data(flights)
flights %>% skimr::skim()
Name | Piped data |
Number of rows | 336776 |
Number of columns | 19 |
_______________________ | |
Column type frequency: | |
character | 4 |
numeric | 14 |
POSIXct | 1 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
carrier | 0 | 1.00 | 2 | 2 | 0 | 16 | 0 |
tailnum | 2512 | 0.99 | 5 | 6 | 0 | 4043 | 0 |
origin | 0 | 1.00 | 3 | 3 | 0 | 3 | 0 |
dest | 0 | 1.00 | 3 | 3 | 0 | 105 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
year | 0 | 1.00 | 2013.00 | 0.00 | 2013 | 2013 | 2013 | 2013 | 2013 | ▁▁▇▁▁ |
month | 0 | 1.00 | 6.55 | 3.41 | 1 | 4 | 7 | 10 | 12 | ▇▆▆▆▇ |
day | 0 | 1.00 | 15.71 | 8.77 | 1 | 8 | 16 | 23 | 31 | ▇▇▇▇▆ |
dep_time | 8255 | 0.98 | 1349.11 | 488.28 | 1 | 907 | 1401 | 1744 | 2400 | ▁▇▆▇▃ |
sched_dep_time | 0 | 1.00 | 1344.25 | 467.34 | 106 | 906 | 1359 | 1729 | 2359 | ▁▇▇▇▃ |
dep_delay | 8255 | 0.98 | 12.64 | 40.21 | -43 | -5 | -2 | 11 | 1301 | ▇▁▁▁▁ |
arr_time | 8713 | 0.97 | 1502.05 | 533.26 | 1 | 1104 | 1535 | 1940 | 2400 | ▁▃▇▇▇ |
sched_arr_time | 0 | 1.00 | 1536.38 | 497.46 | 1 | 1124 | 1556 | 1945 | 2359 | ▁▃▇▇▇ |
arr_delay | 9430 | 0.97 | 6.90 | 44.63 | -86 | -17 | -5 | 14 | 1272 | ▇▁▁▁▁ |
flight | 0 | 1.00 | 1971.92 | 1632.47 | 1 | 553 | 1496 | 3465 | 8500 | ▇▃▃▁▁ |
air_time | 9430 | 0.97 | 150.69 | 93.69 | 20 | 82 | 129 | 192 | 695 | ▇▂▂▁▁ |
distance | 0 | 1.00 | 1039.91 | 733.23 | 17 | 502 | 872 | 1389 | 4983 | ▇▃▂▁▁ |
hour | 0 | 1.00 | 13.18 | 4.66 | 1 | 9 | 13 | 17 | 23 | ▁▇▇▇▅ |
minute | 0 | 1.00 | 26.23 | 19.30 | 0 | 8 | 29 | 44 | 59 | ▇▃▆▃▅ |
Variable type: POSIXct
skim_variable | n_missing | complete_rate | min | max | median | n_unique |
---|---|---|---|---|---|---|
time_hour | 0 | 1 | 2013-01-01 05:00:00 | 2013-12-31 23:00:00 | 2013-07-03 10:00:00 | 6936 |
stocks <- tq_get(c("NOC", "WMT","UPS","UNH"),
get = "stock.prices",
from = "2016-01-01")
stocks %>% glimpse()
## Rows: 8,924
## Columns: 8
## $ symbol <chr> "NOC", "NOC", "NOC", "NOC", "NOC", "NOC", "NOC", "NOC", "NOC"…
## $ date <date> 2016-01-04, 2016-01-05, 2016-01-06, 2016-01-07, 2016-01-08, …
## $ open <dbl> 185.98, 187.85, 190.16, 187.90, 188.79, 187.48, 189.06, 189.0…
## $ high <dbl> 187.60, 192.86, 193.20, 189.68, 189.74, 188.71, 189.47, 189.4…
## $ low <dbl> 185.31, 187.85, 190.00, 186.01, 185.90, 185.51, 187.53, 184.5…
## $ close <dbl> 187.51, 192.39, 190.47, 188.11, 186.07, 188.11, 188.92, 184.8…
## $ volume <dbl> 1476100, 2302200, 1879700, 2136100, 1503300, 1773800, 1010400…
## $ adjusted <dbl> 163.0530, 167.2965, 165.6269, 163.5747, 161.8009, 163.5747, 1…
ncol_num <- flights %>%
# Select a type of variables
select(where(is.numeric)) %>%
# Count columns
ncol()
ncol_num
## [1] 14
count_ncol_numeric <- function(.data) {
ncol_num <- flights %>%
# Select a type of variables
select(where(is.numeric)) %>%
# Count columns
ncol()
return(ncol_num)}
flights %>% count_ncol_numeric
## [1] 14
flights %>% .[1:10, -1:-13] %>% count_ncol_numeric()
## [1] 14
count_ncol_types <- function(.data, type_data = "numeric") {
# IF Statement
if(type_data == "numeric"){
ncol_type <- .data %>%
# Select a type of variables
select(where(is.numeric)) %>%
# Count columns
ncol()} else if (type_data == "character") { ncol_type <- .data %>%
# Select a type of variables
select(where(is.character())) %>%
# Count columns
ncol() }
return(ncol_num)}
flights %>% count_ncol_types()
## [1] 14
nrow_num <- flights %>%
# filter rows that meet a condition
filter(carrier == "DL") %>%
# Count rows
nrow()
nrow_num
## [1] 48110
count_num_flights_by_carrier <- function(.data, carrier_name) {
# Body
nrow_num <- .data %>%
# filter rows that meet a condition
filter(carrier == carrier_name) %>%
# Count rows
nrow()
# Return
return(nrow_num)
}
flights %>% .[1:10, "carrier"] %>%
count_num_flights_by_carrier(carrier_name = "DL")
## [1] 1
Create your own.
Use the filter() function to select rows that meet a condition. Refer to Chapter 5.2 Filter rows with filter()
ex <- stocks %>%
filter(symbol == "NOC") %>%
nrow()
ex
## [1] 2231
number_active_days <- function(.data, ticker) {
n_row <- .data %>%
filter(symbol == ticker) %>%
nrow()
return(n_row)
}
stocks %>% number_active_days(ticker = "UNH")
## [1] 2231