::p_load(fastml,
pacman
xgboost,
kernlab,
tidyverse, mlbench)
FastML
# Example dataset
data(iris)
<- iris[iris$Species != "setosa", ] # Binary classification
iris $Species <- factor(iris$Species) iris
# Train models
<- fastml(
model data = iris,
label = "Species"
)
Loading required package: lattice
Attaching package: 'caret'
The following object is masked from 'package:purrr':
lift
# View model summary
summary(model)
===== fastml Model Summary =====
Best Model: random_forest
Performance Metrics for All Models:
Model Accuracy Kappa Sensitivity Specificity Precision F1
random_forest 0.95 0.9 0.9 1 1 0.9473684
xgboost 0.90 0.8 0.8 1 1 0.8888889
svm_radial 0.90 0.8 0.8 1 1 0.8888889
Best Model Hyperparameters:
mtry
2
Generating performance comparison plots...
To make predictions, use the 'predict' function.
=================================
# Create a sample new dataset for predictions
<- data.frame(
new_data Sepal.Length = c(5.1, 4.9, 4.7),
Sepal.Width = c(3.5, 3.0, 3.2),
Petal.Length = c(1.4, 1.4, 1.3),
Petal.Width = c(0.2, 0.2, 0.2)
)
# Make predictions using the 'predict' function
<- predict(model, new_data) predictions
# Print the predictions
print(predictions)
[1] versicolor versicolor versicolor
Levels: versicolor virginica