# Load packages
# Core
library(tidyverse)
library(tidyquant)
Calculate and visualize your portfolio’s beta.
Choose your stocks and the baseline market.
from 2012-12-31 to present
symbols <- c("DELL", "BMW", "NFLX", "WMT", "TSLA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31")
asset_return_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
symbols <- asset_return_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "BMW" "DELL" "NFLX" "TSLA" "WMT"
weights <- c(0.20, 0.30, 0.25, 0.15, 0.1)
weights
## [1] 0.20 0.30 0.25 0.15 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 BMW 0.2
## 2 DELL 0.3
## 3 NFLX 0.25
## 4 TSLA 0.15
## 5 WMT 0.1
portfolio_returns_tbl <- asset_return_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 144 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 2.84
## 2 2013-02-28 0.00876
## 3 2013-03-28 0.0210
## 4 2013-04-30 0.0761
## 5 2013-05-31 0.121
## 6 2013-06-28 -0.0212
## 7 2013-07-31 0.0708
## 8 2013-08-30 0.0834
## 9 2013-09-30 0.0253
## 10 2013-10-31 -2.73
## # ℹ 134 more rows
market_returns_tbl <- tq_get(x = "DJI",
get = "stock.prices",
from = "2012-12-31") %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log",
col_rename = "returns") %>%
slice(-1)
market_returns_tbl
## # A tibble: 105 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0561
## 2 2013-02-28 0.0139
## 3 2013-03-28 0.0366
## 4 2013-04-30 0.0178
## 5 2013-05-31 0.0184
## 6 2013-06-28 -0.0137
## 7 2013-07-31 0.0388
## 8 2013-08-30 -0.0455
## 9 2013-09-30 0.0213
## 10 2013-10-31 0.0271
## # ℹ 95 more rows
portfolio_market_returns_tbl <- left_join(market_returns_tbl,
portfolio_returns_tbl,
by = "date") %>%
set_names("date", "market_returns", "portfolio_returns")
portfolio_market_returns_tbl
## # A tibble: 105 × 3
## date market_returns portfolio_returns
## <date> <dbl> <dbl>
## 1 2013-01-31 0.0561 2.84
## 2 2013-02-28 0.0139 0.00876
## 3 2013-03-28 0.0366 0.0210
## 4 2013-04-30 0.0178 0.0761
## 5 2013-05-31 0.0184 0.121
## 6 2013-06-28 -0.0137 -0.0212
## 7 2013-07-31 0.0388 0.0708
## 8 2013-08-30 -0.0455 0.0834
## 9 2013-09-30 0.0213 0.0253
## 10 2013-10-31 0.0271 -2.73
## # ℹ 95 more rows
portfolio_market_returns_tbl %>%
tq_performance(Ra = portfolio_returns,
Rb = market_returns,
performance_fun = CAPM.beta)
## # A tibble: 1 × 1
## CAPM.beta.1
## <dbl>
## 1 0.865
portfolio_market_returns_tbl %>%
ggplot(aes(x = market_returns,
y = portfolio_returns)) +
geom_point(color = "Red") +
geom_smooth(method = "lm", se = FALSE,
size = 1.5, color = tidyquant::palette_light()[3]) +
labs(y = "Portfolio Returns",
x = "Market Returns")
How sensitive is your portfolio to the market? Discuss in terms of the beta coefficient. Does the plot confirm the beta coefficient you calculated?
My portfolio is not very sensitive to the market The CAPM beta is .60 this would mean the companies i chose to invest in do not move fast and are not volatile.