The mtcars dataset provides valuable information on fuel consumption and automobile design specifications for 32 cars from the 1973–74 models. This dataset includes various attributes such as miles per gallon (mpg), number of cylinders, horsepower, weight, and more. In this exercise, we will explore different aspects of the dataset, including correlations between variables, patterns in fuel consumption, and how automobile design specifications affect performance. By analyzing these data points, we aim to gain insights into the factors influencing car efficiency and design during that era.
##Step 1
###Step 1.1 Loading statistics
###Step1.2 Summary Statistics # Summary statistics for mpg and hp
# Summary statistics for mpg and hp
summary(mtcars$mpg)
Min. 1st Qu. Median Mean 3rd Qu. Max.
10.40 15.43 19.20 20.09 22.80 33.90
summary(mtcars$hp)
Min. 1st Qu. Median Mean 3rd Qu. Max.
52.0 96.5 123.0 146.7 180.0 335.0
###Step1.3 Scatter plot # Scatter plot of mpg vs. hp
# Scatter plot of mpg vs. hp
plot(mtcars$hp, mtcars$mpg,
xlab = "Horsepower",
ylab = "Miles per Gallon",
main = "MPG vs. Horsepower",
pch = 19, col = "light green")

A scatter plot comparing horsepower and miles per gallon (mpg) generally shows an inverse relationship between the two variables. This means that as horsepower increases, the mpg tends to decrease. In simpler terms, cars with more powerful engines (higher horsepower) usually consume more fuel, resulting in lower fuel efficiency (fewer miles per gallon). This trend highlights the trade-off between engine power and fuel economy in car design.
DQotLS0NCnRpdGxlOiAiRXhlcmNpc2UgMTogRXhwbG9yaW5nIHRoZSBtdGNhcnMgRGF0YXNldCINCmF1dGhvcjogIkdyb3VwIDUiDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpgYGB7cn0NClRoZSBtdGNhcnMgZGF0YXNldCBwcm92aWRlcyB2YWx1YWJsZSBpbmZvcm1hdGlvbiBvbiBmdWVsIGNvbnN1bXB0aW9uIGFuZCBhdXRvbW9iaWxlIGRlc2lnbiBzcGVjaWZpY2F0aW9ucyBmb3IgMzIgY2FycyBmcm9tIHRoZSAxOTcz4oCTNzQgbW9kZWxzLiBUaGlzIGRhdGFzZXQgaW5jbHVkZXMgdmFyaW91cyBhdHRyaWJ1dGVzIHN1Y2ggYXMgbWlsZXMgcGVyIGdhbGxvbiAobXBnKSwgbnVtYmVyIG9mIGN5bGluZGVycywgaG9yc2Vwb3dlciwgd2VpZ2h0LCBhbmQgbW9yZS4gSW4gdGhpcyBleGVyY2lzZSwgd2Ugd2lsbCBleHBsb3JlIGRpZmZlcmVudCBhc3BlY3RzIG9mIHRoZSBkYXRhc2V0LCBpbmNsdWRpbmcgY29ycmVsYXRpb25zIGJldHdlZW4gdmFyaWFibGVzLCBwYXR0ZXJucyBpbiBmdWVsIGNvbnN1bXB0aW9uLCBhbmQgaG93IGF1dG9tb2JpbGUgZGVzaWduIHNwZWNpZmljYXRpb25zIGFmZmVjdCBwZXJmb3JtYW5jZS4gQnkgYW5hbHl6aW5nIHRoZXNlIGRhdGEgcG9pbnRzLCB3ZSBhaW0gdG8gZ2FpbiBpbnNpZ2h0cyBpbnRvIHRoZSBmYWN0b3JzIGluZmx1ZW5jaW5nIGNhciBlZmZpY2llbmN5IGFuZCBkZXNpZ24gZHVyaW5nIHRoYXQgZXJhLg0KYGBgDQoNCg0KIyNTdGVwIDENCg0KIyMjU3RlcCAxLjEgTG9hZGluZyBzdGF0aXN0aWNzDQpgYGB7cn0NCiMgTG9hZCB0aGUgbXRjYXJzIGRhdGFzZXQNCmRhdGEobXRjYXJzKQ0KaGVhZChtdGNhcnMpDQpgYGANCg0KIyMjU3RlcDEuMiBTdW1tYXJ5IFN0YXRpc3RpY3MNCiMgU3VtbWFyeSBzdGF0aXN0aWNzIGZvciBtcGcgYW5kIGhwDQpgYGB7cn0NCnN1bW1hcnkobXRjYXJzJG1wZykNCnN1bW1hcnkobXRjYXJzJGhwKQ0KYGBgDQoNCiMjI1N0ZXAxLjMgU2NhdHRlciBwbG90IA0KIyBTY2F0dGVyIHBsb3Qgb2YgbXBnIHZzLiBocA0KYGBge3J9DQoNCnBsb3QobXRjYXJzJGhwLCBtdGNhcnMkbXBnLA0KICAgICB4bGFiID0gIkhvcnNlcG93ZXIiLA0KICAgICB5bGFiID0gIk1pbGVzIHBlciBHYWxsb24iLA0KICAgICBtYWluID0gIk1QRyB2cy4gSG9yc2Vwb3dlciIsDQogICAgIHBjaCA9IDE5LCBjb2wgPSAibGlnaHQgZ3JlZW4iKQ0KYGBgDQpgYGB7cn0NCkEgc2NhdHRlciBwbG90IGNvbXBhcmluZyBob3JzZXBvd2VyIGFuZCBtaWxlcyBwZXIgZ2FsbG9uIChtcGcpIGdlbmVyYWxseSBzaG93cyBhbiBpbnZlcnNlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHRoZSB0d28gdmFyaWFibGVzLiBUaGlzIG1lYW5zIHRoYXQgYXMgaG9yc2Vwb3dlciBpbmNyZWFzZXMsIHRoZSBtcGcgdGVuZHMgdG8gZGVjcmVhc2UuIEluIHNpbXBsZXIgdGVybXMsIGNhcnMgd2l0aCBtb3JlIHBvd2VyZnVsIGVuZ2luZXMgKGhpZ2hlciBob3JzZXBvd2VyKSB1c3VhbGx5IGNvbnN1bWUgbW9yZSBmdWVsLCByZXN1bHRpbmcgaW4gbG93ZXIgZnVlbCBlZmZpY2llbmN5IChmZXdlciBtaWxlcyBwZXIgZ2FsbG9uKS4gVGhpcyB0cmVuZCBoaWdobGlnaHRzIHRoZSB0cmFkZS1vZmYgYmV0d2VlbiBlbmdpbmUgcG93ZXIgYW5kIGZ1ZWwgZWNvbm9teSBpbiBjYXIgZGVzaWduLg0KYGBgDQoNCg0KICAgICA=