221616
## 1401  -0.3197657
## 1402  -0.1176927
## 1403  -0.2456833
## 1404  -0.1617023
## 1410  -0.2888920
## 1413  -0.1546421
## 1414  -0.1050342
## 1416  -0.3309210
## 1417  -0.1340957
## 1419   0.1297262
## 1420  -0.0279205
## 1422  -0.0521643
## 1423  -0.1250165
## 1425   0.3030150
## 1430   0.1421250
## 1431   0.1542763
## 1435  -0.2848146
## 1436   0.3875252
## 1437   0.2812650
## 1438   0.1085097
## 1439  -0.1178661
## 1443   0.0166879
## 1444  -0.1408393
## 1446   0.0559781
## 1447  -0.1476879
## 1450   0.4034670
## 1453   0.0526231
## 1454   0.2633663
## 1457  -0.2594745
## 1458  -0.2538858
## 1464   0.5010783
## 1466   0.0066019
## 1467   0.0648919
## 1468  -0.1307632
## 1469   0.2450240
## 1471  -0.2651604
## 1472  -0.1442504
## 1475   0.3160359
## 1481   0.1462029
## 1482  -0.2858381
## 1484  -0.0439732
## 1486  -0.2324869
## 1487   0.0212420
## 1490  -0.0200584
## 1492  -0.0023791
## 1494   0.1870985
## 1495   0.2633663
## 1497   0.2648914
## 1498  -0.2961205
## 1658   0.1554894
## 1660   0.0249736
## 1662   0.2163563
## 1663   0.1649648
## 1664  -0.0125755
## 1667   0.2439871
## 1669  -0.1233136
## 1670  -0.2707550
## 1671   0.1625087
## 1672   0.0082303
## 1673   0.1161280
## 1675   0.1380664
## 1679  -0.1213181
## 1686  -0.1408161
## 1690   0.0562444
## 1692  -0.1409222
## 1693  -0.1322305
## 1695  -0.0123318
## 1696  -0.1370622
## 1698   0.1748490
## 1702   0.1480718
## 1707   0.0299719
## 1708   0.4036601
## 1715  -0.3052134
## 1716   0.1779353
## 1717   0.0262510
## 1718   0.1020504
## 1719   0.1221156
## 1720  -0.2781384
## 1725  -0.1342865
## 1727  -0.2568477
## 1728  -0.1582153
## 1729   0.1109285
## 1730   0.3778881
## 1732   0.2568281
## 1733  -0.2827751
## 1734  -0.2797581
## 1736   0.0140673
## 1738   0.2708341
## 1739   0.3733968
## 1742  -0.0995826
## 1743   0.1480718
## 1744   0.2541428
## 1745   0.0262510
## 1750  -0.0331026
## 1751  -0.1654543
## 1752  -0.1441713
## 1756   0.1253492
## 1757  -0.0170344
## 1758   0.1254393
## 1759  -0.2692594
## 1760  -0.1749320
## 1761  -0.2537281
## 1762  -0.2949992
## 1764  -0.0365556
## 1766   0.1403381
## 1867  -0.0086416
## 1868  -0.1592631
## 1869  -0.2756402
## 1870  -0.0609453
## 1871  -0.1330543
## 1872   0.2590237
## 1874  -0.1631328
## 1875   0.0876771
## 1885   0.3023579
## 1889   0.1161280
## 1890   0.4778785
## 1891  -0.2756402
## 1894   0.0197218
## 1895  -0.1592631
## 1896  -0.0212793
## 1897   0.1433988
## 1899  -0.2419783
## 1904   0.0117778
## 
## $zboys
##                    (Intercept)      znas8
## -1.9403949176938     0.0003171 -0.0007753
## -1.78915377536492   -0.0017857  0.0043652
## -1.63791263303604    0.0035537 -0.0086870
## -1.48667149070715    0.0016399 -0.0040086
## -1.33543034837827   -0.0033596  0.0082127
## -1.18418920604939    0.0027529 -0.0067296
## -1.03294806372051   -0.0061999  0.0151559
## -0.881706921391632  -0.0026591  0.0065003
## -0.730465779062751  -0.0044200  0.0108049
## -0.57922463673387   -0.0024684  0.0060341
## -0.42798349440499   -0.0008614  0.0021058
## -0.276742352076109  -0.0018885  0.0046165
## -0.125501209747228   0.0086506 -0.0211467
## 0.0257399325816523  -0.0002406  0.0005881
## 0.176981074910533    0.0042217 -0.0103199
## 0.479463359568294   -0.0003959  0.0009677
## 0.630704501897175    0.0003334 -0.0008149
## 0.781945644226056    0.0005571 -0.0013618
## 0.933186786554936    0.0050132 -0.0122549
## 1.08442792888382     0.0042151 -0.0103038
## 1.2356690712127      0.0030553 -0.0074688
## 1.38691021354158    -0.0015203  0.0037165
## 1.53815135587046     0.0008503 -0.0020785
## 1.68939249819934     0.0039620 -0.0096852
## 
## $schoolMAIN
##    (Intercept)      znas8
## 1   -8.312e-12  2.681e-10
## 2    4.538e-11 -9.021e-10
## 3   -3.825e-11  7.921e-10
## 5   -2.843e-12  4.639e-11
## 6    4.282e-11 -7.795e-10
## 7    4.159e-12 -7.084e-11
## 8    2.193e-12 -4.976e-11
## 10  -8.911e-12  2.352e-10
## 11   1.507e-11 -3.682e-10
## 20  -1.736e-11  5.146e-10
## 22  -4.461e-12  1.026e-10
## 28  -5.455e-12  1.117e-10
## 36  -1.637e-11  3.523e-10
## 
## attr(,"class")
## [1] "ranef.mer"
se.fixef(M8)  # SE of fixed effects
## [1] 0.02715 0.02852
fixef(M8)[2] + c(-2, 2) * se.fixef(M8)[2]  # 95% CI of the slope
## [1] 0.03924 0.15332

:-)