\(\vec{x_1}=\begin{bmatrix}1\\-1\\1\end{bmatrix}\), \(\vec{x_2}=\begin{bmatrix}1\\0\\2\end{bmatrix}\), \(\vec{x_3}=\begin{bmatrix}-1\\1\\3\end{bmatrix}\), \(\vec{x}=\begin{bmatrix}2\\1\\-1\end{bmatrix}\).
\(a_1\begin{bmatrix}1\\-1\\1\end{bmatrix}+a_2\begin{bmatrix}1\\0\\2\end{bmatrix}+a_3\begin{bmatrix}-1\\1\\3\end{bmatrix}=\begin{bmatrix}2\\1\\-1\end{bmatrix}\)
\(\begin{bmatrix}1&1&-1\\-1&0&1\\1&2&3\end{bmatrix}\begin{bmatrix}a_1\\a_2\\a_3\end{bmatrix}=\begin{bmatrix}2\\2\\-1\end{bmatrix}\)
source("./adjoint.R")
(A1 <- matrix(c(1, -1, 1, 1, 0, 2, -1, 1, 3), 3))
## [,1] [,2] [,3]
## [1,] 1 1 -1
## [2,] -1 0 1
## [3,] 1 2 3
(b1 <- c(2, 1, -1))
## [1] 2 1 -1
det(A1)
## [1] 4
adjoint(A1)
## [,1] [,2] [,3]
## [1,] -2 -5 1
## [2,] 4 4 0
## [3,] -2 -1 1
adjoint(A1)/det(A1)
## [,1] [,2] [,3]
## [1,] -0.5 -1.25 0.25
## [2,] 1.0 1.00 0.00
## [3,] -0.5 -0.25 0.25
(adjoint(A1)/det(A1)) %*% b1
## [,1]
## [1,] -2.5
## [2,] 3.0
## [3,] -1.5
solve(A1, b1)
## [1] -2.5 3.0 -1.5
\(a_1\begin{bmatrix}1\\-1\\1\end{bmatrix}+a_2\begin{bmatrix}1\\0\\2\end{bmatrix}+a_3\begin{bmatrix}-1\\1\\3\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}\)
\(\begin{bmatrix}1&1&-1\\-1&0&1\\1&2&3\end{bmatrix}\begin{bmatrix}a_1\\a_2\\a_3\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}\) 을 풀면, 예제 6.1로부터 행렬 \(\begin{bmatrix}1&1&-1\\-1&0&1\\1&2&3\end{bmatrix}\) 의 역행렬이 존재함을 알기 때문에 \(a_1=a_2=a_3=0\) 임을 알 수 있음. 따라서 \(\{\vec{x_1},\vec{x_2},\vec{x_3}\}\) 는 선형독립.
(A2 <- matrix(c(1, -1, 1, 1, 0, 2, 3, -2, 4), 3))
## [,1] [,2] [,3]
## [1,] 1 1 3
## [2,] -1 0 -2
## [3,] 1 2 4
det(A2)
## [1] 0
2*A2[, 1] + A2[, 2]
## [1] 3 -2 4
A2[, 3]
## [1] 3 -2 4
\(\begin{bmatrix}1&1&-1\\-1&0&1\\1&2&3\end{bmatrix}\begin{bmatrix}a_1\\a_2\\a_3\end{bmatrix}=\begin{bmatrix}a\\b\\c\end{bmatrix}\) 을 풀면
\(\begin{bmatrix}a_1\\a_2\\a_3\end{bmatrix}=\begin{bmatrix}1&1&-1\\-1&0&1\\1&2&3\end{bmatrix}^{-1}\begin{bmatrix}a\\b\\c\end{bmatrix}=1/4\begin{bmatrix}-2&-5&1\\4&4&0\\-2&-1&1\end{bmatrix}\begin{bmatrix}a\\b\\c\end{bmatrix}=\begin{bmatrix}-\frac{1}{2}a-\frac{5}{4}b+\frac{1}{4}c\\a+b\\-\frac{1}{2}a-\frac{1}{4}b+\frac{1}{4}c\end{bmatrix}\)
\(\vec{x}^*=\vec{x}/||\vec{x}||\), \(\vec{y}^*=\vec{x}/||\vec{x}||\), \(r=<\vec{x}^*,\vec{y}^*>\) 라 하면 \(|\,r\,|\le1\) 을 보이는 문제.
\(<\vec{x}^*-r\vec{y}^*,\vec{y}^*>=0\) 임을 이용하여
\(1=||\vec{x}^*||^2=||\vec{x}^*-r\vec{y}^*+r\vec{y}^*||^2=||\vec{x}^*-r\vec{y}^*||^2+r^2||\vec{y}^*||^2\ge r^2\).
save.image("chapter_6_class.rda")