Import your data
data(flights)
flights %>% skimr::skim()
Data summary
Name |
Piped data |
Number of rows |
336776 |
Number of columns |
19 |
_______________________ |
|
Column type frequency: |
|
character |
4 |
numeric |
14 |
POSIXct |
1 |
________________________ |
|
Group variables |
None |
Variable type: character
carrier |
0 |
1.00 |
2 |
2 |
0 |
16 |
0 |
tailnum |
2512 |
0.99 |
5 |
6 |
0 |
4043 |
0 |
origin |
0 |
1.00 |
3 |
3 |
0 |
3 |
0 |
dest |
0 |
1.00 |
3 |
3 |
0 |
105 |
0 |
Variable type: numeric
year |
0 |
1.00 |
2013.00 |
0.00 |
2013 |
2013 |
2013 |
2013 |
2013 |
▁▁▇▁▁ |
month |
0 |
1.00 |
6.55 |
3.41 |
1 |
4 |
7 |
10 |
12 |
▇▆▆▆▇ |
day |
0 |
1.00 |
15.71 |
8.77 |
1 |
8 |
16 |
23 |
31 |
▇▇▇▇▆ |
dep_time |
8255 |
0.98 |
1349.11 |
488.28 |
1 |
907 |
1401 |
1744 |
2400 |
▁▇▆▇▃ |
sched_dep_time |
0 |
1.00 |
1344.25 |
467.34 |
106 |
906 |
1359 |
1729 |
2359 |
▁▇▇▇▃ |
dep_delay |
8255 |
0.98 |
12.64 |
40.21 |
-43 |
-5 |
-2 |
11 |
1301 |
▇▁▁▁▁ |
arr_time |
8713 |
0.97 |
1502.05 |
533.26 |
1 |
1104 |
1535 |
1940 |
2400 |
▁▃▇▇▇ |
sched_arr_time |
0 |
1.00 |
1536.38 |
497.46 |
1 |
1124 |
1556 |
1945 |
2359 |
▁▃▇▇▇ |
arr_delay |
9430 |
0.97 |
6.90 |
44.63 |
-86 |
-17 |
-5 |
14 |
1272 |
▇▁▁▁▁ |
flight |
0 |
1.00 |
1971.92 |
1632.47 |
1 |
553 |
1496 |
3465 |
8500 |
▇▃▃▁▁ |
air_time |
9430 |
0.97 |
150.69 |
93.69 |
20 |
82 |
129 |
192 |
695 |
▇▂▂▁▁ |
distance |
0 |
1.00 |
1039.91 |
733.23 |
17 |
502 |
872 |
1389 |
4983 |
▇▃▂▁▁ |
hour |
0 |
1.00 |
13.18 |
4.66 |
1 |
9 |
13 |
17 |
23 |
▁▇▇▇▅ |
minute |
0 |
1.00 |
26.23 |
19.30 |
0 |
8 |
29 |
44 |
59 |
▇▃▆▃▅ |
Variable type: POSIXct
time_hour |
0 |
1 |
2013-01-01 05:00:00 |
2013-12-31 23:00:00 |
2013-07-03 10:00:00 |
6936 |
Create Data frame functions
Example 1: count columns
code snippets
ncol_num <- flights %>%
# Select a type of variables
select(where(is.numeric)) %>%
# Count columns
ncol()
ncol_num
## [1] 14
Turn them into a function
count_ncol_numeric <- function(.data) {
# body
ncol_num <- .data %>%
# Select a type of variables
select(where(is.numeric)) %>%
# Count columns
ncol()
# return the new variable
return(ncol_num)
}
flights %>% count_ncol_numeric()
## [1] 14
flights %>% .[1:10, -1:-13] %>% count_ncol_numeric()
## [1] 4
Adding arguments for details of operation
count_ncol_type <- function(.data, type_data = "numeric") {
# if statement for type of variables
if(type_data == "numeric") {
# body
ncol_type <- .data %>%
# Select a type of variables
select(where(is.numeric)) %>%
# Count columns
ncol()
} else if (type_data == "character") {
# body
ncol_type <- .data %>%
# Select a type of variables
select(where(is.character)) %>%
# Count columns
ncol()
}
# return the new variable
return(ncol_type)
}
flights %>% count_ncol_type()
## [1] 14
flights %>% count_ncol_type(type_data = "character")
## [1] 4
flights %>% .[1:10, 1:5] %>% count_ncol_type(type_data = "character")
## [1] 0
Example 2: count rows
code snippets
nrow_num <- flights %>%
# filter rows that meet a condition
filter(carrier == "DL") %>%
# Count rows
nrow()
nrow_num
## [1] 48110
Turn them into a function
count_num_flights_by_carrier <- function(.data, carrier_name){
# body
nrow_num <- .data %>%
# filter rows that meet a condition
filter(carrier == carrier_name) %>%
# Count rows
nrow()
# return the new variable
return(nrow_num)
}
flights %>% .[1:10, "carrier"] %>% count_num_flights_by_carrier(carrier_name = "AA")
## [1] 2
Example 3: count rows
Create your own.
data(mpg)
mpg %>% skimr::skim()
Data summary
Name |
Piped data |
Number of rows |
234 |
Number of columns |
11 |
_______________________ |
|
Column type frequency: |
|
character |
6 |
numeric |
5 |
________________________ |
|
Group variables |
None |
Variable type: character
manufacturer |
0 |
1 |
4 |
10 |
0 |
15 |
0 |
model |
0 |
1 |
2 |
22 |
0 |
38 |
0 |
trans |
0 |
1 |
8 |
10 |
0 |
10 |
0 |
drv |
0 |
1 |
1 |
1 |
0 |
3 |
0 |
fl |
0 |
1 |
1 |
1 |
0 |
5 |
0 |
class |
0 |
1 |
3 |
10 |
0 |
7 |
0 |
Variable type: numeric
displ |
0 |
1 |
3.47 |
1.29 |
1.6 |
2.4 |
3.3 |
4.6 |
7 |
▇▆▆▃▁ |
year |
0 |
1 |
2003.50 |
4.51 |
1999.0 |
1999.0 |
2003.5 |
2008.0 |
2008 |
▇▁▁▁▇ |
cyl |
0 |
1 |
5.89 |
1.61 |
4.0 |
4.0 |
6.0 |
8.0 |
8 |
▇▁▇▁▇ |
cty |
0 |
1 |
16.86 |
4.26 |
9.0 |
14.0 |
17.0 |
19.0 |
35 |
▆▇▃▁▁ |
hwy |
0 |
1 |
23.44 |
5.95 |
12.0 |
18.0 |
24.0 |
27.0 |
44 |
▅▅▇▁▁ |
code snippets
nrow_num <- mpg %>%
# filter rows that meet a condition
filter(manufacturer == "subaru") %>%
# Count rows
nrow()
nrow_num
## [1] 14
Turn them into a function
count_num_mpg_by_manufacturer <- function(.data, manufacturer_name){
# body
nrow_num <- .data %>%
# filter rows that meet a condition
filter(manufacturer == manufacturer_name) %>%
# Count rows
nrow()
# return the new variable
return(nrow_num)
}
mpg %>% .[1:10, "manufacturer"] %>% count_num_mpg_by_manufacturer(manufacturer_name = "audi")
## [1] 10