# Load packages

# Core
library(tidyverse)
library(tidyquant)

Goal

Collect individual returns into a portfolio by assigning a weight to each stock

five stocks: “SPY”, “EFA”, “IJS”, “EEM”, “AGG”

from 2012-12-31 to 2017-12-31

1 Import stock prices

symbols <- c("SPY", "EFA", "IJS", "EEM", "AGG")

prices <- tq_get(x = symbols,
                 get = "stock.prices",
                 from = "2012-12-31",
                 to = "2017-12-31")

2 Convert prices to returns

asset_returns_tbl <- prices %>%
    
    group_by(symbol) %>%
    
    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log" ) %>%
    
    slice(-1) %>%
    
ungroup() %>%

set_names(c("asset", "date", "returns"))

3 Assign a weight to each asset

# symbols 
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "AGG" "EEM" "EFA" "IJS" "SPY"
# weights
weights <- c(0.25,0.25,0.2,0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
##   symbols weights
##   <chr>     <dbl>
## 1 AGG        0.25
## 2 EEM        0.25
## 3 EFA        0.2 
## 4 IJS        0.2 
## 5 SPY        0.1

4 Build a portfolio

# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%

tq_portfolio(assets_col = asset,
              returns_col = returns,
              weights = w_tbl, 
             rebalance_on = "months", 
             col_rename = "returns" )
portfolio_returns_tbl
## # A tibble: 60 × 2
##    date        returns
##    <date>        <dbl>
##  1 2013-01-31  0.0204 
##  2 2013-02-28 -0.00239
##  3 2013-03-28  0.0121 
##  4 2013-04-30  0.0174 
##  5 2013-05-31 -0.0128 
##  6 2013-06-28 -0.0247 
##  7 2013-07-31  0.0321 
##  8 2013-08-30 -0.0224 
##  9 2013-09-30  0.0511 
## 10 2013-10-31  0.0301 
## # ℹ 50 more rows

5 Calculate CAPM Beta

# 5.1 Get Market Returns
market_returns_tbl <- tq_get("SPY",
                             get = "stock.prices",
                             from = "2012-12-31",
                             to = "2017-12-31") %>%

    tq_transmute(select     = adjusted, 
                 mutate_fun = periodReturn, 
                 period     = "monthly",
                 type       = "log", 
                 col_rename = "returns") %>%
    
    slice(-1)
# 5.2 Join Returns
portfolio_market_returns_tbl <- portfolio_returns_tbl %>%

    mutate(market_returns = market_returns_tbl %>% pull(returns))
# 5.3 CAPM Beta
portfolio_market_returns_tbl %>%

    tq_performance(Ra = returns,
                   Rb = market_returns,
                   performance_fun = CAPM.beta)
## # A tibble: 1 × 1
##   CAPM.beta.1
##         <dbl>
## 1       0.738

6 Plot

# Scatter with Regression Line

portfolio_market_returns_tbl %>%

    ggplot(aes(market_returns, returns)) +
    geom_point(color = "cornflowerblue") +

    geom_smooth(method = "lm", se = FALSE,
                size = 1.5, color = tidyquant::palette_light()[3]) +

    labs(x = "market returns",
         y = "portfolio returns")

# Actual VS Fitted Returns
portfolio_market_returns_tbl %>%

    lm(returns ~ market_returns, data = .) %>%

    broom::augment() %>%

    mutate(date = portfolio_market_returns_tbl$date) %>%

    pivot_longer(cols = c(returns, .fitted),
                 names_to = "type",
                 values_to = "returns") %>%

    ggplot(aes(date, returns, color = type)) +
    geom_line()