install packages:
library(plyr)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:plyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(tidyr)
library(readxl)
library("rstatix")
##
## Attaching package: 'rstatix'
## The following objects are masked from 'package:plyr':
##
## desc, mutate
## The following object is masked from 'package:stats':
##
## filter
library("ggplot2")
library("dplyr")
library("ggpubr")
##
## Attaching package: 'ggpubr'
## The following object is masked from 'package:plyr':
##
## mutate
library("dunn.test")
library("ARTool")
library(openxlsx)
library("rio")
library(corrplot)
## corrplot 0.95 loaded
locate file:
DOU_Complete_KW <- read_excel("~/Desktop/NCCU/Ancestry Project/Current Working Files/DOU_Complete_KW.xls")
change file name:
DOU_Complete <- DOU_Complete_KW
colnames(DOU_Complete)
## [1] "Participant Number (DUO-)" "Location"
## [3] "Age" "Zip code"
## [5] "Sex" "WAFR"
## [7] "NATAM" "EURO"
## [9] "Frackalkine" "IFNa2"
## [11] "IFNy" "IL3"
## [13] "IL4" "IL7"
## [15] "IL18" "TNFa"
## [17] "Height" "Weight"
## [19] "Waist Circumference" "Hip Circumference"
## [21] "BMI" "HbA1c"
fix names with spaces:
names(DOU_Complete)[1]<-"Participant_Number"
names(DOU_Complete)[4]<-"Zip_code"
names(DOU_Complete)[19]<-"Waist_Cir"
names(DOU_Complete)[20]<-"Hip_Cir"
—————-Descriptive Statistics for population——————- splitting ancestry data into quartiles:
#West African Ancestry
WAFRquart <- quantile(DOU_Complete$WAFR, probs = c(0.25, 0.5, 0.75), na.rm = TRUE)
WAFRquart
## 25% 50% 75%
## 0.76000 0.81915 0.87000
#European Ancestry
EUROquart <- quantile(DOU_Complete$EURO, probs = c(0.25, 0.5, 0.75), na.rm = TRUE)
EUROquart
## 25% 50% 75%
## 0.01970 0.06000 0.14405
#Native American Ancestry
NATAMquart <- quantile(DOU_Complete$NATAM, probs = c(0.25, 0.5, 0.75), na.rm = TRUE)
NATAMquart
## 25% 50% 75%
## 0.026100 0.070000 0.153825
subset data by ancestry: West African Ancestry:
#subset
WAFRlow <- subset(DOU_Complete, EURO <= 0.76000)
WAFRmid <- subset(DOU_Complete, WAFR >= 0.76001 & WAFR <= 0.86999)
WAFRhigh <- subset(DOU_Complete, WAFR >= 0.87000)
European Ancestry:
#subset
EUROlow <- subset(DOU_Complete, EURO <= 0.01970)
EUROmid <- subset(DOU_Complete, EURO >= 0.01971 & EURO <= 0.14404)
EUROhigh <- subset(DOU_Complete, EURO >= 0.14405)
Native American Ancestry:
#subset
NATAMlow <- subset(DOU_Complete, NATAM <= 0.026100)
NATAMmid <- subset(DOU_Complete, NATAM >= 0.026101 & NATAM <= 0.153824)
NATAMhigh <- subset(DOU_Complete, NATAM >= 0.153825)
histogram of WAFR:
hist(DOU_Complete$WAFR,
breaks = 100,
main = "Histogram of % WAFR",
col = "lightblue",
border = "black")
histogram of EURO:
hist(DOU_Complete$EURO,
breaks = 100,
main = "Histogram of % EURO",
col = "coral",
border = "black")
histogram of NATAM:
hist(DOU_Complete$NATAM,
breaks = 100,
main = "Histogram of % NATAM",
col = "darkgoldenrod1",
border = "black")
creating data set that removes rows/individuals with NA (no values for ancestry data):
WAFRlab<- subset(DOU_Complete, !is.na(DOU_Complete$WAFR))
EUROlab<- subset(DOU_Complete, !is.na(DOU_Complete$EURO))
NATAMlab<- subset(DOU_Complete, !is.na(DOU_Complete$NATAM))
creating a new column within the current data set:
WAFRlab$WAFRPercentage[WAFRlab$WAFR < 0.76000] <- 0
## Warning: Unknown or uninitialised column: `WAFRPercentage`.
WAFRlab$WAFRPercentage[(WAFRlab$WAFR >= 0.76001) & (WAFRlab$WAFR <= 0.86999)] <- 1
WAFRlab$WAFRPercentage[WAFRlab$WAFR > 0.87000] <- 2
WAFRlab$WAFRPercentage
## [1] 0 0 1 1 2 1 2 0 1 0 1 0 0 1 1 1 2 2 0 2 0 1 1 0 1
## [26] 0 0 1 0 1 1 1 1 1 1 0 2 2 1 0 1 2 2 1 2 1 1 1 2 1
## [51] 2 1 2 1 0 1 0 1 2 0 1 1 0 1 2 2 2 2 2 1 2 1 0 1 0
## [76] 1 0 1 1 1 1 2 2 1 1 1 2 1 1 2 2 1 1 1 1 0 1 0 2 2
## [101] 1 1 0 2 2 1 0 0 0 1 0 1 1 2 1 1 1 1 1 NA 1 1 1 1 1
## [126] 2 2 0 2 0 2 0 0 0 NA 0 0 0 2 1 1 NA 0 0 0 2 2 2 1 2
## [151] 0 1 1 1 2 1 0 2 1 1 2 0 1 NA 2 0 1 1 2 1 2 1 0 0 NA
## [176] 1 2 0 1 1 1 NA 1 1 1 0 1 2 0 1 1 1 1 1 1 0 1 0 2 NA
## [201] 2 2
EUROquart
## 25% 50% 75%
## 0.01970 0.06000 0.14405
EUROlab$EUROPercentage[EUROlab$EURO < 0.01970] <- 0
## Warning: Unknown or uninitialised column: `EUROPercentage`.
EUROlab$EUROPercentage[(EUROlab$EURO >= 0.01971) & (EUROlab$EURO <= 0.14404)] <- 1
EUROlab$EUROPercentage[EUROlab$EURO > 0.14405] <- 2
EUROlab$EUROPercentage
## [1] 1 1 2 1 0 0 1 0 1 0 0 1 0 0 2 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 0 0
## [38] 0 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1 2 0 1 1 0 0 0 0 1 1 1 0 1 1 2
## [75] 0 0 0 1 0 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 1 0 0 0 1 1 2 2 2 2 1 2
## [112] 2 2 0 1 1 1 2 1 1 2 2 1 1 1 1 1 2 0 2 1 1 2 2 2 1 2 2 1 1 1 1 2 2 1 1 1 0
## [149] 2 0 2 2 1 1 1 2 2 1 1 2 1 2 2 2 1 2 1 1 1 1 1 2 2 2 2 1 1 2 1 2 2 2 1 2 2
## [186] 2 2 0 2 2 2 1 1 2 1 2 1 2 1 1 1 1
NATAMquart
## 25% 50% 75%
## 0.026100 0.070000 0.153825
NATAMlab$NATAMPercentage[NATAMlab$NATAM < 0.026100] <- 0
## Warning: Unknown or uninitialised column: `NATAMPercentage`.
NATAMlab$NATAMPercentage[(NATAMlab$NATAM >= 0.026101) & (NATAMlab$NATAM <= 0.153824)] <- 1
NATAMlab$NATAMPercentage[NATAMlab$NATAM > 0.153825] <- 2
NATAMlab$NATAMPercentage
## [1] 2 2 1 2 1 2 1 2 1 2 1 2 2 2 0 2 1 0 2 1 2 2 1 2 1 2 2 2 2 1 1 1 1 1 2 2 1
## [38] 1 2 2 2 0 0 2 0 1 1 1 1 2 1 1 0 2 2 2 2 1 1 2 1 2 2 2 1 1 1 1 0 2 0 1 2 1
## [75] 2 2 2 1 2 1 1 1 1 1 1 2 0 2 2 1 1 1 1 1 1 2 2 2 0 0 1 1 2 1 0 0 1 1 0 1 2
## [112] 1 1 1 0 1 1 0 1 0 0 1 0 1 0 1 1 1 0 1 1 2 0 1 0 2 1 1 0 1 1 1 0 1 2 0 1 1
## [149] 0 0 0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 1 0 0 1 0 0
## [186] 2 0 1 0 0 0 1 1 0 1 0 1 1 1 1 0 0
creating a new column that is a replicate of the old column (labeling our original conditions with text):
WAFRlab$WAFRPerLab <- WAFRlab$WAFRPercentage
WAFRlab$WAFRPerLab[WAFRlab$WAFRPerLab == 0] <- "Low"
WAFRlab$WAFRPerLab[WAFRlab$WAFRPerLab == 1] <- "Mid"
WAFRlab$WAFRPerLab[WAFRlab$WAFRPerLab == 2] <- "High"
EUROlab$EUROPerLab <- EUROlab$EUROPercentage
EUROlab$EUROPerLab[EUROlab$EUROPerLab == 0] <- "Low"
EUROlab$EUROPerLab[EUROlab$EUROPerLab == 1] <- "Mid"
EUROlab$EUROPerLab[EUROlab$EUROPerLab == 2] <- "High"
NATAMlab$NATAMPerLab <- NATAMlab$NATAMPercentage
NATAMlab$NATAMPerLab[NATAMlab$NATAMPerLab == 0] <- "Low"
NATAMlab$NATAMPerLab[NATAMlab$NATAMPerLab == 1] <- "Mid"
NATAMlab$NATAMPerLab[NATAMlab$NATAMPerLab == 2] <- "High"
——————-IL3———————
IL3 WAFR ancestry plot with mean bar:
IL3.plot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=IL3)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("IL3 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL3 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
IL3.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL3.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL3.compare)
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
IL3 WAFR ancestry plot with box plot (Color):
IL3.cplot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=IL3, colour = WAFRPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("IL3 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL3 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
IL3.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL3.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL3.compare)
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
IL3 EURO ancestry plot with mean bar:
IL3.plot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=IL3)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("IL3 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL3 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
IL3.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL3.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL3.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
IL3 EURO ancestry plot with box plot (Color):
IL3.cplot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=IL3, colour = EUROPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("IL3 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL3 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
IL3.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL3.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL3.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
IL3 NATAM ancestry plot with mean bar:
IL3.plot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=IL3)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("IL3 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL3 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
IL3.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL3.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL3.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
IL3 NATAM ancestry plot with box plot (Color):
IL3.cplot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=IL3, colour = NATAMPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("IL3 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL3 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
IL3.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL3.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL3.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
——————-Frackalkine———————
Frackalkine WAFR ancestry plot with mean bar:
Frackalkine.plot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=Frackalkine)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("Frackalkine \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Frackalkine Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
Frackalkine.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Frackalkine.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Frackalkine.compare)
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
Frackalkine WAFR ancestry plot with box plot (Color):
Frackalkine.cplot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=Frackalkine, colour = WAFRPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("Frackalkine \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Frackalkine Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
Frackalkine.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Frackalkine.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Frackalkine.compare)
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
Frackalkine EURO ancestry plot with mean bar:
Frackalkine.plot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=Frackalkine)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("Frackalkine \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Frackalkine Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
Frackalkine.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Frackalkine.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Frackalkine.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
Frackalkine EURO ancestry plot with box plot (Color):
Frackalkine.cplot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=Frackalkine, colour = EUROPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("Frackalkine \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Frackalkine Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
Frackalkine.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Frackalkine.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Frackalkine.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
Frackalkine NATAM ancestry plot with mean bar:
Frackalkine.plot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=Frackalkine)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("Frackalkine \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Frackalkine Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
Frackalkine.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Frackalkine.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Frackalkine.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
Frackalkine NATAM ancestry plot with box plot (Color):
Frackalkine.cplot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=Frackalkine, colour = NATAMPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("Frackalkine \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Frackalkine Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
Frackalkine.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Frackalkine.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Frackalkine.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
——————-IFNa2———————
IFNa2 WAFR ancestry plot with mean bar:
IFNa2.plot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=IFNa2)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("IFNa2 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IFNa2 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
IFNa2.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IFNa2.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IFNa2.compare)
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
IFNa2 WAFR ancestry plot with box plot (Color):
IFNa2.cplot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=IFNa2, colour = WAFRPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("IFNa2 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IFNa2 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
IFNa2.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IFNa2.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IFNa2.compare)
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
IFNa2 EURO ancestry plot with mean bar:
IFNa2.plot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=IFNa2)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("IFNa2 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IFNa2 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
IFNa2.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IFNa2.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IFNa2.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
IFNa2 EURO ancestry plot with box plot (Color):
IFNa2.cplot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=IFNa2, colour = EUROPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("IFNa2 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IFNa2 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
IFNa2.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IFNa2.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IFNa2.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
IFNa2 NATAM ancestry plot with mean bar:
IFNa2.plot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=IFNa2)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("IFNa2 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IFNa2 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
IFNa2.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IFNa2.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IFNa2.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
IFNa2 NATAM ancestry plot with box plot (Color):
IFNa2.cplot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=IFNa2, colour = NATAMPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("IFNa2 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IFNa2 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
IFNa2.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IFNa2.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IFNa2.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
——————-IFNy———————
IFNy WAFR ancestry plot with mean bar:
IFNy.plot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=IFNy)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("IFNy \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IFNy Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
IFNy.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IFNy.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IFNy.compare)
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
IFNy WAFR ancestry plot with box plot (Color):
IFNy.cplot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=IFNy, colour = WAFRPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("IFNy \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IFNy Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
IFNy.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IFNy.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IFNy.compare)
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
IFNy EURO ancestry plot with mean bar:
IFNy.plot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=IFNy)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("IFNy \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IFNy Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
IFNy.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IFNy.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IFNy.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
IFNy EURO ancestry plot with box plot (Color):
IFNy.cplot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=IFNy, colour = EUROPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("IFNy \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IFNy Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
IFNy.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IFNy.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IFNy.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
IFNy NATAM ancestry plot with mean bar:
IFNy.plot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=IFNy)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("IFNy \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IFNy Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
IFNy.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IFNy.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IFNy.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
IFNy NATAM ancestry plot with box plot (Color):
IFNy.cplot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=IFNy, colour = NATAMPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("IFNy \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IFNy Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
IFNy.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IFNy.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IFNy.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
——————-IL4———————
IL4 WAFR ancestry plot with mean bar:
IL4.plot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=IL4)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("IL4 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL4 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
IL4.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL4.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL4.compare)
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
IL4 WAFR ancestry plot with box plot (Color):
IL4.cplot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=IL4, colour = WAFRPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("IL4 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL4 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
IL4.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL4.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL4.compare)
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
IL4 EURO ancestry plot with mean bar:
IL4.plot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=IL4)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("IL4 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL4 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
IL4.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL4.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL4.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
IL4 EURO ancestry plot with box plot (Color):
IL4.cplot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=IL4, colour = EUROPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("IL4 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL4 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
IL4.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL4.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL4.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
IL4 NATAM ancestry plot with mean bar:
IL4.plot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=IL4)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("IL4 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL4 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
IL4.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL4.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL4.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
IL4 NATAM ancestry plot with box plot (Color):
IL4.cplot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=IL4, colour = NATAMPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("IL4 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL4 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
IL4.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL4.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL4.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
——————-IL7———————
IL7 WAFR ancestry plot with mean bar:
IL7.plot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=IL7)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("IL7 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL7 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
IL7.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL7.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL7.compare)
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
IL7 WAFR ancestry plot with box plot (Color):
IL7.cplot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=IL7, colour = WAFRPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("IL7 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL7 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
IL7.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL7.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL7.compare)
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
IL7 EURO ancestry plot with mean bar:
IL7.plot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=IL7)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("IL7 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL7 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
IL7.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL7.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL7.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
IL7 EURO ancestry plot with box plot (Color):
IL7.cplot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=IL7, colour = EUROPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("IL7 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL7 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
IL7.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL7.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL7.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
IL7 NATAM ancestry plot with mean bar:
IL7.plot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=IL7)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("IL7 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL7 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
IL7.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL7.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL7.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
IL7 NATAM ancestry plot with box plot (Color):
IL7.cplot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=IL7, colour = NATAMPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("IL7 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL7 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
IL7.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL7.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL7.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
——————-IL18———————
IL18 WAFR ancestry plot with mean bar:
IL18.plot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=IL18)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("IL18 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL18 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
IL18.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL18.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL18.compare)
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
IL18 WAFR ancestry plot with box plot (Color):
IL18.cplot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=IL18, colour = WAFRPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("IL18 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL18 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
IL18.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL18.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL18.compare)
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
IL18 EURO ancestry plot with mean bar:
IL18.plot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=IL18)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("IL18 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL18 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
IL18.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL18.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL18.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
IL18 EURO ancestry plot with box plot (Color):
IL18.cplot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=IL18, colour = EUROPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("IL18 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL18 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
IL18.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL18.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL18.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
IL18 NATAM ancestry plot with mean bar:
IL18.plot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=IL18)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("IL18 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL18 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
IL18.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL18.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL18.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
IL18 NATAM ancestry plot with box plot (Color):
IL18.cplot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=IL18, colour = NATAMPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("IL18 \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("IL18 Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
IL18.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
IL18.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = IL18.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
——————-TNFa———————
TNFa WAFR ancestry plot with mean bar:
TNFa.plot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=TNFa)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("TNFa \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("TNFa Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
TNFa.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
TNFa.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = TNFa.compare)
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
TNFa WAFR ancestry plot with box plot (Color):
TNFa.cplot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=TNFa, colour = WAFRPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("TNFa \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("TNFa Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
TNFa.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
TNFa.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = TNFa.compare)
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
TNFa EURO ancestry plot with mean bar:
TNFa.plot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=TNFa)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("TNFa \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("TNFa Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
TNFa.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
TNFa.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = TNFa.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
TNFa EURO ancestry plot with box plot (Color):
TNFa.cplot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=TNFa, colour = EUROPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("TNFa \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("TNFa Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
TNFa.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
TNFa.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = TNFa.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
TNFa NATAM ancestry plot with mean bar:
TNFa.plot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=TNFa)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("TNFa \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("TNFa Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
TNFa.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
TNFa.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = TNFa.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
TNFa NATAM ancestry plot with box plot (Color):
TNFa.cplot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=TNFa, colour = NATAMPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("TNFa \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("TNFa Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
TNFa.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
TNFa.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = TNFa.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
——————-Height———————
Height WAFR ancestry plot with mean bar:
Height.plot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=Height)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("Height \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Height Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
Height.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Height.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Height.compare)
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
Height WAFR ancestry plot with box plot (Color):
Height.cplot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=Height, colour = WAFRPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("Height \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Height Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
Height.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Height.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Height.compare)
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
Height EURO ancestry plot with mean bar:
Height.plot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=Height)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("Height \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Height Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
Height.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Height.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Height.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
Height EURO ancestry plot with box plot (Color):
Height.cplot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=Height, colour = EUROPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("Height \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Height Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
Height.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Height.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Height.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
Height NATAM ancestry plot with mean bar:
Height.plot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=Height)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("Height \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Height Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
Height.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Height.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Height.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
Height NATAM ancestry plot with box plot (Color):
Height.cplot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=Height, colour = NATAMPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("Height \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Height Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
Height.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Height.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Height.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
——————-Weight———————
Weight WAFR ancestry plot with mean bar:
Weight.plot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=Weight)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("Weight \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Weight Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
Weight.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Weight.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Weight.compare)
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
Weight WAFR ancestry plot with box plot (Color):
Weight.cplot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=Weight, colour = WAFRPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("Weight \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Weight Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
Weight.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Weight.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Weight.compare)
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
Weight EURO ancestry plot with mean bar:
Weight.plot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=Weight)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("Weight \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Weight Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
Weight.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Weight.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Weight.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
Weight EURO ancestry plot with box plot (Color):
Weight.cplot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=Weight, colour = EUROPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("Weight \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Weight Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
Weight.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Weight.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Weight.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
Weight NATAM ancestry plot with mean bar:
Weight.plot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=Weight)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("Weight \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Weight Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
Weight.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Weight.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Weight.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
Weight NATAM ancestry plot with box plot (Color):
Weight.cplot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=Weight, colour = NATAMPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("Weight \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Weight Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
Weight.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Weight.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Weight.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
——————-Waist_Cir———————
Waist_Cir WAFR ancestry plot with mean bar:
Waist_Cir.plot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=Waist_Cir)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("Waist_Cir \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Waist_Cir Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
Waist_Cir.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Waist_Cir.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Waist_Cir.compare)
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error in `mutate()`:
## ℹ In argument: `p = purrr::map(...)`.
## Caused by error in `purrr::map()`:
## ℹ In index: 1.
## ℹ With name: x.1.
## Caused by error in `t.test.default()`:
## ! not enough 'y' observations
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Computation failed in `stat_signif()`.
## Caused by error in `scales$y$range$range[2] - scales$y$range$range[1]`:
## ! non-numeric argument to binary operator
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
Waist_Cir WAFR ancestry plot with box plot (Color):
Waist_Cir.cplot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=Waist_Cir, colour = WAFRPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("Waist_Cir \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Waist_Cir Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
Waist_Cir.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Waist_Cir.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Waist_Cir.compare)
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error in `mutate()`:
## ℹ In argument: `p = purrr::map(...)`.
## Caused by error in `purrr::map()`:
## ℹ In index: 1.
## ℹ With name: x.1.
## Caused by error in `t.test.default()`:
## ! not enough 'y' observations
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Computation failed in `stat_signif()`.
## Caused by error in `scales$y$range$range[2] - scales$y$range$range[1]`:
## ! non-numeric argument to binary operator
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
Waist_Cir EURO ancestry plot with mean bar:
Waist_Cir.plot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=Waist_Cir)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("Waist_Cir \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Waist_Cir Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
Waist_Cir.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Waist_Cir.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Waist_Cir.compare)
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error in `mutate()`:
## ℹ In argument: `p = purrr::map(...)`.
## Caused by error in `purrr::map()`:
## ℹ In index: 1.
## ℹ With name: x.2.
## Caused by error in `t.test.default()`:
## ! not enough 'y' observations
## Warning: Computation failed in `stat_signif()`.
## Caused by error in `scales$y$range$range[2] - scales$y$range$range[1]`:
## ! non-numeric argument to binary operator
Waist_Cir EURO ancestry plot with box plot (Color):
Waist_Cir.cplot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=Waist_Cir, colour = EUROPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("Waist_Cir \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Waist_Cir Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
Waist_Cir.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Waist_Cir.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Waist_Cir.compare)
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error in `mutate()`:
## ℹ In argument: `p = purrr::map(...)`.
## Caused by error in `purrr::map()`:
## ℹ In index: 1.
## ℹ With name: x.2.
## Caused by error in `t.test.default()`:
## ! not enough 'y' observations
## Warning: Computation failed in `stat_signif()`.
## Caused by error in `scales$y$range$range[2] - scales$y$range$range[1]`:
## ! non-numeric argument to binary operator
Waist_Cir NATAM ancestry plot with mean bar:
Waist_Cir.plot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=Waist_Cir)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("Waist_Cir \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Waist_Cir Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
Waist_Cir.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Waist_Cir.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Waist_Cir.compare)
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error in `mutate()`:
## ℹ In argument: `p = purrr::map(...)`.
## Caused by error in `purrr::map()`:
## ℹ In index: 1.
## ℹ With name: x.3.
## Caused by error in `t.test.default()`:
## ! not enough 'y' observations
## Warning: Computation failed in `stat_signif()`.
## Caused by error in `scales$y$range$range[2] - scales$y$range$range[1]`:
## ! non-numeric argument to binary operator
Waist_Cir NATAM ancestry plot with box plot (Color):
Waist_Cir.cplot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=Waist_Cir, colour = NATAMPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("Waist_Cir \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Waist_Cir Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
Waist_Cir.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Waist_Cir.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Waist_Cir.compare)
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error in `mutate()`:
## ℹ In argument: `p = purrr::map(...)`.
## Caused by error in `purrr::map()`:
## ℹ In index: 1.
## ℹ With name: x.3.
## Caused by error in `t.test.default()`:
## ! not enough 'y' observations
## Warning: Computation failed in `stat_signif()`.
## Caused by error in `scales$y$range$range[2] - scales$y$range$range[1]`:
## ! non-numeric argument to binary operator
——————-Hip_Cir———————
Hip_Cir WAFR ancestry plot with mean bar:
Hip_Cir.plot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=Hip_Cir)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("Hip_Cir \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Hip_Cir Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
Hip_Cir.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Hip_Cir.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Hip_Cir.compare)
## Warning: Removed 12 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 12 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 12 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 12 rows containing missing values or values outside the scale range
## (`geom_point()`).
Hip_Cir WAFR ancestry plot with box plot (Color):
Hip_Cir.cplot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=Hip_Cir, colour = WAFRPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("Hip_Cir \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Hip_Cir Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
Hip_Cir.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Hip_Cir.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Hip_Cir.compare)
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 5 rows containing non-finite outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 12 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 12 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 12 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 12 rows containing missing values or values outside the scale range
## (`geom_point()`).
Hip_Cir EURO ancestry plot with mean bar:
Hip_Cir.plot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=Hip_Cir)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("Hip_Cir \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Hip_Cir Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
Hip_Cir.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Hip_Cir.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Hip_Cir.compare)
## Warning: Removed 5 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 5 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 5 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 5 rows containing missing values or values outside the scale range
## (`geom_point()`).
Hip_Cir EURO ancestry plot with box plot (Color):
Hip_Cir.cplot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=Hip_Cir, colour = EUROPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("Hip_Cir \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Hip_Cir Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
Hip_Cir.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Hip_Cir.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Hip_Cir.compare)
## Warning: Removed 5 rows containing non-finite outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 5 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 5 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 5 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 5 rows containing missing values or values outside the scale range
## (`geom_point()`).
Hip_Cir NATAM ancestry plot with mean bar:
Hip_Cir.plot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=Hip_Cir)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("Hip_Cir \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Hip_Cir Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
Hip_Cir.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Hip_Cir.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Hip_Cir.compare)
## Warning: Removed 5 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 5 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 5 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 5 rows containing missing values or values outside the scale range
## (`geom_point()`).
Hip_Cir NATAM ancestry plot with box plot (Color):
Hip_Cir.cplot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=Hip_Cir, colour = NATAMPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("Hip_Cir \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("Hip_Cir Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
Hip_Cir.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
Hip_Cir.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = Hip_Cir.compare)
## Warning: Removed 5 rows containing non-finite outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 5 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 5 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 5 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 5 rows containing missing values or values outside the scale range
## (`geom_point()`).
——————-BMI———————
BMI WAFR ancestry plot with mean bar:
BMI.plot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=BMI)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("BMI \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("BMI Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
BMI.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
BMI.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = BMI.compare)
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
BMI WAFR ancestry plot with box plot (Color):
BMI.cplot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=BMI, colour = WAFRPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("BMI \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("BMI Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
BMI.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
BMI.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = BMI.compare)
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
BMI EURO ancestry plot with mean bar:
BMI.plot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=BMI)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("BMI \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("BMI Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
BMI.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
BMI.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = BMI.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
BMI EURO ancestry plot with box plot (Color):
BMI.cplot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=BMI, colour = EUROPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("BMI \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("BMI Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
BMI.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
BMI.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = BMI.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
BMI NATAM ancestry plot with mean bar:
BMI.plot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=BMI)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("BMI \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("BMI Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
BMI.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
BMI.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = BMI.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
BMI NATAM ancestry plot with box plot (Color):
BMI.cplot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=BMI, colour = NATAMPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("BMI \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("BMI Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
BMI.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
BMI.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = BMI.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
——————-HbA1c———————
HbA1c WAFR ancestry plot with mean bar:
HbA1c.plot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=HbA1c)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("HbA1c \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("HbA1c Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
HbA1c.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
HbA1c.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = HbA1c.compare)
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
HbA1c WAFR ancestry plot with box plot (Color):
HbA1c.cplot <- ggplot(data=WAFRlab, aes(x=WAFRPerLab, y=HbA1c, colour = WAFRPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of WAFR") +
ylab("HbA1c \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("HbA1c Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
HbA1c.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
HbA1c.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = HbA1c.compare)
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`stat_boxplot()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_summary()`).
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_compare_means()`).
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
## Warning: Removed 7 rows containing non-finite outside the scale range
## (`stat_signif()`).
## Warning: Removed 7 rows containing missing values or values outside the scale range
## (`geom_point()`).
HbA1c EURO ancestry plot with mean bar:
HbA1c.plot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=HbA1c)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("HbA1c \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("HbA1c Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
HbA1c.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
HbA1c.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = HbA1c.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
HbA1c EURO ancestry plot with box plot (Color):
HbA1c.cplot <- ggplot(data=EUROlab, aes(x=EUROPerLab, y=HbA1c, colour = EUROPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of EURO") +
ylab("HbA1c \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("HbA1c Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
HbA1c.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
HbA1c.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = HbA1c.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
HbA1c NATAM ancestry plot with mean bar:
HbA1c.plot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=HbA1c)) +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("HbA1c \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("HbA1c Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5))
#create mean comparison groups
HbA1c.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
HbA1c.plot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = HbA1c.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default
HbA1c NATAM ancestry plot with box plot (Color):
HbA1c.cplot <- ggplot(data=NATAMlab, aes(x=NATAMPerLab, y=HbA1c, colour = NATAMPerLab)) +
geom_boxplot() +
theme_classic() +
geom_jitter(position=position_jitter(0.1)) +
stat_summary(fun = median, fun.min = median, fun.max = median, geom = "crossbar", width = 0.5) +
xlab("% of NATAM") +
ylab("HbA1c \n (pg/mL)") +
scale_x_discrete(limit = c("Low","Mid","High")) +
ggtitle("HbA1c Levels by \n Ancestry") +
theme(plot.title = element_text(hjust = 0.5), legend.position = "none")
#create mean comparison groups
HbA1c.compare <- list( c("Low", "Mid"), c("Mid", "High"), c("Low", "High"))
#add p-value to plot while comparing means
HbA1c.cplot + stat_compare_means(method = "t.test", label.y = 3500) +
# Visualize: Specify the comparisons you want
stat_compare_means(method = 't.test', comparisons = HbA1c.compare)
## Warning: Unknown or uninitialised column: `p`.
## Warning: Computation failed in `stat_compare_means()`.
## Caused by error:
## ! argument "x" is missing, with no default