Resting Physiological Signals 2024, between groups

Physiological signals anlysis

Author

Álvaro Rivera-Rei

Published

2025-04-14, Monday

Code
cat('\014')     # clean terminal
Code
rm(list = ls()) # clean workspace
library(tidyverse)
library(afex)
library(emmeans)
# library(performance)
Code
xclude <- c('p13_HA') # male participant
my_dodge <- .3
theme_set(theme_minimal())

a_posteriori <- function(afex_aov, sig_level = .05) {
  factors  <- as.list(rownames(afex_aov$anova_table))
  for (j in 1:length(factors)) {
    if (grepl(':', factors[[j]])) {
      factors[[j]] <- unlist(strsplit(factors[[j]], ':'))
    }
  }
  p_values <- afex_aov$anova_table$`Pr(>F)`
  for (i in 1:length(p_values)) {
    if (p_values[i] <= sig_level) {
      cat(rep('_', 60), '\n', sep = '')
      print(emmeans(afex_aov, factors[[i]], contr = 'pairwise'))
    }
  }
}
Code
sbj_df <- read_csv('../rst_data/sbj_by_group.csv', col_types = cols()) |>
  filter(!(sbj %in% xclude)) |> 
  mutate_if(is.character, as.factor)
hrv_df <- read_csv('../rst_data/hrv_hrf_hra_rsa_rrv_neurokit2.csv', col_types = cols()) |>
  filter(!(sbj %in% xclude)) |> 
  mutate(log10_HRV_RMSSD = log10(HRV_RMSSD)) |> 
  mutate(log10_RRV_RMSSD = log10(RRV_RMSSD)) |> 
  mutate(rst = factor(rst)) |> 
  mutate_if(is.character, as.factor) |> 
  left_join(sbj_df, by = 'sbj')
ans_df <- read_csv('../rst_data/average_ans_indexes.csv', col_types = cols()) |>
  filter(!(sbj %in% xclude)) |> 
  mutate(rst = factor(rst)) |> 
  mutate_if(is.character, as.factor) |> 
  left_join(sbj_df, by = 'sbj')

Summary

Code
summary(hrv_df)
 rst         sbj      heart_rate      HRV_MeanNN        HRV_SDNN     
 1:10   p01    :2   Min.   :56.93   Min.   : 612.4   Min.   : 23.90  
 2: 9   p02    :2   1st Qu.:73.56   1st Qu.: 702.4   1st Qu.: 34.95  
        p03    :2   Median :80.01   Median : 749.9   Median : 49.17  
        p04    :2   Mean   :79.10   Mean   : 772.4   Mean   : 60.15  
        p05    :2   3rd Qu.:85.45   3rd Qu.: 815.8   3rd Qu.: 73.82  
        p06    :2   Max.   :97.98   Max.   :1054.0   Max.   :128.66  
        (Other):7                                                    
   HRV_SDANN1       HRV_SDNNI1       HRV_RMSSD        HRV_SDSD    
 Min.   : 9.847   Min.   : 21.05   Min.   :13.47   Min.   :13.48  
 1st Qu.:12.861   1st Qu.: 31.78   1st Qu.:16.30   1st Qu.:16.31  
 Median :17.442   Median : 47.05   Median :33.61   Median :33.63  
 Mean   :25.775   Mean   : 53.01   Mean   :36.27   Mean   :36.29  
 3rd Qu.:33.334   3rd Qu.: 67.60   3rd Qu.:48.98   3rd Qu.:49.03  
 Max.   :99.801   Max.   :103.44   Max.   :84.44   Max.   :84.51  
                                                                  
    HRV_CVNN          HRV_CVSD        HRV_MedianNN      HRV_MadNN     
 Min.   :0.03334   Min.   :0.02111   Min.   : 610.0   Min.   : 25.20  
 1st Qu.:0.05110   1st Qu.:0.02363   1st Qu.: 704.5   1st Qu.: 32.62  
 Median :0.07186   Median :0.04482   Median : 752.5   Median : 50.41  
 Mean   :0.07530   Mean   :0.04482   Mean   : 773.6   Mean   : 63.91  
 3rd Qu.:0.09783   3rd Qu.:0.05195   3rd Qu.: 816.2   3rd Qu.: 85.99  
 Max.   :0.13098   Max.   :0.08681   Max.   :1075.0   Max.   :148.26  
                                                                      
   HRV_MCVNN         HRV_IQRNN       HRV_SDRMSSD     HRV_Prc20NN   
 Min.   :0.03515   Min.   : 33.00   Min.   :1.152   Min.   :590.0  
 1st Qu.:0.05024   1st Qu.: 44.50   1st Qu.:1.459   1st Qu.:663.5  
 Median :0.07206   Median : 68.00   Median :1.863   Median :697.0  
 Mean   :0.07944   Mean   : 88.64   Mean   :1.790   Mean   :718.5  
 3rd Qu.:0.11356   3rd Qu.:117.50   3rd Qu.:2.105   3rd Qu.:760.1  
 Max.   :0.13792   Max.   :218.00   Max.   :2.372   Max.   :918.4  
                                                                   
  HRV_Prc80NN       HRV_pNN50         HRV_pNN20       HRV_MinNN    
 Min.   : 633.0   Min.   : 0.0000   Min.   :12.07   Min.   :543.0  
 1st Qu.: 731.5   1st Qu.: 0.5375   1st Qu.:19.39   1st Qu.:566.5  
 Median : 814.6   Median :12.6367   Median :49.62   Median :605.0  
 Mean   : 825.4   Mean   :15.5540   Mean   :44.55   Mean   :616.6  
 3rd Qu.: 881.2   3rd Qu.:25.8440   3rd Qu.:63.89   3rd Qu.:641.5  
 Max.   :1174.4   Max.   :50.0000   Max.   :77.60   Max.   :747.0  
                                                                   
   HRV_MaxNN         HRV_HTI          HRV_TINN        HRV_VLF         
 Min.   : 711.0   Min.   : 7.641   Min.   :  0.0   Min.   :0.0007005  
 1st Qu.: 820.0   1st Qu.: 9.706   1st Qu.:125.0   1st Qu.:0.0035392  
 Median : 915.0   Median :14.113   Median :218.8   Median :0.0065774  
 Mean   : 986.1   Mean   :15.158   Mean   :199.0   Mean   :0.0070226  
 3rd Qu.:1007.5   3rd Qu.:20.471   3rd Qu.:250.0   3rd Qu.:0.0102485  
 Max.   :2052.0   Max.   :25.933   Max.   :390.6   Max.   :0.0159574  
                                                                      
     HRV_LF             HRV_HF             HRV_VHF              HRV_TP        
 Min.   :0.001025   Min.   :0.0004607   Min.   :2.759e-05   Min.   :0.003621  
 1st Qu.:0.006271   1st Qu.:0.0026316   1st Qu.:6.305e-05   1st Qu.:0.017760  
 Median :0.008456   Median :0.0059839   Median :1.112e-04   Median :0.024193  
 Mean   :0.011121   Mean   :0.0080537   Mean   :1.894e-04   Mean   :0.026386  
 3rd Qu.:0.014662   3rd Qu.:0.0122480   3rd Qu.:2.845e-04   3rd Qu.:0.031603  
 Max.   :0.031551   Max.   :0.0313171   Max.   :5.460e-04   Max.   :0.055746  
                                                                              
    HRV_LFHF          HRV_LFn          HRV_HFn           HRV_LnHF     
 Min.   : 0.1840   Min.   :0.1303   Min.   :0.05569   Min.   :-7.683  
 1st Qu.: 0.8304   1st Qu.:0.2542   1st Qu.:0.14212   1st Qu.:-5.940  
 Median : 1.5542   Median :0.4074   Median :0.22131   Median :-5.119  
 Mean   : 3.2546   Mean   :0.4402   Mean   :0.27548   Mean   :-5.279  
 3rd Qu.: 3.0535   3rd Qu.:0.5760   3rd Qu.:0.35721   3rd Qu.:-4.411  
 Max.   :15.7475   Max.   :0.8770   Max.   :0.70805   Max.   :-3.464  
                                                                      
    HRV_SD1          HRV_SD2         HRV_SD1SD2         HRV_S      
 Min.   : 9.528   Min.   : 32.05   Min.   :0.2158   Min.   : 1078  
 1st Qu.:11.533   1st Qu.: 47.70   1st Qu.:0.2450   1st Qu.: 1882  
 Median :23.783   Median : 67.12   Median :0.2789   Median : 5302  
 Mean   :25.663   Mean   : 80.85   Mean   :0.3111   Mean   : 8152  
 3rd Qu.:34.669   3rd Qu.: 99.19   3rd Qu.:0.3661   3rd Qu.:10198  
 Max.   :59.755   Max.   :177.06   Max.   :0.4822   Max.   :26985  
                                                                   
    HRV_CSI         HRV_CVI      HRV_CSI_Modified    HRF_PIP      
 Min.   :2.074   Min.   :3.740   Min.   : 383.7   Min.   :0.1842  
 1st Qu.:2.738   1st Qu.:3.974   1st Qu.: 645.4   1st Qu.:0.3203  
 Median :3.586   Median :4.431   Median : 985.8   Median :0.3558  
 Mean   :3.425   Mean   :4.396   Mean   :1085.6   Mean   :0.3582  
 3rd Qu.:4.086   3rd Qu.:4.705   3rd Qu.:1321.6   3rd Qu.:0.4001  
 Max.   :4.634   Max.   :5.138   Max.   :2978.6   Max.   :0.6581  
                                                                  
    HRF_IALS         HRF_PSS           HRF_PAS            HRA_GI     
 Min.   :0.1722   Min.   :0.07407   Min.   :0.00000   Min.   :49.31  
 1st Qu.:0.3133   1st Qu.:0.31812   1st Qu.:0.01005   1st Qu.:49.88  
 Median :0.3428   Median :0.37302   Median :0.02110   Median :50.08  
 Mean   :0.3486   Mean   :0.41171   Mean   :0.03577   Mean   :50.08  
 3rd Qu.:0.3874   3rd Qu.:0.51418   3rd Qu.:0.03231   3rd Qu.:50.31  
 Max.   :0.6544   Max.   :0.87500   Max.   :0.28916   Max.   :50.58  
                                                                     
     HRA_SI          HRA_AI          HRA_PI         HRA_C1d      
 Min.   :49.33   Min.   :49.29   Min.   :40.26   Min.   :0.3846  
 1st Qu.:49.88   1st Qu.:49.89   1st Qu.:46.46   1st Qu.:0.4712  
 Median :50.08   Median :50.08   Median :49.94   Median :0.5390  
 Mean   :50.07   Mean   :50.09   Mean   :49.87   Mean   :0.5139  
 3rd Qu.:50.31   3rd Qu.:50.33   3rd Qu.:53.41   3rd Qu.:0.5506  
 Max.   :50.53   Max.   :50.61   Max.   :58.80   Max.   :0.6019  
                                                                 
    HRA_C1a          HRA_SD1d         HRA_SD1a         HRA_C2d      
 Min.   :0.3981   Min.   : 6.839   Min.   : 6.635   Min.   :0.4101  
 1st Qu.:0.4494   1st Qu.: 8.541   1st Qu.: 8.123   1st Qu.:0.4517  
 Median :0.4610   Median :16.891   Median :15.621   Median :0.4825  
 Mean   :0.4861   Mean   :18.473   Mean   :17.746   Mean   :0.4942  
 3rd Qu.:0.5288   3rd Qu.:24.214   3rd Qu.:24.858   3rd Qu.:0.5294  
 Max.   :0.6154   Max.   :44.050   Max.   :40.376   Max.   :0.5961  
                                                                    
    HRA_C2a          HRA_SD2d         HRA_SD2a          HRA_Cd      
 Min.   :0.4039   Min.   : 23.70   Min.   : 21.58   Min.   :0.4238  
 1st Qu.:0.4706   1st Qu.: 34.98   1st Qu.: 32.79   1st Qu.:0.4600  
 Median :0.5175   Median : 48.75   Median : 49.35   Median :0.4857  
 Mean   :0.5058   Mean   : 56.01   Mean   : 58.14   Mean   :0.4933  
 3rd Qu.:0.5483   3rd Qu.: 68.59   3rd Qu.: 75.16   3rd Qu.:0.5218  
 Max.   :0.5899   Max.   :124.08   Max.   :126.32   Max.   :0.5739  
                                                                    
     HRA_Ca         HRA_SDNNd       HRA_SDNNa     HRV_DFA_alpha1  
 Min.   :0.4261   Min.   :17.52   Min.   :16.24   Min.   :0.8627  
 1st Qu.:0.4782   1st Qu.:25.43   1st Qu.:24.06   1st Qu.:1.1227  
 Median :0.5143   Median :36.64   Median :35.98   Median :1.3247  
 Mean   :0.5067   Mean   :41.80   Mean   :43.17   Mean   :1.3002  
 3rd Qu.:0.5400   3rd Qu.:51.45   3rd Qu.:54.25   3rd Qu.:1.4822  
 Max.   :0.5762   Max.   :90.46   Max.   :91.54   Max.   :1.7154  
                                                                  
 HRV_MFDFA_alpha1_Width HRV_MFDFA_alpha1_Peak HRV_MFDFA_alpha1_Mean
 Min.   :0.4006         Min.   :0.9818        Min.   :1.332        
 1st Qu.:1.7771         1st Qu.:1.3238        1st Qu.:2.083        
 Median :2.1432         Median :1.4191        Median :2.245        
 Mean   :2.3054         Mean   :1.5276        Mean   :2.189        
 3rd Qu.:2.8923         3rd Qu.:1.7779        3rd Qu.:2.330        
 Max.   :4.3748         Max.   :2.1800        Max.   :2.910        
                                                                   
 HRV_MFDFA_alpha1_Max HRV_MFDFA_alpha1_Delta HRV_MFDFA_alpha1_Asymmetry
 Min.   :-3.9578      Min.   :-4.2867        Min.   :-0.45258          
 1st Qu.:-2.4729      1st Qu.:-2.7015        1st Qu.:-0.24809          
 Median :-2.0289      Median :-2.3572        Median :-0.21646          
 Mean   :-1.8284      Mean   :-2.1599        Mean   :-0.19521          
 3rd Qu.:-1.3448      3rd Qu.:-1.6809        3rd Qu.:-0.11423          
 Max.   : 0.7756      Max.   : 0.3612        Max.   :-0.01427          
                                                                       
 HRV_MFDFA_alpha1_Fluctuation HRV_MFDFA_alpha1_Increment HRV_DFA_alpha2  
 Min.   :0.0007682            Min.   :0.02814            Min.   :0.2837  
 1st Qu.:0.0018385            1st Qu.:0.25384            1st Qu.:0.7034  
 Median :0.0026506            Median :0.34113            Median :0.7743  
 Mean   :0.0037791            Mean   :0.45589            Mean   :0.7870  
 3rd Qu.:0.0046505            3rd Qu.:0.62804            3rd Qu.:0.9956  
 Max.   :0.0150599            Max.   :1.19559            Max.   :1.2302  
                                                                         
 HRV_MFDFA_alpha2_Width HRV_MFDFA_alpha2_Peak HRV_MFDFA_alpha2_Mean
 Min.   :0.04726        Min.   :0.3404        Min.   :0.3254       
 1st Qu.:0.15337        1st Qu.:0.6434        1st Qu.:0.6746       
 Median :0.30714        Median :0.7510        Median :0.8270       
 Mean   :0.32790        Mean   :0.7706        Mean   :0.7863       
 3rd Qu.:0.40120        3rd Qu.:0.9425        3rd Qu.:0.9220       
 Max.   :0.84463        Max.   :1.2527        Max.   :1.1439       
                                                                   
 HRV_MFDFA_alpha2_Max HRV_MFDFA_alpha2_Delta HRV_MFDFA_alpha2_Asymmetry
 Min.   :-0.1779      Min.   :-0.75449       Min.   :-1.0000           
 1st Qu.: 0.6617      1st Qu.:-0.32091       1st Qu.:-0.7297           
 Median : 0.8522      Median : 0.05081       Median :-0.5151           
 Mean   : 0.7793      Mean   : 0.07104       Mean   :-0.5071           
 3rd Qu.: 1.0026      3rd Qu.: 0.46698       3rd Qu.:-0.3153           
 Max.   : 1.3921      Max.   : 0.82236       Max.   : 0.0000           
                                                                       
 HRV_MFDFA_alpha2_Fluctuation HRV_MFDFA_alpha2_Increment    HRV_ApEn     
 Min.   :1.607e-06            Min.   :0.0001865          Min.   :0.7752  
 1st Qu.:6.230e-06            1st Qu.:0.0028098          1st Qu.:1.0650  
 Median :3.145e-05            Median :0.0072008          Median :1.1741  
 Mean   :5.293e-05            Mean   :0.0084653          Mean   :1.1246  
 3rd Qu.:8.005e-05            3rd Qu.:0.0114590          3rd Qu.:1.2148  
 Max.   :2.184e-04            Max.   :0.0331763          Max.   :1.3393  
                                                                         
   HRV_SampEn       HRV_ShanEn     HRV_FuzzyEn        HRV_MSEn     
 Min.   :0.7632   Min.   :6.480   Min.   :0.7674   Min.   :0.5614  
 1st Qu.:1.0877   1st Qu.:6.938   1st Qu.:0.8315   1st Qu.:1.2568  
 Median :1.2281   Median :7.387   Median :0.9300   Median :1.3826  
 Mean   :1.1887   Mean   :7.367   Mean   :0.9588   Mean   :1.3443  
 3rd Qu.:1.3314   3rd Qu.:7.755   3rd Qu.:1.0292   3rd Qu.:1.4935  
 Max.   :1.5203   Max.   :8.129   Max.   :1.2578   Max.   :1.6308  
                                                                   
   HRV_CMSEn       HRV_RCMSEn        HRV_CD         HRV_HFD     
 Min.   :1.166   Min.   :1.844   Min.   :1.253   Min.   :1.489  
 1st Qu.:1.335   1st Qu.:2.023   1st Qu.:1.563   1st Qu.:1.548  
 Median :1.365   Median :2.137   Median :1.640   Median :1.705  
 Mean   :1.356   Mean   :2.077   Mean   :1.616   Mean   :1.702  
 3rd Qu.:1.404   3rd Qu.:2.175   3rd Qu.:1.708   3rd Qu.:1.788  
 Max.   :1.449   Max.   :2.194   Max.   :1.778   Max.   :1.947  
                                                                
    HRV_KFD         HRV_LZC        RSA_P2T_Mean    RSA_P2T_Mean_log
 Min.   :2.111   Min.   :0.4645   Min.   : 33.12   Min.   :3.500   
 1st Qu.:2.688   1st Qu.:0.5879   1st Qu.: 40.46   1st Qu.:3.697   
 Median :2.927   Median :0.6761   Median : 74.24   Median :4.307   
 Mean   :3.052   Mean   :0.6554   Mean   : 90.48   Mean   :4.315   
 3rd Qu.:3.173   3rd Qu.:0.7419   3rd Qu.:121.90   3rd Qu.:4.798   
 Max.   :5.201   Max.   :0.8206   Max.   :245.96   Max.   :5.505   
                                                                   
   RSA_P2T_SD     RSA_P2T_NoRSA    RSA_PorgesBohrer RSA_Gates_Mean 
 Min.   : 19.06   Min.   : 0.000   Min.   :-6.434   Min.   :7.321  
 1st Qu.: 25.67   1st Qu.: 0.000   1st Qu.:-5.736   1st Qu.:7.619  
 Median : 37.16   Median : 0.000   Median :-5.207   Median :7.941  
 Mean   : 43.70   Mean   : 1.105   Mean   :-5.131   Mean   :7.905  
 3rd Qu.: 52.89   3rd Qu.: 0.000   3rd Qu.:-4.684   3rd Qu.:8.141  
 Max.   :101.04   Max.   :19.000   Max.   :-3.831   Max.   :8.520  
                                                                   
 RSA_Gates_Mean_log  RSA_Gates_SD       rsp_rate        RRV_RMSSD     
 Min.   :1.991      Min.   :0.0634   Min.   : 5.755   Min.   : 706.8  
 1st Qu.:2.031      1st Qu.:0.1028   1st Qu.:10.190   1st Qu.:1196.3  
 Median :2.072      Median :0.1648   Median :13.195   Median :1627.2  
 Mean   :2.066      Mean   :0.1634   Mean   :11.974   Mean   :1803.0  
 3rd Qu.:2.097      3rd Qu.:0.2134   3rd Qu.:13.749   3rd Qu.:2363.7  
 Max.   :2.142      Max.   :0.3092   Max.   :19.848   Max.   :3882.6  
                                                                      
   RRV_MeanBB       RRV_SDBB         RRV_SDSD         RRV_CVBB     
 Min.   : 3023   Min.   : 599.9   Min.   : 709.5   Min.   :0.1383  
 1st Qu.: 4364   1st Qu.: 878.0   1st Qu.:1201.5   1st Qu.:0.1706  
 Median : 4547   Median :1185.6   Median :1633.1   Median :0.2315  
 Mean   : 5612   Mean   :1353.9   Mean   :1813.3   Mean   :0.2481  
 3rd Qu.: 5916   3rd Qu.:1758.2   3rd Qu.:2382.8   3rd Qu.:0.2778  
 Max.   :10425   Max.   :2435.4   Max.   :3916.5   Max.   :0.4716  
                                                                   
    RRV_CVSD       RRV_MedianBB    RRV_MadBB        RRV_MCVBB      
 Min.   :0.1630   Min.   :2578   Min.   : 409.9   Min.   :0.09531  
 1st Qu.:0.2403   1st Qu.:4274   1st Qu.: 723.1   1st Qu.:0.17267  
 Median :0.3128   Median :4376   Median : 807.3   Median :0.18481  
 Mean   :0.3227   Mean   :5429   Mean   :1064.7   Mean   :0.18669  
 3rd Qu.:0.3893   3rd Qu.:5470   3rd Qu.:1139.0   3rd Qu.:0.19850  
 Max.   :0.5966   Max.   :9956   Max.   :2548.6   Max.   :0.27122  
                                                                   
    RRV_VLF             RRV_LF             RRV_HF             RRV_LFHF      
 Min.   :0.002629   Min.   :0.001033   Min.   :1.601e-06   Min.   :  11.42  
 1st Qu.:0.008751   1st Qu.:0.003532   1st Qu.:3.688e-05   1st Qu.:  27.92  
 Median :0.009491   Median :0.005793   Median :1.409e-04   Median :  54.78  
 Mean   :0.010676   Mean   :0.007790   Mean   :2.656e-04   Mean   : 436.68  
 3rd Qu.:0.014727   3rd Qu.:0.010557   3rd Qu.:2.674e-04   3rd Qu.: 167.48  
 Max.   :0.018828   Max.   :0.021140   Max.   :1.493e-03   Max.   :4578.13  
                                                                            
    RRV_LFn          RRV_HFn             RRV_SD1          RRV_SD2      
 Min.   :0.1046   Min.   :9.909e-05   Min.   : 501.7   Min.   : 684.1  
 1st Qu.:0.3039   1st Qu.:3.327e-03   1st Qu.: 849.6   1st Qu.: 984.0  
 Median :0.4296   Median :8.724e-03   Median :1154.8   Median :1204.6  
 Mean   :0.3998   Mean   :1.140e-02   Mean   :1282.2   Mean   :1405.0  
 3rd Qu.:0.4899   3rd Qu.:1.530e-02   3rd Qu.:1684.9   3rd Qu.:1788.7  
 Max.   :0.6398   Max.   :4.518e-02   Max.   :2769.4   Max.   :2677.9  
                                                                       
   RRV_SD2SD1       RRV_ApEn        RRV_SampEn    RRV_DFA_alpha2  
 Min.   :0.695   Min.   :0.3194   Min.   :1.055   Min.   :0.4389  
 1st Qu.:1.009   1st Qu.:0.6798   1st Qu.:1.482   1st Qu.:0.6000  
 Median :1.130   Median :0.7644   Median :1.946   Median :0.6939  
 Mean   :1.164   Mean   :0.6899   Mean   :1.842   Mean   :0.7185  
 3rd Qu.:1.343   3rd Qu.:0.7987   3rd Qu.:2.199   3rd Qu.:0.8255  
 Max.   :1.662   Max.   :0.8982   Max.   :2.708   Max.   :0.9973  
                                                  NA's   :3       
 RRV_MFDFA_alpha2_Width RRV_MFDFA_alpha2_Peak RRV_MFDFA_alpha2_Mean
 Min.   :0.0609         Min.   :0.5871        Min.   :0.5709       
 1st Qu.:0.4496         1st Qu.:0.7548        1st Qu.:0.7255       
 Median :0.6970         Median :0.8453        Median :0.8398       
 Mean   :0.7246         Mean   :0.8538        Mean   :0.8270       
 3rd Qu.:1.0321         3rd Qu.:0.9189        3rd Qu.:0.9111       
 Max.   :1.5548         Max.   :1.2440        Max.   :1.2470       
 NA's   :3              NA's   :3             NA's   :3            
 RRV_MFDFA_alpha2_Max RRV_MFDFA_alpha2_Delta RRV_MFDFA_alpha2_Asymmetry
 Min.   :-0.09285     Min.   :-0.5492        Min.   :-0.9023           
 1st Qu.: 0.16885     1st Qu.:-0.1769        1st Qu.:-0.7049           
 Median : 0.48893     Median : 0.1014        Median :-0.5410           
 Mean   : 0.46856     Mean   : 0.1042        Mean   :-0.5843           
 3rd Qu.: 0.82494     3rd Qu.: 0.3519        3rd Qu.:-0.4836           
 Max.   : 1.00789     Max.   : 1.2769        Max.   :-0.3049           
 NA's   :3            NA's   :3              NA's   :3                 
 RRV_MFDFA_alpha2_Fluctuation RRV_MFDFA_alpha2_Increment log10_HRV_RMSSD
 Min.   :3.450e-06            Min.   :0.0004189          Min.   :1.129  
 1st Qu.:2.298e-05            1st Qu.:0.0091523          1st Qu.:1.211  
 Median :7.326e-05            Median :0.0280617          Median :1.527  
 Mean   :1.985e-04            Mean   :0.0423932          Mean   :1.486  
 3rd Qu.:3.152e-04            3rd Qu.:0.0725266          3rd Qu.:1.680  
 Max.   :1.110e-03            Max.   :0.1437650          Max.   :1.927  
 NA's   :3                    NA's   :3                                 
 log10_RRV_RMSSD     group   
 Min.   :2.849   control:12  
 1st Qu.:3.077   study  : 7  
 Median :3.211               
 Mean   :3.205               
 3rd Qu.:3.373               
 Max.   :3.589               
                             

Time Domain Heart Rate Variability (HRV)

Heart Rate

Code
heart_rate_anova <- aov_ez('sbj',
                           'heart_rate', hrv_df,
                           within = c('rst'), between = c('group'))
heart_rate_afex_plot <-
  afex_plot(
    heart_rate_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(heart_rate_afex_plot))
Figure 1: heart_rate
Code
print(heart_rate_anova)
Anova Table (Type 3 tests)

Response: heart_rate
     Effect   df    MSE        F  ges p.value
1     group 1, 7 104.26   5.59 + .428    .050
2       rst 1, 7   6.99 12.94 ** .104    .009
3 group:rst 1, 7   6.99   5.80 * .049    .047
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(heart_rate_anova)
____________________________________________________________
$emmeans
 rst emmean   SE df lower.CL upper.CL
 X1    84.7 2.43  7     79.0     90.5
 X2    80.0 2.83  7     73.3     86.7

Results are averaged over the levels of: group 
Confidence level used: 0.95 

$contrasts
 contrast estimate   SE df t.ratio p.value
 X1 - X2      4.76 1.32  7   3.597  0.0088

Results are averaged over the levels of: group 

____________________________________________________________
$emmeans
 group   rst emmean   SE df lower.CL upper.CL
 control X1    77.1 2.80  7     70.5     83.7
 study   X1    92.3 3.96  7     83.0    101.7
 control X2    75.5 3.27  7     67.8     83.3
 study   X2    84.4 4.62  7     73.5     95.3

Confidence level used: 0.95 

$contrasts
 contrast                estimate   SE df t.ratio p.value
 control X1 - study X1     -15.25 4.85  7  -3.143  0.0621
 control X1 - control X2     1.57 1.53  7   1.029  0.7389
 control X1 - study X2      -7.31 5.41  7  -1.352  0.5625
 study X1 - control X2      16.82 5.14  7   3.275  0.0524
 study X1 - study X2         7.94 2.16  7   3.678  0.0313
 control X2 - study X2      -8.88 5.66  7  -1.568  0.4513

P value adjustment: tukey method for comparing a family of 4 estimates 

HRV_SDNN

Code
sdnn_anova <- aov_ez('sbj',
                     'HRV_SDNN', hrv_df,
                    within = c('rst'), between = c('group'))
sdnn_afex_plot <-
  afex_plot(
    sdnn_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(sdnn_afex_plot))
Figure 2: HRV_SDNN
Code
print(sdnn_anova)
Anova Table (Type 3 tests)

Response: HRV_SDNN
     Effect   df     MSE      F  ges p.value
1     group 1, 7 1329.02   0.65 .079    .445
2       rst 1, 7  124.27 6.90 * .078    .034
3 group:rst 1, 7  124.27   0.85 .010    .387
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(sdnn_anova)
____________________________________________________________
$emmeans
 rst emmean   SE df lower.CL upper.CL
 X1    46.6 9.29  7     24.6     68.5
 X2    61.2 9.76  7     38.1     84.3

Results are averaged over the levels of: group 
Confidence level used: 0.95 

$contrasts
 contrast estimate   SE df t.ratio p.value
 X1 - X2     -14.6 5.57  7  -2.627  0.0341

Results are averaged over the levels of: group 

HRV_CVNN

Code
cvnn_anova <- aov_ez('sbj',
                     'HRV_CVNN', hrv_df,
                    within = c('rst'), between = c('group'))
cvnn_afex_plot <-
  afex_plot(
    cvnn_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(cvnn_afex_plot))
Figure 3: HRV_CVNN
Code
print(cvnn_anova)
Anova Table (Type 3 tests)

Response: HRV_CVNN
     Effect   df  MSE      F  ges p.value
1     group 1, 7 0.00   0.19 .025    .676
2       rst 1, 7 0.00 8.37 * .075    .023
3 group:rst 1, 7 0.00   1.26 .012    .299
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(cvnn_anova)
____________________________________________________________
$emmeans
 rst emmean     SE df lower.CL upper.CL
 X1  0.0633 0.0110  7   0.0372   0.0894
 X2  0.0792 0.0101  7   0.0553   0.1030

Results are averaged over the levels of: group 
Confidence level used: 0.95 

$contrasts
 contrast estimate      SE df t.ratio p.value
 X1 - X2   -0.0159 0.00549  7  -2.893  0.0232

Results are averaged over the levels of: group 

log10_HRV_RMSSD

Code
rmssd_anova <- aov_ez('sbj',
                      'log10_HRV_RMSSD', hrv_df,
                     within = c('rst'), between = c('group'))
rmssd_afex_plot <-
  afex_plot(
    rmssd_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(rmssd_afex_plot))
Figure 4: log10_HRV_RMSSD
Code
print(rmssd_anova)
Anova Table (Type 3 tests)

Response: log10_HRV_RMSSD
     Effect   df  MSE      F  ges p.value
1     group 1, 7 0.12   1.59 .179    .247
2       rst 1, 7 0.01 7.91 * .049    .026
3 group:rst 1, 7 0.01   2.20 .014    .182
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(rmssd_anova)
____________________________________________________________
$emmeans
 rst emmean     SE df lower.CL upper.CL
 X1    1.38 0.0911  7     1.16     1.59
 X2    1.49 0.0889  7     1.28     1.70

Results are averaged over the levels of: group 
Confidence level used: 0.95 

$contrasts
 contrast estimate     SE df t.ratio p.value
 X1 - X2    -0.108 0.0385  7  -2.812  0.0261

Results are averaged over the levels of: group 
Code
# check_autocorrelation(rmssd_anova)
# check_heteroscedasticity(rmssd_anova)
# plot(check_collinearity(rmssd_anova))
# normy <- check_normality(rmssd_anova)
# plot(normy, type = 'density')
# plot(normy, type = 'qq')

HRV_IQRNN

Code
iqrnn_anova <- aov_ez('sbj',
                      'HRV_IQRNN', hrv_df,
                     within = c('rst'), between = c('group'))
iqrnn_afex_plot <-
  afex_plot(
    iqrnn_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(iqrnn_afex_plot))
Figure 5: HRV_IQRNN
Code
print(iqrnn_anova)
Anova Table (Type 3 tests)

Response: HRV_IQRNN
     Effect   df     MSE      F  ges p.value
1     group 1, 7 3520.07   0.66 .080    .442
2       rst 1, 7  327.69 5.42 + .062    .053
3 group:rst 1, 7  327.69   0.98 .012    .356
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(iqrnn_anova)

HRV_HTI

Code
hti_anova <- aov_ez('sbj',
                    'HRV_HTI', hrv_df,
                   within = c('rst'), between = c('group'))
hti_afex_plot <-
  afex_plot(
    hti_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(hti_afex_plot))
Figure 6: HRV_HTI
Code
print(hti_anova)
Anova Table (Type 3 tests)

Response: HRV_HTI
     Effect   df   MSE      F  ges p.value
1     group 1, 7 60.80   0.33 .043    .583
2       rst 1, 7  3.36 7.10 * .050    .032
3 group:rst 1, 7  3.36 6.14 * .044    .042
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(hti_anova)
____________________________________________________________
$emmeans
 rst emmean   SE df lower.CL upper.CL
 X1    13.0 2.17  7     7.84     18.1
 X2    15.4 1.82  7    11.09     19.7

Results are averaged over the levels of: group 
Confidence level used: 0.95 

$contrasts
 contrast estimate    SE df t.ratio p.value
 X1 - X2     -2.44 0.916  7  -2.665  0.0322

Results are averaged over the levels of: group 

____________________________________________________________
$emmeans
 group   rst emmean   SE df lower.CL upper.CL
 control X1    15.2 2.50  7     9.31     21.1
 study   X1    10.7 3.54  7     2.34     19.1
 control X2    15.4 2.11  7    10.42     20.4
 study   X2    15.4 2.98  7     8.38     22.5

Confidence level used: 0.95 

$contrasts
 contrast                estimate   SE df t.ratio p.value
 control X1 - study X1      4.516 4.33  7   1.042  0.7321
 control X1 - control X2   -0.171 1.06  7  -0.162  0.9983
 control X1 - study X2     -0.196 3.89  7  -0.050  0.9999
 study X1 - control X2     -4.688 4.12  7  -1.139  0.6797
 study X1 - study X2       -4.713 1.50  7  -3.150  0.0616
 control X2 - study X2     -0.025 3.65  7  -0.007  1.0000

P value adjustment: tukey method for comparing a family of 4 estimates 

Autonomic Nervous System Indexes (Candia-Rivera, 2023)

CSI_ave

3 middle minutes in each block to avoid block transitions

Code
CSI_ave_anova <- aov_ez('sbj',
                        'CSI_ave', ans_df,
                       within = c('rst'), between = c('group'))
CSI_ave_afex_plot <-
  afex_plot(
    CSI_ave_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(CSI_ave_afex_plot))
Figure 7: CSI_ave
Code
print(CSI_ave_anova)
Anova Table (Type 3 tests)

Response: CSI_ave
     Effect   df  MSE      F  ges p.value
1     group 1, 7 0.03 3.59 + .321    .100
2       rst 1, 7 0.00 8.89 * .090    .020
3 group:rst 1, 7 0.00   2.35 .025    .169
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(CSI_ave_anova)
____________________________________________________________
$emmeans
 rst emmean     SE df lower.CL upper.CL
 X1    2.08 0.0416  7     1.98     2.18
 X2    2.16 0.0533  7     2.03     2.28

Results are averaged over the levels of: group 
Confidence level used: 0.95 

$contrasts
 contrast estimate     SE df t.ratio p.value
 X1 - X2   -0.0794 0.0266  7  -2.982  0.0205

Results are averaged over the levels of: group 

CPI_ave

3 middle minutes in each block to avoid block transitions

Code
CPI_ave_anova <- aov_ez('sbj',
                        'CPI_ave', ans_df,
                       within = c('rst'), between = c('group'))
CPI_ave_afex_plot <-
  afex_plot(
    CPI_ave_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(CPI_ave_afex_plot))
Figure 8: CPI_ave
Code
print(CPI_ave_anova)
Anova Table (Type 3 tests)

Response: CPI_ave
     Effect   df  MSE      F  ges p.value
1     group 1, 7 0.12   2.82 .274    .137
2       rst 1, 7 0.01 5.91 * .050    .045
3 group:rst 1, 7 0.01   1.36 .012    .281
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(CPI_ave_anova)
____________________________________________________________
$emmeans
 rst emmean     SE df lower.CL upper.CL
 X1    2.22 0.0789  7     2.03     2.41
 X2    2.33 0.0977  7     2.10     2.56

Results are averaged over the levels of: group 
Confidence level used: 0.95 

$contrasts
 contrast estimate     SE df t.ratio p.value
 X1 - X2    -0.107 0.0441  7  -2.432  0.0453

Results are averaged over the levels of: group 

Frequency Domain HRV

HRV_LFn

Code
lfn_anova <- aov_ez('sbj',
                    'HRV_LFn', hrv_df,
                   within = c('rst'), between = c('group'))
lfn_afex_plot <-
  afex_plot(
    lfn_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(lfn_afex_plot))
Figure 9: HRV_LFn
Code
print(lfn_anova)
Anova Table (Type 3 tests)

Response: HRV_LFn
     Effect   df  MSE    F   ges p.value
1     group 1, 7 0.10 0.14  .016    .717
2       rst 1, 7 0.03 0.03 <.001    .863
3 group:rst 1, 7 0.03 3.04  .086    .125
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(lfn_anova)

HRV_HFn

Code
hfn_anova <- aov_ez('sbj',
                    'HRV_HFn', hrv_df,
                   within = c('rst'), between = c('group'))
hfn_afex_plot <-
  afex_plot(
    hfn_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(hfn_afex_plot))
Figure 10: HRV_HFn
Code
print(hfn_anova)
Anova Table (Type 3 tests)

Response: HRV_HFn
     Effect   df  MSE    F  ges p.value
1     group 1, 7 0.04 1.15 .096    .319
2       rst 1, 7 0.02 0.66 .032    .443
3 group:rst 1, 7 0.02 1.84 .085    .217
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(hfn_anova)

HRV_lnLF_lnHF

Code
hrv_df$HRV_lnLF_lnHF <- log(hrv_df$HRV_LFn) - log(hrv_df$HRV_HFn)
lfhf_anova <- aov_ez('sbj',
                     'HRV_lnLF_lnHF', hrv_df,
                    within = c('rst'), between = c('group'))
lfhf_afex_plot <-
  afex_plot(
    lfhf_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(lfhf_afex_plot))
Figure 11: HRV_lnLF_lnHF
Code
print(lfhf_anova)
Anova Table (Type 3 tests)

Response: HRV_lnLF_lnHF
     Effect   df  MSE    F  ges p.value
1     group 1, 7 2.20 0.49 .049    .505
2       rst 1, 7 0.84 0.24 .009    .638
3 group:rst 1, 7 0.84 2.87 .101    .134
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(lfhf_anova)

HR to HRV Ratio

Code
hrv_df$hr_to_hrv <- hrv_df$heart_rate / hrv_df$HRV_LFn
hr_to_hrv_anova <- aov_ez('sbj',
                          'hr_to_hrv', hrv_df,
                         within = c('rst'), between = c('group'))
hr_to_hrv_afex_plot <-
  afex_plot(
    hr_to_hrv_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(hr_to_hrv_afex_plot))
Figure 12: hr_to_hrv
Code
print(hr_to_hrv_anova)
Anova Table (Type 3 tests)

Response: hr_to_hrv
     Effect   df      MSE    F  ges p.value
1     group 1, 7 23677.21 0.44 .041    .527
2       rst 1, 7 11843.02 0.23 .011    .648
3 group:rst 1, 7 11843.02 1.44 .064    .269
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(hr_to_hrv_anova)

Poincaré Plot HRV

HRV_SD2

Code
sd2_anova <- aov_ez('sbj',
                    'HRV_SD2', hrv_df,
                   within = c('rst'), between = c('group'))
sd2_afex_plot <-
  afex_plot(
    sd2_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(sd2_afex_plot))
Figure 13: HRV_SD2
Code
print(sd2_anova)
Anova Table (Type 3 tests)

Response: HRV_SD2
     Effect   df     MSE      F  ges p.value
1     group 1, 7 2286.13   0.54 .066    .485
2       rst 1, 7  231.38 7.04 * .085    .033
3 group:rst 1, 7  231.38   0.86 .011    .383
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(sd2_anova)
____________________________________________________________
$emmeans
 rst emmean   SE df lower.CL upper.CL
 X1    62.5 12.4  7     33.3     91.7
 X2    82.7 12.7  7     52.6    112.8

Results are averaged over the levels of: group 
Confidence level used: 0.95 

$contrasts
 contrast estimate   SE df t.ratio p.value
 X1 - X2     -20.2 7.61  7  -2.653  0.0328

Results are averaged over the levels of: group 

HRV_SD1SD2

Code
sd1sd2_anova <- aov_ez('sbj',
                       'HRV_SD1SD2', hrv_df,
                      within = c('rst'), between = c('group'))
sd1sd2_afex_plot <-
  afex_plot(
    sd1sd2_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(sd1sd2_afex_plot))
Figure 14: HRV_SD1SD2
Code
print(sd1sd2_anova)
Anova Table (Type 3 tests)

Response: HRV_SD1SD2
     Effect   df  MSE    F  ges p.value
1     group 1, 7 0.01 3.42 .314    .107
2       rst 1, 7 0.00 1.76 .015    .227
3 group:rst 1, 7 0.00 0.75 .006    .416
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(sd1sd2_anova)

Heart Rate Fragmentation (HRF)

Percentage of inflection points of the RR intervals series (PIP)

Code
pip_anova <- aov_ez('sbj',
                    'HRF_PIP', hrv_df,
                   within = c('rst'), between = c('group'))
pip_afex_plot <-
  afex_plot(
    pip_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(pip_afex_plot))
Figure 15: HRF_PIP
Code
print(pip_anova)
Anova Table (Type 3 tests)

Response: HRF_PIP
     Effect   df  MSE    F   ges p.value
1     group 1, 7 0.01 0.24  .031    .641
2       rst 1, 7 0.00 0.00 <.001    .971
3 group:rst 1, 7 0.00 0.43  .003    .531
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(pip_anova)

Inverse of the average length of the acceleration/deceleration segments (IALS)

Code
ials_anova <- aov_ez('sbj',
                     'HRF_IALS', hrv_df,
                    within = c('rst'), between = c('group'))
ials_afex_plot <-
  afex_plot(
    ials_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(ials_afex_plot))
Figure 16: HRF_IALS
Code
print(ials_anova)
Anova Table (Type 3 tests)

Response: HRF_IALS
     Effect   df  MSE    F   ges p.value
1     group 1, 7 0.01 0.27  .035    .620
2       rst 1, 7 0.00 0.02 <.001    .898
3 group:rst 1, 7 0.00 0.60  .005    .463
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(ials_anova)

Percentage of short segments (PSS)

Code
pss_anova <- aov_ez('sbj',
                    'HRF_PSS', hrv_df,
                   within = c('rst'), between = c('group'))
pss_afex_plot <-
  afex_plot(
    pss_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(pss_afex_plot))
Figure 17: HRF_PSS
Code
print(pss_anova)
Anova Table (Type 3 tests)

Response: HRF_PSS
     Effect   df  MSE    F  ges p.value
1     group 1, 7 0.05 0.34 .044    .577
2       rst 1, 7 0.00 0.21 .002    .658
3 group:rst 1, 7 0.00 1.04 .008    .341
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(pss_anova)

Percentage of NN intervals in alternation segments (PAS)

Code
pas_anova <- aov_ez('sbj',
                    'HRF_PAS', hrv_df,
                   within = c('rst'), between = c('group'))
pas_afex_plot <-
  afex_plot(
    pas_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(pas_afex_plot))
Figure 18: HRF_PAS
Code
print(pas_anova)
Anova Table (Type 3 tests)

Response: HRF_PAS
     Effect   df  MSE    F   ges p.value
1     group 1, 7 0.00 0.01  .002    .911
2       rst 1, 7 0.00 0.03 <.001    .864
3 group:rst 1, 7 0.00 0.02 <.001    .883
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(pas_anova)

Heart Rate Asymmetry (HRA)

Guzik’s Index (GI)

Code
gi_anova <- aov_ez('sbj',
                   'HRA_GI', hrv_df,
                  within = c('rst'), between = c('group'))
gi_afex_plot <-
  afex_plot(
    gi_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(gi_afex_plot))
Figure 19: HRA_GI
Code
print(gi_anova)
Anova Table (Type 3 tests)

Response: HRA_GI
     Effect   df  MSE    F  ges p.value
1     group 1, 7 0.11 0.75 .065    .416
2       rst 1, 7 0.06 0.02 .001    .892
3 group:rst 1, 7 0.06 0.50 .025    .502
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(gi_anova)

Slope Index (SI)

Code
si_anova <- aov_ez('sbj',
                   'HRA_SI', hrv_df,
                  within = c('rst'), between = c('group'))
si_afex_plot <-
  afex_plot(
    si_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(si_afex_plot))
Figure 20: HRA_SI
Code
print(si_anova)
Anova Table (Type 3 tests)

Response: HRA_SI
     Effect   df  MSE    F   ges p.value
1     group 1, 7 0.11 0.62  .053    .458
2       rst 1, 7 0.06 0.00 <.001    .981
3 group:rst 1, 7 0.06 0.51  .026    .499
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(si_anova)

Area Index (AI)

Code
ai_anova <- aov_ez('sbj',
                   'HRA_AI', hrv_df,
                  within = c('rst'), between = c('group'))
ai_afex_plot <-
  afex_plot(
    ai_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(ai_afex_plot))
Figure 21: HRA_AI
Code
print(ai_anova)
Anova Table (Type 3 tests)

Response: HRA_AI
     Effect   df  MSE    F  ges p.value
1     group 1, 7 0.12 0.87 .076    .381
2       rst 1, 7 0.06 0.07 .003    .804
3 group:rst 1, 7 0.06 0.50 .024    .502
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(ai_anova)

Porta’s Index (PI)

Code
pi_anova <- aov_ez('sbj',
                   'HRA_PI', hrv_df,
                  within = c('rst'), between = c('group'))
pi_afex_plot <-
  afex_plot(
    pi_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(pi_afex_plot))
Figure 22: HRA_PI
Code
print(pi_anova)
Anova Table (Type 3 tests)

Response: HRA_PI
     Effect   df   MSE    F  ges p.value
1     group 1, 7 57.06 1.02 .114    .346
2       rst 1, 7  7.96 0.08 .001    .789
3 group:rst 1, 7  7.96 0.73 .013    .420
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(pi_anova)

Total variance of contributions of decelerations (SDNNd)

Code
sdnnd_anova <- aov_ez('sbj',
                      'HRA_SDNNd', hrv_df,
                     within = c('rst'), between = c('group'))
sdnnd_afex_plot <-
  afex_plot(
    sdnnd_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(sdnnd_afex_plot))
Figure 23: HRA_SDNNd
Code
print(sdnnd_anova)
Anova Table (Type 3 tests)

Response: HRA_SDNNd
     Effect   df    MSE      F  ges p.value
1     group 1, 7 561.31   0.83 .097    .393
2       rst 1, 7  56.16 6.86 * .082    .034
3 group:rst 1, 7  56.16   1.03 .013    .345
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(sdnnd_anova)
____________________________________________________________
$emmeans
 rst emmean   SE df lower.CL upper.CL
 X1    32.4 6.18  7     17.8       47
 X2    42.2 6.24  7     27.4       57

Results are averaged over the levels of: group 
Confidence level used: 0.95 

$contrasts
 contrast estimate   SE df t.ratio p.value
 X1 - X2     -9.81 3.75  7  -2.619  0.0344

Results are averaged over the levels of: group 

Total variance of contributions of accelerations (SDNNa)

Code
sdnna_anova <- aov_ez('sbj',
                      'HRA_SDNNa', hrv_df,
                     within = c('rst'), between = c('group'))
sdnna_afex_plot <-
  afex_plot(
    sdnnd_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(sdnna_afex_plot))
Figure 24: HRA_SDNNa
Code
print(sdnna_anova)
Anova Table (Type 3 tests)

Response: HRA_SDNNa
     Effect   df    MSE      F  ges p.value
1     group 1, 7 782.80   0.51 .063    .497
2       rst 1, 7  71.46 6.56 * .073    .037
3 group:rst 1, 7  71.46   0.70 .008    .430
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(sdnna_anova)
____________________________________________________________
$emmeans
 rst emmean   SE df lower.CL upper.CL
 X1    33.4 6.99  7     16.9     49.9
 X2    44.2 7.61  7     26.2     62.2

Results are averaged over the levels of: group 
Confidence level used: 0.95 

$contrasts
 contrast estimate   SE df t.ratio p.value
 X1 - X2     -10.8 4.23  7  -2.562  0.0375

Results are averaged over the levels of: group 

Indices of Complexity

HRV_SampEn

Code
sampen_anova <- aov_ez('sbj',
                       'HRV_SampEn', hrv_df,
                      within = c('rst'), between = c('group'))
sampen_afex_plot <-
  afex_plot(
    sampen_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(sampen_afex_plot))
Figure 25: HRV_SampEn
Code
print(sampen_anova)
Anova Table (Type 3 tests)

Response: HRV_SampEn
     Effect   df  MSE    F  ges p.value
1     group 1, 7 0.08 0.04 .005    .849
2       rst 1, 7 0.01 1.71 .027    .233
3 group:rst 1, 7 0.01 1.06 .017    .338
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(sampen_anova)

HRV_ShanEn

Code
shanen_anova <- aov_ez('sbj',
                       'HRV_ShanEn', hrv_df,
                      within = c('rst'), between = c('group'))
shanen_afex_plot <-
  afex_plot(
    shanen_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(shanen_afex_plot))
Figure 26: HRV_ShanEn
Code
print(shanen_anova)
Anova Table (Type 3 tests)

Response: HRV_ShanEn
     Effect   df  MSE        F  ges p.value
1     group 1, 7 0.52     0.22 .030    .651
2       rst 1, 7 0.02 21.05 ** .111    .003
3 group:rst 1, 7 0.02     3.03 .018    .125
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(shanen_anova)
____________________________________________________________
$emmeans
 rst emmean    SE df lower.CL upper.CL
 X1    7.14 0.202  7     6.66     7.62
 X2    7.49 0.165  7     7.10     7.88

Results are averaged over the levels of: group 
Confidence level used: 0.95 

$contrasts
 contrast estimate     SE df t.ratio p.value
 X1 - X2    -0.345 0.0752  7  -4.588  0.0025

Results are averaged over the levels of: group 

Respiratory Rate Variability (RRV)

Respiratory Rate

Code
hrv_df$rsp_rate <- 60000 / hrv_df$RRV_MeanBB
rsp_rate_anova <- aov_ez('sbj',
                         'rsp_rate', hrv_df,
                        within = c('rst'), between = c('group'))
rsp_rate_afex_plot <-
  afex_plot(
    rsp_rate_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(rsp_rate_afex_plot))
Figure 27: rsp_rate
Code
print(rsp_rate_anova)
Anova Table (Type 3 tests)

Response: rsp_rate
     Effect   df   MSE    F   ges p.value
1     group 1, 7 20.88 0.01  .001    .929
2       rst 1, 7  3.17 0.29  .005    .608
3 group:rst 1, 7  3.17 0.00 <.001    .983
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(rsp_rate_anova)

log10_RRV_RMSSD

Code
rrmssd_anova <- aov_ez('sbj',
                       'log10_RRV_RMSSD', hrv_df,
                      within = c('rst'), between = c('group'))
rrmssd_afex_plot <-
  afex_plot(
    rrmssd_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(rrmssd_afex_plot))
Figure 28: log10_RRV_RMSSD
Code
print(rrmssd_anova)
Anova Table (Type 3 tests)

Response: log10_RRV_RMSSD
     Effect   df  MSE      F  ges p.value
1     group 1, 7 0.08   0.05 .006    .830
2       rst 1, 7 0.02 5.66 * .146    .049
3 group:rst 1, 7 0.02   0.04 .001    .854
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(rrmssd_anova)
____________________________________________________________
$emmeans
 rst emmean     SE df lower.CL upper.CL
 X1    3.12 0.0665  7     2.97     3.28
 X2    3.30 0.0909  7     3.08     3.51

Results are averaged over the levels of: group 
Confidence level used: 0.95 

$contrasts
 contrast estimate     SE df t.ratio p.value
 X1 - X2    -0.174 0.0734  7  -2.378  0.0490

Results are averaged over the levels of: group 

RRV_SD2

Code
rrv_sd2_anova <- aov_ez('sbj',
                        'RRV_SD2', hrv_df,
                       within = c('rst'), between = c('group'))
rrv_sd2_afex_plot <-
  afex_plot(
    rrv_sd2_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(rrv_sd2_afex_plot))
Figure 29: RRV_SD2
Code
print(rrv_sd2_anova)
Anova Table (Type 3 tests)

Response: RRV_SD2
     Effect   df       MSE      F   ges p.value
1     group 1, 7 497871.65   1.13  .113    .324
2       rst 1, 7 130106.30 7.83 *  .188    .027
3 group:rst 1, 7 130106.30   0.01 <.001    .921
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(rrv_sd2_anova)
____________________________________________________________
$emmeans
 rst emmean  SE df lower.CL upper.CL
 X1    1201 153  7      839     1564
 X2    1706 235  7     1151     2261

Results are averaged over the levels of: group 
Confidence level used: 0.95 

$contrasts
 contrast estimate  SE df t.ratio p.value
 X1 - X2      -505 180  7  -2.797  0.0266

Results are averaged over the levels of: group 

RRV_SD2SD1

Code
RRV_SD2SD1_anova <- aov_ez('sbj',
                        'RRV_SD2SD1', hrv_df,
                       within = c('rst'), between = c('group'))
RRV_SD2SD1_afex_plot <-
  afex_plot(
    RRV_SD2SD1_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(RRV_SD2SD1_afex_plot))
Figure 30: RRV_SD2SD1
Code
print(RRV_SD2SD1_anova)
Anova Table (Type 3 tests)

Response: RRV_SD2SD1
     Effect   df  MSE    F  ges p.value
1     group 1, 7 0.09 2.19 .199    .183
2       rst 1, 7 0.02 0.69 .020    .434
3 group:rst 1, 7 0.02 0.98 .028    .356
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(RRV_SD2SD1_anova)

RRV_ApEn

Code
RRV_ApEn_anova <- aov_ez('sbj',
                        'RRV_ApEn', hrv_df,
                       within = c('rst'), between = c('group'))
RRV_ApEn_afex_plot <-
  afex_plot(
    RRV_ApEn_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(RRV_ApEn_afex_plot))
Figure 31: RRV_ApEn
Code
print(RRV_ApEn_anova)
Anova Table (Type 3 tests)

Response: RRV_ApEn
     Effect   df  MSE    F   ges p.value
1     group 1, 7 0.06 0.00 <.001    .955
2       rst 1, 7 0.02 0.27  .011    .617
3 group:rst 1, 7 0.02 1.03  .040    .344
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(RRV_ApEn_anova)

Respiratory Sinus Arrhythmia (RSA)

RSA_P2T_Mean

Code
rsa_p2t_anova <- aov_ez('sbj',
                        'RSA_P2T_Mean_log', hrv_df,
                       within = c('rst'), between = c('group'))
rsa_p2t_afex_plot <-
  afex_plot(
    rsa_p2t_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(rsa_p2t_afex_plot))
Figure 32: RSA_P2T_Mean
Code
print(rsa_p2t_anova)
Anova Table (Type 3 tests)

Response: RSA_P2T_Mean_log
     Effect   df  MSE      F  ges p.value
1     group 1, 7 0.88   0.66 .085    .442
2       rst 1, 7 0.02 6.16 * .020    .042
3 group:rst 1, 7 0.02   1.45 .005    .268
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(rsa_p2t_anova)
____________________________________________________________
$emmeans
 rst emmean    SE df lower.CL upper.CL
 X1    4.18 0.230  7     3.64     4.72
 X2    4.36 0.244  7     3.78     4.94

Results are averaged over the levels of: group 
Confidence level used: 0.95 

$contrasts
 contrast estimate     SE df t.ratio p.value
 X1 - X2    -0.178 0.0717  7  -2.482  0.0421

Results are averaged over the levels of: group 

RSA_PorgesBohrer

Code
rsa_pogboh_anova <- aov_ez('sbj',
                           'RSA_PorgesBohrer', hrv_df,
                          within = c('rst'), between = c('group'))
rsa_pogboh_afex_plot <-
  afex_plot(
    rsa_pogboh_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(rsa_pogboh_afex_plot))
Figure 33: RSA_PorgesBohrer
Code
print(rsa_pogboh_anova)
Anova Table (Type 3 tests)

Response: RSA_PorgesBohrer
     Effect   df  MSE    F  ges p.value
1     group 1, 7 0.89 0.03 .004    .862
2       rst 1, 7 0.20 0.11 .003    .749
3 group:rst 1, 7 0.20 3.00 .071    .127
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(rsa_pogboh_anova)

RSA_Gates_Mean

Code
rsa_gates_anova <- aov_ez('sbj',
                          'RSA_Gates_Mean_log', hrv_df,
                         within = c('rst'), between = c('group'))
rsa_gates_afex_plot <-
  afex_plot(
    rsa_gates_anova,
    x     = 'rst',
    trace = 'group',
    error = 'within',
    error_arg = list(width = .15),
    dodge     = my_dodge,
    data_arg  = list(
      position = 
        position_jitterdodge(
          jitter.width  = .1, 
          dodge.width   = my_dodge
        )),
    mapping   = c('color'),
    point_arg = list(size = 4)
  )
suppressWarnings(print(rsa_gates_afex_plot))
Figure 34: RSA_Gates_Mean
Code
print(rsa_gates_anova)
Anova Table (Type 3 tests)

Response: RSA_Gates_Mean_log
     Effect   df  MSE       F  ges p.value
1     group 1, 7 0.00    3.00 .293    .127
2       rst 1, 7 0.00 12.09 * .059    .010
3 group:rst 1, 7 0.00  7.87 * .039    .026
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Code
a_posteriori(rsa_gates_anova)
____________________________________________________________
$emmeans
 rst emmean     SE df lower.CL upper.CL
 X1    2.05 0.0139  7     2.01     2.08
 X2    2.06 0.0142  7     2.03     2.10

Results are averaged over the levels of: group 
Confidence level used: 0.95 

$contrasts
 contrast estimate      SE df t.ratio p.value
 X1 - X2   -0.0186 0.00534  7  -3.477  0.0103

Results are averaged over the levels of: group 

____________________________________________________________
$emmeans
 group   rst emmean     SE df lower.CL upper.CL
 control X1    2.08 0.0160  7     2.04     2.11
 study   X1    2.01 0.0226  7     1.96     2.07
 control X2    2.08 0.0164  7     2.04     2.12
 study   X2    2.05 0.0233  7     1.99     2.10

Confidence level used: 0.95 

$contrasts
 contrast                estimate      SE df t.ratio p.value
 control X1 - study X1    0.06279 0.02770  7   2.266  0.1954
 control X1 - control X2 -0.00358 0.00617  7  -0.581  0.9348
 control X1 - study X2    0.02923 0.02820  7   1.036  0.7355
 study X1 - control X2   -0.06637 0.02800  7  -2.373  0.1702
 study X1 - study X2     -0.03355 0.00872  7  -3.848  0.0253
 control X2 - study X2    0.03282 0.02850  7   1.152  0.6721

P value adjustment: tukey method for comparing a family of 4 estimates