# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the performance of your portfolio in terms of Sharpe Ratio.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("GM", "NOK", "GOOGL", "HMC", "NVDA")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "GM" "GOOGL" "HMC" "NOK" "NVDA"
# weights
weights <- c(0.25, 0.25, 0.2, 0.2, 0.1)
weights
## [1] 0.25 0.25 0.20 0.20 0.10
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 GM 0.25
## 2 GOOGL 0.25
## 3 HMC 0.2
## 4 NOK 0.2
## 5 NVDA 0.1
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl, rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0125
## 2 2013-02-28 -0.00567
## 3 2013-03-28 -0.0109
## 4 2013-04-30 0.0570
## 5 2013-05-31 0.0339
## 6 2013-06-28 0.0114
## 7 2013-07-31 0.0332
## 8 2013-08-30 -0.0306
## 9 2013-09-30 0.143
## 10 2013-10-31 0.0860
## # ℹ 50 more rows
# Define risk free rate
rfr <- 0.0003
portfolio_SharpeRatio_tbl <- portfolio_returns_tbl %>%
tq_performance(Ra = returns,
performance_fun = SharpeRatio,
Rf = rfr,
FUN = "StdDev")
portfolio_SharpeRatio_tbl
## # A tibble: 1 × 1
## `StdDevSharpe(Rf=0%,p=95%)`
## <dbl>
## 1 0.275
# Create a custom function to calculate rolling SR
Calculate_rolling_SharpeRatio <- function(data) {
rolling_SR <- SharpeRatio(R = data,
Rf =rfr,
FUN = "StdDev")
return(rolling_SR)
}
# Define window
window <- 24
# Transform data: calculate rolling sharpe ratio
rolling_sr_tbl <- portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = Calculate_rolling_SharpeRatio,
col_rename = "rolling_sr") %>%
select(-returns) %>%
na.omit()
rolling_sr_tbl
## # A tibble: 37 × 2
## date rolling_sr
## <date> <dbl>
## 1 2014-12-31 0.294
## 2 2015-01-30 0.261
## 3 2015-02-27 0.330
## 4 2015-03-31 0.322
## 5 2015-04-30 0.238
## 6 2015-05-29 0.239
## 7 2015-06-30 0.178
## 8 2015-07-31 0.190
## 9 2015-08-31 0.173
## 10 2015-09-30 0.0883
## # ℹ 27 more rows
rolling_sr_tbl %>%
ggplot(aes(x = date, y = rolling_sr)) +
geom_line(color = "cornflowerblue") +
# Labeling
labs(x = NULL, y = "rolling Sharpe Ratio") +
annotate(geom ="text",
x = as.Date("2016-06-01"), y =0.5,
label = "This portfolio has done quite well since 2016.",
color = "red", size = 5)
How has your portfolio performed over time? Provide dates of the
structural breaks, if any. The Code Along Assignment 9 had one
structural break in November 2016. What do you think the reason
is?
My portfolio started out good in 2015, then took a big dip of about .35
on the rolling shape ratio in 2016. That was rough, but thankfully it
recovered slowly but surely with an increased of that lost .35 which
finally kept it stable in 2018. I think the reason for the decrease was
because of the presidential elecotion at the time. It was a difficult
time in our country in all aspects.