Se cargan las liberías necesarias para trabajar modelos VAR
library(vars)
library(forecast)
library(car)
library(tseries)
library(urca)
library(readxl)
Se procede a crear el objeto de trabajo
data <- read_excel("~/Series de Tiempo/Multivariada/Taller 1.xlsx")
View(data)
Graficando las series
par(mfrow=c(1,2))
plot.ts(data$Agropecuaria, main= "Agropecuaria", ylab="", xlab="")
plot.ts(data$`Explotacion mc`, main= "Explotacion mc", ylab="", xlab="")
par(mfrow=c(1,1))
Dar formato a la serie de tiempo
agro=ts(data[,3],freq=4)
agro
## Qtr1 Qtr2 Qtr3 Qtr4
## 1 5851.407 6234.029 6792.167 6561.396
## 2 6079.042 6508.167 7552.915 7284.876
## 3 6793.362 7021.584 8126.768 7773.286
## 4 7447.905 7384.270 8902.276 8134.549
## 5 7902.048 8102.346 9224.480 8325.126
## 6 7785.010 8208.667 9314.265 9103.058
## 7 9154.131 8835.691 9975.994 9743.184
## 8 9055.488 9007.215 10116.487 9029.810
## 9 8885.503 9954.775 10416.933 9251.789
## 10 9598.004 10210.468 10918.279 10828.249
## 11 11150.806 11183.750 12948.349 12841.096
## 12 13147.359 13508.151 15333.027 15076.463
## 13 14418.331 13804.086 15647.191 14945.391
## 14 14692.306 14814.137 16361.709 15628.848
## 15 15275.540 16113.673 18734.911 17833.876
## 16 17941.993 17585.231 19888.453 19554.323
## 17 20223.513 21372.156 24369.462 26713.868
## 18 30214.925 31262.462 34467.353 34494.261
## 19 35386.036 33115.546 34183.143 34686.244
exp=ts(data[,4], freq=4)
exp
## Qtr1 Qtr2 Qtr3 Qtr4
## 1 4995.062 5524.756 5773.560 5777.623
## 2 5837.665 6790.322 7059.576 6439.437
## 3 6151.134 5784.494 6805.799 7701.573
## 4 8454.959 9238.138 11329.058 9652.845
## 5 7917.920 9027.861 9624.817 10663.402
## 6 10769.083 11970.514 11360.188 13005.215
## 7 14590.999 18299.920 17668.955 19988.127
## 8 18391.611 19646.975 17337.367 19181.047
## 9 17673.115 18795.246 18563.725 18307.914
## 10 16753.599 15855.876 16211.440 15453.085
## 11 11739.242 11952.500 12507.875 11427.383
## 12 9007.123 9728.128 10280.523 11983.226
## 13 10799.923 10998.750 11857.333 13881.994
## 14 12993.736 14141.353 15078.667 15574.244
## 15 13501.455 14817.421 14386.995 15611.129
## 16 11706.436 7373.263 10226.906 11382.394
## 17 12074.851 14007.317 16948.160 21204.672
## 18 21406.322 26747.533 29916.998 28078.146
## 19 24199.383 21032.294 21220.098 20472.020
Se transforma la serie en Logaritmos
lagro=log(agro)
lagro
## Qtr1 Qtr2 Qtr3 Qtr4
## 1 8.674437 8.737778 8.823525 8.788959
## 2 8.712602 8.780813 8.929689 8.893556
## 3 8.823701 8.856744 9.002919 8.958448
## 4 8.915688 8.907107 9.094062 9.003876
## 5 8.974877 8.999909 9.129616 9.027033
## 6 8.959955 9.012946 9.139302 9.116366
## 7 9.121961 9.086555 9.207937 9.184323
## 8 9.111126 9.105781 9.221922 9.108287
## 9 9.092176 9.205808 9.251188 9.132572
## 10 9.169310 9.231169 9.298194 9.289914
## 11 9.319267 9.322217 9.468724 9.460406
## 12 9.483976 9.511049 9.637764 9.620890
## 13 9.576256 9.532720 9.658047 9.612158
## 14 9.595079 9.603337 9.702699 9.656874
## 15 9.634008 9.687423 9.838144 9.788855
## 16 9.794899 9.774815 9.897895 9.880952
## 17 9.914601 9.969844 10.101086 10.192938
## 18 10.316091 10.350173 10.447768 10.448548
## 19 10.474073 10.407758 10.439488 10.454098
lexp=log(exp)
lexp
## Qtr1 Qtr2 Qtr3 Qtr4
## 1 8.516205 8.616994 8.661044 8.661748
## 2 8.672086 8.823254 8.862140 8.770196
## 3 8.724392 8.662936 8.825530 8.949180
## 4 9.042508 9.131096 9.335126 9.175008
## 5 8.976884 9.108071 9.172100 9.274573
## 6 9.284435 9.390202 9.337870 9.473106
## 7 9.588160 9.814652 9.779564 9.902894
## 8 9.819650 9.885679 9.760619 9.861678
## 9 9.779800 9.841359 9.828965 9.815089
## 10 9.726368 9.671295 9.693472 9.645564
## 11 9.370693 9.388696 9.434114 9.343768
## 12 9.105771 9.182777 9.238006 9.391263
## 13 9.287294 9.305537 9.380702 9.538348
## 14 9.472223 9.556859 9.621036 9.653374
## 15 9.510553 9.603559 9.574080 9.655739
## 16 9.367894 8.905616 9.232777 9.339823
## 17 9.398880 9.547335 9.737915 9.961977
## 18 9.971442 10.194198 10.306182 10.242747
## 19 10.094082 9.953814 9.962704 9.926814
Se procede a graficar
ts.plot(lagro, lexp, col=c("blue", "red"))
Ho:= 0 La serie es no Estacionaria (Hay raíz unitaria) H1:≠ 0 La series es Estacionaria (No hay raíz unitaria)
adf1_lagro=summary(ur.df(lagro, lags = 1))
adf1_lagro
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression none
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.13862 -0.05480 -0.01296 0.06453 0.16067
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## z.lag.1 0.0028220 0.0009572 2.948 0.00431 **
## z.diff.lag -0.1344589 0.1168487 -1.151 0.25366
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.07359 on 72 degrees of freedom
## Multiple R-squared: 0.1083, Adjusted R-squared: 0.08352
## F-statistic: 4.372 on 2 and 72 DF, p-value: 0.01615
##
##
## Value of test-statistic is: 2.9483
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau1 -2.6 -1.95 -1.61
La serie es Estacionaria, es decir, no hay raíz unitaria
adf2_lagro=summary(ur.df(lagro, type="drift", lags=12))
adf2_lagro
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression drift
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.071422 -0.032380 0.000191 0.025988 0.100971
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.377351 0.214570 -1.759 0.0849 .
## z.lag.1 0.044152 0.024003 1.839 0.0719 .
## z.diff.lag1 -0.002999 0.148112 -0.020 0.9839
## z.diff.lag2 -0.244361 0.145327 -1.681 0.0990 .
## z.diff.lag3 0.084069 0.148213 0.567 0.5732
## z.diff.lag4 0.324470 0.149322 2.173 0.0346 *
## z.diff.lag5 -0.383953 0.160924 -2.386 0.0209 *
## z.diff.lag6 -0.149250 0.167209 -0.893 0.3764
## z.diff.lag7 -0.344037 0.165257 -2.082 0.0426 *
## z.diff.lag8 -0.043132 0.171593 -0.251 0.8026
## z.diff.lag9 -0.081109 0.168820 -0.480 0.6330
## z.diff.lag10 0.004920 0.172234 0.029 0.9773
## z.diff.lag11 -0.158305 0.160153 -0.988 0.3278
## z.diff.lag12 0.188389 0.157494 1.196 0.2374
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.04626 on 49 degrees of freedom
## Multiple R-squared: 0.6784, Adjusted R-squared: 0.5931
## F-statistic: 7.952 on 13 and 49 DF, p-value: 3.327e-08
##
##
## Value of test-statistic is: 1.8394 2.691
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau2 -3.51 -2.89 -2.58
## phi1 6.70 4.71 3.86
La serie es No Estacionaria, hay raíz unitaria
adf3_lagro=summary(ur.df(lagro, type="trend", lags=1))
adf3_lagro
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression trend
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.14878 -0.05296 -0.01425 0.05269 0.17327
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.003006 0.559971 1.791 0.0776 .
## z.lag.1 -0.115663 0.065207 -1.774 0.0804 .
## tt 0.002875 0.001437 2.001 0.0493 *
## z.diff.lag -0.075912 0.121370 -0.625 0.5337
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.07251 on 70 degrees of freedom
## Multiple R-squared: 0.07391, Adjusted R-squared: 0.03422
## F-statistic: 1.862 on 3 and 70 DF, p-value: 0.1439
##
##
## Value of test-statistic is: -1.7738 4.3682 2.1485
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau3 -4.04 -3.45 -3.15
## phi2 6.50 4.88 4.16
## phi3 8.73 6.49 5.47
La serie es No Estacionaria, hay raíz unitaria
adf1_lexp=summary(ur.df(lexp, lags = 1))
adf1_lexp
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression none
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.45158 -0.07490 0.01738 0.08729 0.35389
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## z.lag.1 0.001554 0.001666 0.933 0.354
## z.diff.lag 0.087744 0.117440 0.747 0.457
##
## Residual standard error: 0.1338 on 72 degrees of freedom
## Multiple R-squared: 0.02273, Adjusted R-squared: -0.004416
## F-statistic: 0.8373 on 2 and 72 DF, p-value: 0.437
##
##
## Value of test-statistic is: 0.9327
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau1 -2.6 -1.95 -1.61
La serie es No Estacionaria, hay raíz unitaria
adf2_lexp=summary(ur.df(lexp, type="drift", lags=12))
adf2_lexp
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression drift
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.47446 -0.06334 0.00949 0.07114 0.31061
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.12628 0.65904 1.709 0.0938 .
## z.lag.1 -0.11705 0.06954 -1.683 0.0987 .
## z.diff.lag1 0.12171 0.13814 0.881 0.3826
## z.diff.lag2 0.03931 0.13588 0.289 0.7736
## z.diff.lag3 0.04397 0.13444 0.327 0.7450
## z.diff.lag4 0.22664 0.13394 1.692 0.0970 .
## z.diff.lag5 -0.01370 0.13923 -0.098 0.9220
## z.diff.lag6 -0.04617 0.13921 -0.332 0.7416
## z.diff.lag7 -0.02504 0.14048 -0.178 0.8592
## z.diff.lag8 0.02117 0.13705 0.154 0.8779
## z.diff.lag9 -0.14201 0.13683 -1.038 0.3044
## z.diff.lag10 -0.08440 0.13878 -0.608 0.5459
## z.diff.lag11 -0.08680 0.13946 -0.622 0.5365
## z.diff.lag12 0.23439 0.13994 1.675 0.1003
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1366 on 49 degrees of freedom
## Multiple R-squared: 0.2481, Adjusted R-squared: 0.04857
## F-statistic: 1.243 on 13 and 49 DF, p-value: 0.2793
##
##
## Value of test-statistic is: -1.6833 1.8194
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau2 -3.51 -2.89 -2.58
## phi1 6.70 4.71 3.86
La serie es No Estacionaria, hay raíz unitaria
adf3_lexp=summary(ur.df(lexp, type="trend", lags=1))
adf3_lexp
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression trend
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.47241 -0.05892 0.01326 0.09028 0.28668
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0371954 0.4521557 2.294 0.0248 *
## z.lag.1 -0.1129334 0.0505381 -2.235 0.0286 *
## tt 0.0011282 0.0009705 1.163 0.2490
## z.diff.lag 0.1317841 0.1169885 1.126 0.2638
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1308 on 70 degrees of freedom
## Multiple R-squared: 0.07647, Adjusted R-squared: 0.03689
## F-statistic: 1.932 on 3 and 70 DF, p-value: 0.1323
##
##
## Value of test-statistic is: -2.2346 2.1032 2.6122
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau3 -4.04 -3.45 -3.15
## phi2 6.50 4.88 4.16
## phi3 8.73 6.49 5.47
La serie es No Estacionaria, hay raíz unitaria
ndiffs(lagro)
## [1] 1
ndiffs(lexp)
## [1] 1
Para que las variables sean Estacionarias se generan las primeras diferencias de las variables
dlagro=diff(lagro)
dlagro
## Qtr1 Qtr2 Qtr3 Qtr4
## 1 0.0633406741 0.0857472320 -0.0345666181
## 2 -0.0763564154 0.0682108336 0.1488757606 -0.0361332430
## 3 -0.0698543987 0.0330427933 0.1461744708 -0.0444702251
## 4 -0.0427602485 -0.0085807515 0.1869549233 -0.0901866207
## 5 -0.0289983088 0.0250316704 0.1297070658 -0.1025826437
## 6 -0.0670780494 0.0529905092 0.1263564720 -0.0229366256
## 7 0.0055948475 -0.0354059880 0.1213823488 -0.0236137000
## 8 -0.0731969498 -0.0053450830 0.1161405848 -0.1136351684
## 9 -0.0161102009 0.1136311723 0.0453803231 -0.1186156283
## 10 0.0367381530 0.0618583498 0.0670248416 -0.0082799373
## 11 0.0293533468 0.0029500666 0.1465064888 -0.0083176678
## 12 0.0235702593 0.0270724280 0.1267158003 -0.0168743325
## 13 -0.0446343802 -0.0435357704 0.1253268081 -0.0458884611
## 14 -0.0170790241 0.0082579886 0.0993618531 -0.0458253841
## 15 -0.0228655460 0.0534152910 0.1507205280 -0.0492888965
## 16 0.0060441586 -0.0200845217 0.1230798635 -0.0169429058
## 17 0.0336495679 0.0552430224 0.1312418110 0.0918520612
## 18 0.1231531480 0.0340820848 0.0975944993 0.0007803752
## 19 0.0255243229 -0.0663144514 0.0317298096 0.0146105545
dlexp=diff(lexp)
dlexp
## Qtr1 Qtr2 Qtr3 Qtr4
## 1 0.1007892798 0.0440497271 0.0007034996
## 2 0.0103385573 0.1511674997 0.0388866529 -0.0919438696
## 3 -0.0458046233 -0.0614556405 0.1625941130 0.1236496203
## 4 0.0933284791 0.0885872888 0.2040305525 -0.1601182178
## 5 -0.1981241067 0.1311868064 0.0640294676 0.1024726200
## 6 0.0098618123 0.1057671379 -0.0523314630 0.1352354667
## 7 0.1150543507 0.2264918755 -0.0350875312 0.1233292822
## 8 -0.0832437882 0.0660287322 -0.1250592317 0.1010584993
## 9 -0.0818780644 0.0615593778 -0.0123945357 -0.0138760061
## 10 -0.0887202915 -0.0550729393 0.0221769648 -0.0479085089
## 11 -0.2748713848 0.0180031736 0.0454180456 -0.0903459729
## 12 -0.2379968052 0.0770057771 0.0552296468 0.1532567591
## 13 -0.1039688702 0.0182426605 0.0751648079 0.1576461185
## 14 -0.0661251937 0.0846359415 0.0641776491 0.0323375076
## 15 -0.1428210639 0.0930061453 -0.0294788927 0.0816593856
## 16 -0.2878452679 -0.4622784234 0.3271617488 0.1070456514
## 17 0.0590570949 0.1484549483 0.1905794347 0.2240622879
## 18 0.0094647610 0.2227559511 0.1119845701 -0.0634352763
## 19 -0.1486644264 -0.1402680658 0.0088897060 -0.0358896799
Para graficar las variables
ts.plot(dlagro, dlexp, col=c("blue", "red"))
grangertest(dlagro~dlexp, order=1)
## Granger causality test
##
## Model 1: dlagro ~ Lags(dlagro, 1:1) + Lags(dlexp, 1:1)
## Model 2: dlagro ~ Lags(dlagro, 1:1)
## Res.Df Df F Pr(>F)
## 1 71
## 2 72 -1 1.1233 0.2928
Se acepta la hipótesis nula, no hay causalidad
grangertest(dlexp~dlagro, order=1)
## Granger causality test
##
## Model 1: dlexp ~ Lags(dlexp, 1:1) + Lags(dlagro, 1:1)
## Model 2: dlexp ~ Lags(dlexp, 1:1)
## Res.Df Df F Pr(>F)
## 1 71
## 2 72 -1 2.5989 0.1114
Se acepta la hipótesis nula, no hay causalidad
datos_var1=data.frame(dlagro,dlexp)
Para identificación del var
VARselect(datos_var1, lag.max=12)
## $selection
## AIC(n) HQ(n) SC(n) FPE(n)
## 7 4 4 7
##
## $criteria
## 1 2 3 4 5
## AIC(n) -9.2023405240 -9.289857e+00 -9.250334e+00 -9.708977e+00 -9.672085e+00
## HQ(n) -9.1220638227 -9.156062e+00 -9.063022e+00 -9.468147e+00 -9.377737e+00
## SC(n) -8.9982324548 -8.949676e+00 -8.774082e+00 -9.096653e+00 -8.923688e+00
## FPE(n) 0.0001008177 9.241812e-05 9.625677e-05 6.097533e-05 6.347563e-05
## 6 7 8 9 10
## AIC(n) -9.6693031657 -9.800565e+00 -9.724853e+00 -9.681258e+00 -9.589487e+00
## HQ(n) -9.3214374602 -9.399181e+00 -9.269951e+00 -9.172839e+00 -9.027550e+00
## SC(n) -8.7848348659 -8.780024e+00 -8.568240e+00 -8.388574e+00 -8.160730e+00
## FPE(n) 0.0000639583 5.646272e-05 6.144013e-05 6.490743e-05 7.216713e-05
## 11 12
## AIC(n) -9.505777e+00 -9.498809e+00
## HQ(n) -8.890322e+00 -8.829837e+00
## SC(n) -7.940948e+00 -7.797909e+00
## FPE(n) 7.986615e-05 8.217909e-05
Para la estimación del Var con 4 rezagos
var1=VAR(datos_var1, p=4)
var1
##
## VAR Estimation Results:
## =======================
##
## Estimated coefficients for equation Agropecuaria:
## =================================================
## Call:
## Agropecuaria = Agropecuaria.l1 + Explotacion.mc.l1 + Agropecuaria.l2 + Explotacion.mc.l2 + Agropecuaria.l3 + Explotacion.mc.l3 + Agropecuaria.l4 + Explotacion.mc.l4 + const
##
## Agropecuaria.l1 Explotacion.mc.l1 Agropecuaria.l2 Explotacion.mc.l2
## -0.11647928 0.08869792 -0.16206667 -0.03606203
## Agropecuaria.l3 Explotacion.mc.l3 Agropecuaria.l4 Explotacion.mc.l4
## -0.03238018 0.01567407 0.65668543 -0.03351993
## const
## 0.01475547
##
##
## Estimated coefficients for equation Explotacion.mc:
## ===================================================
## Call:
## Explotacion.mc = Agropecuaria.l1 + Explotacion.mc.l1 + Agropecuaria.l2 + Explotacion.mc.l2 + Agropecuaria.l3 + Explotacion.mc.l3 + Agropecuaria.l4 + Explotacion.mc.l4 + const
##
## Agropecuaria.l1 Explotacion.mc.l1 Agropecuaria.l2 Explotacion.mc.l2
## 0.234992344 0.110568054 -0.446246828 -0.002063801
## Agropecuaria.l3 Explotacion.mc.l3 Agropecuaria.l4 Explotacion.mc.l4
## -0.010854719 0.017303019 -0.044216946 0.120591141
## const
## 0.018256031
Para saber si el VAR satisface las codiciones de establidad
summary(var1)
##
## VAR Estimation Results:
## =========================
## Endogenous variables: Agropecuaria, Explotacion.mc
## Deterministic variables: const
## Sample size: 71
## Log Likelihood: 167.099
## Roots of the characteristic polynomial:
## 0.9383 0.9383 0.9353 0.8205 0.6227 0.5953 0.5953 0.5211
## Call:
## VAR(y = datos_var1, p = 4)
##
##
## Estimation results for equation Agropecuaria:
## =============================================
## Agropecuaria = Agropecuaria.l1 + Explotacion.mc.l1 + Agropecuaria.l2 + Explotacion.mc.l2 + Agropecuaria.l3 + Explotacion.mc.l3 + Agropecuaria.l4 + Explotacion.mc.l4 + const
##
## Estimate Std. Error t value Pr(>|t|)
## Agropecuaria.l1 -0.116479 0.096463 -1.208 0.2318
## Explotacion.mc.l1 0.088698 0.046519 1.907 0.0612 .
## Agropecuaria.l2 -0.162067 0.097264 -1.666 0.1007
## Explotacion.mc.l2 -0.036062 0.047697 -0.756 0.4525
## Agropecuaria.l3 -0.032380 0.097909 -0.331 0.7420
## Explotacion.mc.l3 0.015674 0.048182 0.325 0.7460
## Agropecuaria.l4 0.656685 0.095950 6.844 4e-09 ***
## Explotacion.mc.l4 -0.033520 0.047429 -0.707 0.4824
## const 0.014755 0.008477 1.741 0.0867 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.04893 on 62 degrees of freedom
## Multiple R-Squared: 0.6095, Adjusted R-squared: 0.5591
## F-statistic: 12.1 on 8 and 62 DF, p-value: 3.155e-10
##
##
## Estimation results for equation Explotacion.mc:
## ===============================================
## Explotacion.mc = Agropecuaria.l1 + Explotacion.mc.l1 + Agropecuaria.l2 + Explotacion.mc.l2 + Agropecuaria.l3 + Explotacion.mc.l3 + Agropecuaria.l4 + Explotacion.mc.l4 + const
##
## Estimate Std. Error t value Pr(>|t|)
## Agropecuaria.l1 0.234992 0.266948 0.880 0.382
## Explotacion.mc.l1 0.110568 0.128734 0.859 0.394
## Agropecuaria.l2 -0.446247 0.269167 -1.658 0.102
## Explotacion.mc.l2 -0.002064 0.131994 -0.016 0.988
## Agropecuaria.l3 -0.010855 0.270950 -0.040 0.968
## Explotacion.mc.l3 0.017303 0.133337 0.130 0.897
## Agropecuaria.l4 -0.044217 0.265529 -0.167 0.868
## Explotacion.mc.l4 0.120591 0.131255 0.919 0.362
## const 0.018256 0.023459 0.778 0.439
##
##
## Residual standard error: 0.1354 on 62 degrees of freedom
## Multiple R-Squared: 0.1219, Adjusted R-squared: 0.008578
## F-statistic: 1.076 on 8 and 62 DF, p-value: 0.3918
##
##
##
## Covariance matrix of residuals:
## Agropecuaria Explotacion.mc
## Agropecuaria 0.002394 0.001819
## Explotacion.mc 0.001819 0.018338
##
## Correlation matrix of residuals:
## Agropecuaria Explotacion.mc
## Agropecuaria 1.0000 0.2744
## Explotacion.mc 0.2744 1.0000
Grafica de la variable observada vs la estimación del modelo
plot(var1)
Para la estimación del VAR con 7 rezagos
var2=VAR(datos_var1, p=7)
var2
##
## VAR Estimation Results:
## =======================
##
## Estimated coefficients for equation Agropecuaria:
## =================================================
## Call:
## Agropecuaria = Agropecuaria.l1 + Explotacion.mc.l1 + Agropecuaria.l2 + Explotacion.mc.l2 + Agropecuaria.l3 + Explotacion.mc.l3 + Agropecuaria.l4 + Explotacion.mc.l4 + Agropecuaria.l5 + Explotacion.mc.l5 + Agropecuaria.l6 + Explotacion.mc.l6 + Agropecuaria.l7 + Explotacion.mc.l7 + const
##
## Agropecuaria.l1 Explotacion.mc.l1 Agropecuaria.l2 Explotacion.mc.l2
## -0.049328705 0.030761268 -0.145725052 -0.030481316
## Agropecuaria.l3 Explotacion.mc.l3 Agropecuaria.l4 Explotacion.mc.l4
## 0.136230749 0.007345639 0.608388049 -0.027568798
## Agropecuaria.l5 Explotacion.mc.l5 Agropecuaria.l6 Explotacion.mc.l6
## -0.239199355 0.027228929 -0.038140790 -0.058074046
## Agropecuaria.l7 Explotacion.mc.l7 const
## -0.257503277 -0.115661723 0.025648139
##
##
## Estimated coefficients for equation Explotacion.mc:
## ===================================================
## Call:
## Explotacion.mc = Agropecuaria.l1 + Explotacion.mc.l1 + Agropecuaria.l2 + Explotacion.mc.l2 + Agropecuaria.l3 + Explotacion.mc.l3 + Agropecuaria.l4 + Explotacion.mc.l4 + Agropecuaria.l5 + Explotacion.mc.l5 + Agropecuaria.l6 + Explotacion.mc.l6 + Agropecuaria.l7 + Explotacion.mc.l7 + const
##
## Agropecuaria.l1 Explotacion.mc.l1 Agropecuaria.l2 Explotacion.mc.l2
## -0.06336405 0.18533637 0.07172444 -0.02576176
## Agropecuaria.l3 Explotacion.mc.l3 Agropecuaria.l4 Explotacion.mc.l4
## -0.15699760 0.01658256 -0.14358898 0.10255153
## Agropecuaria.l5 Explotacion.mc.l5 Agropecuaria.l6 Explotacion.mc.l6
## 0.41110116 -0.09801244 -0.63514909 -0.10579092
## Agropecuaria.l7 Explotacion.mc.l7 const
## 0.21775483 -0.01108679 0.02401488
Para saber si el VAR satisface las codiciones de establidad
summary(var2)
##
## VAR Estimation Results:
## =========================
## Endogenous variables: Agropecuaria, Explotacion.mc
## Deterministic variables: const
## Sample size: 68
## Log Likelihood: 174.935
## Roots of the characteristic polynomial:
## 0.9806 0.9463 0.9463 0.8743 0.8743 0.8451 0.8451 0.7465 0.7465 0.7142 0.7142 0.6934 0.5448 0.5448
## Call:
## VAR(y = datos_var1, p = 7)
##
##
## Estimation results for equation Agropecuaria:
## =============================================
## Agropecuaria = Agropecuaria.l1 + Explotacion.mc.l1 + Agropecuaria.l2 + Explotacion.mc.l2 + Agropecuaria.l3 + Explotacion.mc.l3 + Agropecuaria.l4 + Explotacion.mc.l4 + Agropecuaria.l5 + Explotacion.mc.l5 + Agropecuaria.l6 + Explotacion.mc.l6 + Agropecuaria.l7 + Explotacion.mc.l7 + const
##
## Estimate Std. Error t value Pr(>|t|)
## Agropecuaria.l1 -0.049329 0.130253 -0.379 0.70641
## Explotacion.mc.l1 0.030761 0.046964 0.655 0.51530
## Agropecuaria.l2 -0.145725 0.125791 -1.158 0.25187
## Explotacion.mc.l2 -0.030481 0.046579 -0.654 0.51568
## Agropecuaria.l3 0.136231 0.124873 1.091 0.28023
## Explotacion.mc.l3 0.007346 0.045469 0.162 0.87227
## Agropecuaria.l4 0.608388 0.094834 6.415 3.93e-08 ***
## Explotacion.mc.l4 -0.027569 0.044724 -0.616 0.54026
## Agropecuaria.l5 -0.239199 0.122159 -1.958 0.05549 .
## Explotacion.mc.l5 0.027229 0.045223 0.602 0.54967
## Agropecuaria.l6 -0.038141 0.125886 -0.303 0.76309
## Explotacion.mc.l6 -0.058074 0.045672 -1.272 0.20908
## Agropecuaria.l7 -0.257503 0.128943 -1.997 0.05097 .
## Explotacion.mc.l7 -0.115662 0.047030 -2.459 0.01722 *
## const 0.025648 0.008785 2.919 0.00514 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.04486 on 53 degrees of freedom
## Multiple R-Squared: 0.7028, Adjusted R-squared: 0.6243
## F-statistic: 8.952 on 14 and 53 DF, p-value: 1.442e-09
##
##
## Estimation results for equation Explotacion.mc:
## ===============================================
## Explotacion.mc = Agropecuaria.l1 + Explotacion.mc.l1 + Agropecuaria.l2 + Explotacion.mc.l2 + Agropecuaria.l3 + Explotacion.mc.l3 + Agropecuaria.l4 + Explotacion.mc.l4 + Agropecuaria.l5 + Explotacion.mc.l5 + Agropecuaria.l6 + Explotacion.mc.l6 + Agropecuaria.l7 + Explotacion.mc.l7 + const
##
## Estimate Std. Error t value Pr(>|t|)
## Agropecuaria.l1 -0.06336 0.39705 -0.160 0.874
## Explotacion.mc.l1 0.18534 0.14316 1.295 0.201
## Agropecuaria.l2 0.07172 0.38345 0.187 0.852
## Explotacion.mc.l2 -0.02576 0.14199 -0.181 0.857
## Agropecuaria.l3 -0.15700 0.38065 -0.412 0.682
## Explotacion.mc.l3 0.01658 0.13861 0.120 0.905
## Agropecuaria.l4 -0.14359 0.28908 -0.497 0.621
## Explotacion.mc.l4 0.10255 0.13633 0.752 0.455
## Agropecuaria.l5 0.41110 0.37238 1.104 0.275
## Explotacion.mc.l5 -0.09801 0.13785 -0.711 0.480
## Agropecuaria.l6 -0.63515 0.38374 -1.655 0.104
## Explotacion.mc.l6 -0.10579 0.13922 -0.760 0.451
## Agropecuaria.l7 0.21775 0.39306 0.554 0.582
## Explotacion.mc.l7 -0.01109 0.14336 -0.077 0.939
## const 0.02401 0.02678 0.897 0.374
##
##
## Residual standard error: 0.1368 on 53 degrees of freedom
## Multiple R-Squared: 0.2161, Adjusted R-squared: 0.008975
## F-statistic: 1.043 on 14 and 53 DF, p-value: 0.4277
##
##
##
## Covariance matrix of residuals:
## Agropecuaria Explotacion.mc
## Agropecuaria 0.002013 0.002181
## Explotacion.mc 0.002181 0.018703
##
## Correlation matrix of residuals:
## Agropecuaria Explotacion.mc
## Agropecuaria 1.0000 0.3555
## Explotacion.mc 0.3555 1.0000
Gráfica de la variable observada vs la estimación del modelo
plot(var2)
seriala=serial.test(var1, lags.pt = 1, type="PT.asymptotic")
seriala
##
## Portmanteau Test (asymptotic)
##
## data: Residuals of VAR object var1
## Chi-squared = 2.0615, df = -12, p-value = NA
seriala$serial
##
## Portmanteau Test (asymptotic)
##
## data: Residuals of VAR object var1
## Chi-squared = 2.0615, df = -12, p-value = NA
No hay autocorrelación
seriala2=serial.test(var2, lags.pt = 1, type="PT.asymptotic")
seriala2
##
## Portmanteau Test (asymptotic)
##
## data: Residuals of VAR object var2
## Chi-squared = 0.05655, df = -24, p-value = NA
seriala$serial
##
## Portmanteau Test (asymptotic)
##
## data: Residuals of VAR object var1
## Chi-squared = 2.0615, df = -12, p-value = NA
No hay autocorrelación.
Ho:= 0 Los datos tienen una distribución normal H1:≠ 0 Los datos no tienen una distribución normal.
normalidad=normality.test(var1)
normalidad$jb.mul
## $JB
##
## JB-Test (multivariate)
##
## data: Residuals of VAR object var1
## Chi-squared = 13.474, df = 4, p-value = 0.009178
##
##
## $Skewness
##
## Skewness only (multivariate)
##
## data: Residuals of VAR object var1
## Chi-squared = 3.6807, df = 2, p-value = 0.1588
##
##
## $Kurtosis
##
## Kurtosis only (multivariate)
##
## data: Residuals of VAR object var1
## Chi-squared = 9.793, df = 2, p-value = 0.007473
Se rechaza la hipótesis nula, los datos no siguen una distribución normal
normalidad=normality.test(var2)
normalidad
## $JB
##
## JB-Test (multivariate)
##
## data: Residuals of VAR object var2
## Chi-squared = 13.994, df = 4, p-value = 0.007313
##
##
## $Skewness
##
## Skewness only (multivariate)
##
## data: Residuals of VAR object var2
## Chi-squared = 0.79523, df = 2, p-value = 0.6719
##
##
## $Kurtosis
##
## Kurtosis only (multivariate)
##
## data: Residuals of VAR object var2
## Chi-squared = 13.199, df = 2, p-value = 0.001361
normalidad$jb.mul
## $JB
##
## JB-Test (multivariate)
##
## data: Residuals of VAR object var2
## Chi-squared = 13.994, df = 4, p-value = 0.007313
##
##
## $Skewness
##
## Skewness only (multivariate)
##
## data: Residuals of VAR object var2
## Chi-squared = 0.79523, df = 2, p-value = 0.6719
##
##
## $Kurtosis
##
## Kurtosis only (multivariate)
##
## data: Residuals of VAR object var2
## Chi-squared = 13.199, df = 2, p-value = 0.001361
Se rechaza la hipotesis nula, los datos no siguen una distribución normal.
arch1=arch.test(var1, lags.multi = 11)
arch1$arch.mul
##
## ARCH (multivariate)
##
## data: Residuals of VAR object var1
## Chi-squared = 110.38, df = 99, p-value = 0.2042
No rechazamos la hipótesis nula de homocedasticidad.
arch2=arch.test(var2, lags.multi = 11)
arch2$arch.mul
##
## ARCH (multivariate)
##
## data: Residuals of VAR object var2
## Chi-squared = 98.168, df = 99, p-value = 0.5047
No rechazamos la hipótesis nula de homocedasticidad.
var1_irflagro=irf(var1, response = "Agropecuaria", n.ahead = 8, boot=TRUE)
var1_irflagro
##
## Impulse response coefficients
## $Agropecuaria
## Agropecuaria
## [1,] 0.048933582
## [2,] -0.002403276
## [3,] -0.007606399
## [4,] -0.002130008
## [5,] 0.033180002
## [6,] -0.005130665
## [7,] -0.008265067
## [8,] -0.002404494
## [9,] 0.024000507
##
## $Explotacion.mc
## Agropecuaria
## [1,] 0.0000000000
## [2,] 0.0115500271
## [3,] -0.0047641845
## [4,] 0.0005629827
## [5,] -0.0042719129
## [6,] 0.0094240078
## [7,] -0.0041993066
## [8,] 0.0002318796
## [9,] -0.0036174179
##
##
## Lower Band, CI= 0.95
## $Agropecuaria
## Agropecuaria
## [1,] 0.036902236
## [2,] -0.012441183
## [3,] -0.017510961
## [4,] -0.009647965
## [5,] 0.016775017
## [6,] -0.015225798
## [7,] -0.017182270
## [8,] -0.012489786
## [9,] 0.006898719
##
## $Explotacion.mc
## Agropecuaria
## [1,] 0.0000000000
## [2,] 0.0016250052
## [3,] -0.0133143861
## [4,] -0.0101868108
## [5,] -0.0141067553
## [6,] 0.0001746231
## [7,] -0.0110061427
## [8,] -0.0097367795
## [9,] -0.0111569648
##
##
## Upper Band, CI= 0.95
## $Agropecuaria
## Agropecuaria
## [1,] 0.052175835
## [2,] 0.007824559
## [3,] 0.002488309
## [4,] 0.004111167
## [5,] 0.036971442
## [6,] 0.005108140
## [7,] 0.003439030
## [8,] 0.005400910
## [9,] 0.029625902
##
## $Explotacion.mc
## Agropecuaria
## [1,] 0.000000000
## [2,] 0.021419955
## [3,] 0.005610044
## [4,] 0.009245500
## [5,] 0.008447900
## [6,] 0.016852281
## [7,] 0.005818543
## [8,] 0.007242308
## [9,] 0.006278680
var2_irflagro=irf(var2, response = "Agropecuaria", n.ahead = 8, boot=TRUE)
var2_irflagro
##
## Impulse response coefficients
## $Agropecuaria
## Agropecuaria
## [1,] 0.0448636134
## [2,] -0.0007174729
## [3,] -0.0077945992
## [4,] 0.0068669998
## [5,] 0.0264375073
## [6,] -0.0132957738
## [7,] -0.0107922857
## [8,] -0.0064982253
## [9,] 0.0148456254
##
## $Explotacion.mc
## Agropecuaria
## [1,] 0.0000000000
## [2,] 0.0039320335
## [3,] -0.0033614622
## [4,] -0.0001642422
## [5,] -0.0022756932
## [6,] 0.0052390864
## [7,] -0.0103524498
## [8,] -0.0163643233
## [9,] -0.0021328332
##
##
## Lower Band, CI= 0.95
## $Agropecuaria
## Agropecuaria
## [1,] 0.032152697
## [2,] -0.009993696
## [3,] -0.016254695
## [4,] -0.002166663
## [5,] 0.013692745
## [6,] -0.020753792
## [7,] -0.018399795
## [8,] -0.015828654
## [9,] 0.003907179
##
## $Explotacion.mc
## Agropecuaria
## [1,] 0.000000000
## [2,] -0.004002867
## [3,] -0.011512113
## [4,] -0.010216356
## [5,] -0.012912990
## [6,] -0.008353306
## [7,] -0.018656507
## [8,] -0.026089627
## [9,] -0.010731872
##
##
## Upper Band, CI= 0.95
## $Agropecuaria
## Agropecuaria
## [1,] 0.045155350
## [2,] 0.007403791
## [3,] 0.002672663
## [4,] 0.015696600
## [5,] 0.030888311
## [6,] -0.002149194
## [7,] -0.002494286
## [8,] 0.008064482
## [9,] 0.020818142
##
## $Explotacion.mc
## Agropecuaria
## [1,] 0.0000000000
## [2,] 0.0131070555
## [3,] 0.0086710526
## [4,] 0.0090318261
## [5,] 0.0069016048
## [6,] 0.0157357006
## [7,] 0.0005273053
## [8,] -0.0031718672
## [9,] 0.0099112883
var1_irflexp=irf(var1, response = "Explotacion.mc", n.ahead = 8, boot=TRUE)
var1_irflexp
##
## Impulse response coefficients
## $Agropecuaria
## Explotacion.mc
## [1,] 0.037165164
## [2,] 0.015608297
## [3,] -0.020752130
## [4,] -0.002929817
## [5,] 0.005226933
## [6,] 0.011043513
## [7,] -0.016995631
## [8,] -0.002083495
## [9,] 0.002337911
##
## $Explotacion.mc
## Explotacion.mc
## [1,] 0.130217564
## [2,] 0.014397903
## [3,] 0.004037373
## [4,] -0.003603863
## [5,] 0.017678334
## [6,] 0.002054126
## [7,] 0.004940594
## [8,] -0.004757434
## [9,] 0.003646190
##
##
## Lower Band, CI= 0.95
## $Agropecuaria
## Explotacion.mc
## [1,] 0.004210812
## [2,] -0.018024630
## [3,] -0.047258100
## [4,] -0.027863106
## [5,] -0.014489904
## [6,] -0.008332958
## [7,] -0.034503189
## [8,] -0.018720217
## [9,] -0.012053107
##
## $Explotacion.mc
## Explotacion.mc
## [1,] 0.089979130
## [2,] -0.017368868
## [3,] -0.026363264
## [4,] -0.029760311
## [5,] -0.012674823
## [6,] -0.013507886
## [7,] -0.006930073
## [8,] -0.013974596
## [9,] -0.005124317
##
##
## Upper Band, CI= 0.95
## $Agropecuaria
## Explotacion.mc
## [1,] 0.0567501542
## [2,] 0.0359369756
## [3,] 0.0009401573
## [4,] 0.0192919122
## [5,] 0.0219839229
## [6,] 0.0256844357
## [7,] 0.0017504987
## [8,] 0.0164270897
## [9,] 0.0165068344
##
## $Explotacion.mc
## Explotacion.mc
## [1,] 0.141814726
## [2,] 0.038106403
## [3,] 0.024296366
## [4,] 0.023143585
## [5,] 0.029508751
## [6,] 0.015851411
## [7,] 0.016205346
## [8,] 0.006165826
## [9,] 0.012466494
var2_irflexp=irf(var2, response = "Explotacion.mc", n.ahead = 8, boot=TRUE)
var2_irflexp
##
## Impulse response coefficients
## $Agropecuaria
## Explotacion.mc
## [1,] 0.048619290
## [2,] 0.006168182
## [3,] 0.003153950
## [4,] -0.005369172
## [5,] -0.003311550
## [6,] 0.014031713
## [7,] -0.028837964
## [8,] -0.006198269
## [9,] 0.005157915
##
## $Explotacion.mc
## Explotacion.mc
## [1,] 0.1278241693
## [2,] 0.0236904672
## [3,] 0.0008485799
## [4,] 0.0021616353
## [5,] 0.0130321696
## [6,] -0.0076295848
## [7,] -0.0158417742
## [8,] -0.0087750095
## [9,] 0.0021497995
##
##
## Lower Band, CI= 0.95
## $Agropecuaria
## Explotacion.mc
## [1,] 0.014239618
## [2,] -0.023227185
## [3,] -0.032055944
## [4,] -0.028312400
## [5,] -0.030341615
## [6,] -0.008064225
## [7,] -0.046076880
## [8,] -0.027066243
## [9,] -0.012664414
##
## $Explotacion.mc
## Explotacion.mc
## [1,] 0.086234896
## [2,] -0.007638532
## [3,] -0.027751649
## [4,] -0.030452912
## [5,] -0.023372879
## [6,] -0.034729158
## [7,] -0.035065881
## [8,] -0.034330638
## [9,] -0.015753954
##
##
## Upper Band, CI= 0.95
## $Agropecuaria
## Explotacion.mc
## [1,] 0.077873714
## [2,] 0.033434359
## [3,] 0.026486633
## [4,] 0.025169686
## [5,] 0.018907815
## [6,] 0.032397043
## [7,] -0.001204125
## [8,] 0.016603676
## [9,] 0.024419467
##
## $Explotacion.mc
## Explotacion.mc
## [1,] 0.13887572
## [2,] 0.04501432
## [3,] 0.02463708
## [4,] 0.02345526
## [5,] 0.03200839
## [6,] 0.01387293
## [7,] 0.01845361
## [8,] 0.02113438
## [9,] 0.01875317
Para graficar el impulso respuesta de Agropecuaria
plot(var1_irflagro)
plot(var2_irflagro)
Para graficar el impulso respuesta de Explotacion mc
plot(var1_irflexp)
plot(var2_irflexp)
var1_fevd_dlagro= fevd(var1, n.ahead = 50)$Agropecuaria
var1_fevd_dlagro
## Agropecuaria Explotacion.mc
## [1,] 1.0000000 0.00000000
## [2,] 0.9473480 0.05265204
## [3,] 0.9402881 0.05971190
## [4,] 0.9402777 0.05972225
## [5,] 0.9532757 0.04672427
## [6,] 0.9316240 0.06837599
## [7,] 0.9286393 0.07136065
## [8,] 0.9287313 0.07126873
## [9,] 0.9351048 0.06489518
## [10,] 0.9250615 0.07493854
## [11,] 0.9235905 0.07640947
## [12,] 0.9236468 0.07635320
## [13,] 0.9271316 0.07286838
## [14,] 0.9220263 0.07797372
## [15,] 0.9211905 0.07880952
## [16,] 0.9212133 0.07878666
## [17,] 0.9231987 0.07680135
## [18,] 0.9204796 0.07952037
## [19,] 0.9199617 0.08003828
## [20,] 0.9199681 0.08003190
## [21,] 0.9211229 0.07887708
## [22,] 0.9196420 0.08035804
## [23,] 0.9193059 0.08069411
## [24,] 0.9193067 0.08069332
## [25,] 0.9199850 0.08001496
## [26,] 0.9191709 0.08082908
## [27,] 0.9189482 0.08105182
## [28,] 0.9189482 0.08105179
## [29,] 0.9193479 0.08065214
## [30,] 0.9188997 0.08110027
## [31,] 0.9187510 0.08124896
## [32,] 0.9187518 0.08124824
## [33,] 0.9189869 0.08101309
## [34,] 0.9187412 0.08125877
## [35,] 0.9186420 0.08135802
## [36,] 0.9186434 0.08135656
## [37,] 0.9187813 0.08121874
## [38,] 0.9186477 0.08135235
## [39,] 0.9185817 0.08141834
## [40,] 0.9185835 0.08141650
## [41,] 0.9186638 0.08133616
## [42,] 0.9185920 0.08140797
## [43,] 0.9185484 0.08145160
## [44,] 0.9185503 0.08144973
## [45,] 0.9185968 0.08140321
## [46,] 0.9185588 0.08144119
## [47,] 0.9185301 0.08146986
## [48,] 0.9185318 0.08146818
## [49,] 0.9185586 0.08144142
## [50,] 0.9185389 0.08146111
var2_fevd_dlagro= fevd(var2, n.ahead = 50)$Agropecuaria
var2_fevd_dlagro
## Agropecuaria Explotacion.mc
## [1,] 1.0000000 0.000000000
## [2,] 0.9923790 0.007621008
## [3,] 0.9872617 0.012738308
## [4,] 0.9875289 0.012471054
## [5,] 0.9887920 0.011207994
## [6,] 0.9805601 0.019439855
## [7,] 0.9492104 0.050789587
## [8,] 0.8790022 0.120997839
## [9,] 0.8849442 0.115055767
## [10,] 0.8822603 0.117739682
## [11,] 0.8595744 0.140425560
## [12,] 0.8451051 0.154894888
## [13,] 0.8457220 0.154277953
## [14,] 0.8298127 0.170187338
## [15,] 0.8247529 0.175247120
## [16,] 0.8241570 0.175843031
## [17,] 0.8239818 0.176018150
## [18,] 0.8170245 0.182975516
## [19,] 0.8130875 0.186912481
## [20,] 0.8133219 0.186678099
## [21,] 0.8168446 0.183155420
## [22,] 0.8153918 0.184608171
## [23,] 0.8128030 0.187197028
## [24,] 0.8132048 0.186795179
## [25,] 0.8163227 0.183677319
## [26,] 0.8149399 0.185060073
## [27,] 0.8141751 0.185824926
## [28,] 0.8147156 0.185284443
## [29,] 0.8171385 0.182861493
## [30,] 0.8154847 0.184515316
## [31,] 0.8152257 0.184774258
## [32,] 0.8156919 0.184308140
## [33,] 0.8173992 0.182600774
## [34,] 0.8162348 0.183765243
## [35,] 0.8160646 0.183935380
## [36,] 0.8165247 0.183475311
## [37,] 0.8176965 0.182303481
## [38,] 0.8169570 0.183042982
## [39,] 0.8168930 0.183106992
## [40,] 0.8174064 0.182593629
## [41,] 0.8182576 0.181742436
## [42,] 0.8177646 0.182235443
## [43,] 0.8178012 0.182198770
## [44,] 0.8183094 0.181690553
## [45,] 0.8189349 0.181065102
## [46,] 0.8186298 0.181370185
## [47,] 0.8187167 0.181283271
## [48,] 0.8191740 0.180826005
## [49,] 0.8196244 0.180375562
## [50,] 0.8194485 0.180551528
var1_fevd_dlexp= fevd(var1, n.ahead = 50)$Explotacion.mc
var1_fevd_dlexp
## Agropecuaria Explotacion.mc
## [1,] 0.07532227 0.9246777
## [2,] 0.08648077 0.9135192
## [3,] 0.10685942 0.8931406
## [4,] 0.10718546 0.8928145
## [5,] 0.10672082 0.8932792
## [6,] 0.11222158 0.8877784
## [7,] 0.12488326 0.8751167
## [8,] 0.12493172 0.8750683
## [9,] 0.12508719 0.8749128
## [10,] 0.12809766 0.8719023
## [11,] 0.13509774 0.8649023
## [12,] 0.13502358 0.8649764
## [13,] 0.13521155 0.8647884
## [14,] 0.13693796 0.8630620
## [15,] 0.14090949 0.8590905
## [16,] 0.14083963 0.8591604
## [17,] 0.14101247 0.8589875
## [18,] 0.14198666 0.8580133
## [19,] 0.14430525 0.8556947
## [20,] 0.14426227 0.8557377
## [21,] 0.14439915 0.8556009
## [22,] 0.14493462 0.8550654
## [23,] 0.14631314 0.8536869
## [24,] 0.14629158 0.8537084
## [25,] 0.14639095 0.8536090
## [26,] 0.14667847 0.8533215
## [27,] 0.14750610 0.8524939
## [28,] 0.14749773 0.8525023
## [29,] 0.14756621 0.8524338
## [30,] 0.14771749 0.8522825
## [31,] 0.14821649 0.8517835
## [32,] 0.14821524 0.8517848
## [33,] 0.14826087 0.8517391
## [34,] 0.14833897 0.8516610
## [35,] 0.14864010 0.8513599
## [36,] 0.14864221 0.8513578
## [37,] 0.14867190 0.8513281
## [38,] 0.14871146 0.8512885
## [39,] 0.14889298 0.8511070
## [40,] 0.14889632 0.8511037
## [41,] 0.14891528 0.8510847
## [42,] 0.14893491 0.8510651
## [43,] 0.14904408 0.8509559
## [44,] 0.14904755 0.8509524
## [45,] 0.14905948 0.8509405
## [46,] 0.14906900 0.8509310
## [47,] 0.14913446 0.8508655
## [48,] 0.14913756 0.8508624
## [49,] 0.14914497 0.8508550
## [50,] 0.14914945 0.8508505
var2_fevd_dlexp= fevd(var2, n.ahead = 50)$Explotacion.mc
var2_fevd_dlexp
## Agropecuaria Explotacion.mc
## [1,] 0.1263890 0.8736110
## [2,] 0.1244361 0.8755639
## [3,] 0.1248824 0.8751176
## [4,] 0.1261562 0.8738438
## [5,] 0.1255497 0.8744503
## [6,] 0.1338836 0.8661164
## [7,] 0.1667948 0.8332052
## [8,] 0.1677084 0.8322916
## [9,] 0.1687253 0.8312747
## [10,] 0.1725065 0.8274935
## [11,] 0.1856192 0.8143808
## [12,] 0.1864841 0.8135159
## [13,] 0.1882039 0.8117961
## [14,] 0.1930031 0.8069969
## [15,] 0.2007962 0.7992038
## [16,] 0.2016792 0.7983208
## [17,] 0.2018002 0.7981998
## [18,] 0.2036431 0.7963569
## [19,] 0.2094793 0.7905207
## [20,] 0.2091198 0.7908802
## [21,] 0.2092355 0.7907645
## [22,] 0.2110071 0.7889929
## [23,] 0.2146227 0.7853773
## [24,] 0.2145825 0.7854175
## [25,] 0.2146894 0.7853106
## [26,] 0.2168857 0.7831143
## [27,] 0.2191286 0.7808714
## [28,] 0.2192497 0.7807503
## [29,] 0.2193898 0.7806102
## [30,] 0.2214007 0.7785993
## [31,] 0.2232012 0.7767988
## [32,] 0.2232965 0.7767035
## [33,] 0.2235184 0.7764816
## [34,] 0.2250812 0.7749188
## [35,] 0.2265135 0.7734865
## [36,] 0.2266262 0.7733738
## [37,] 0.2268785 0.7731215
## [38,] 0.2281214 0.7718786
## [39,] 0.2291640 0.7708360
## [40,] 0.2293131 0.7706869
## [41,] 0.2295828 0.7704172
## [42,] 0.2305852 0.7694148
## [43,] 0.2313473 0.7686527
## [44,] 0.2315041 0.7684959
## [45,] 0.2317920 0.7682080
## [46,] 0.2326004 0.7673996
## [47,] 0.2331791 0.7668209
## [48,] 0.2333312 0.7666688
## [49,] 0.2336203 0.7663797
## [50,] 0.2342796 0.7657204
var1.prd=predict(var1, n.ahead = 5, ci=0.95)
var1.prd
## $Agropecuaria
## fcst lower upper CI
## [1,] 0.02610075 -0.06980731 0.12200881 0.09590806
## [2,] -0.03061977 -0.12927577 0.06803622 0.09865600
## [3,] 0.03438138 -0.06583066 0.13459343 0.10021204
## [4,] 0.02519930 -0.07510573 0.12550433 0.10030503
## [5,] 0.02807910 -0.09175542 0.14791363 0.11983452
##
## $Explotacion.mc
## fcst lower upper CI
## [1,] -0.017219983 -0.2826331 0.2481932 0.2654132
## [2,] 0.001866219 -0.2667903 0.2705228 0.2686565
## [3,] -0.001455444 -0.2732886 0.2703777 0.2718332
## [4,] 0.034279307 -0.2377063 0.3062649 0.2719856
## [5,] 0.009762278 -0.2646127 0.2841373 0.2743750
fanchart(var1.prd)
fanchart(var1.prd, names="dlagro",
main = "Fanchart para la Var. dlagro",
xlab = "Horizonte", ylab = "d3im",
xlim =c(70,90))
fanchart(var1.prd, names="Explotacion.mc",
main = "Fanchart para la Var. Explotacion.mc",
xlab = "Horizonte", ylab = "d3im",
xlim =c(70,90))
var2.prd=predict(var2, n.ahead = 5, ci=0.95)
var2.prd
## $Agropecuaria
## fcst lower upper CI
## [1,] -0.01818888 -0.106119944 0.06974219 0.08793107
## [2,] -0.05284442 -0.141123763 0.03543492 0.08827934
## [3,] 0.08199974 -0.007833661 0.17183313 0.08983340
## [4,] 0.04904057 -0.041796036 0.13987718 0.09083661
## [5,] 0.02423771 -0.080433872 0.12890929 0.10467158
##
## $Explotacion.mc
## fcst lower upper CI
## [1,] -0.05468520 -0.3227267 0.2133563 0.2680415
## [2,] 0.05859738 -0.2137046 0.3308994 0.2723020
## [3,] 0.01866927 -0.2537079 0.2910465 0.2723772
## [4,] 0.08948743 -0.1831259 0.3621008 0.2726134
## [5,] 0.02471027 -0.2491740 0.2985945 0.2738843
fanchart(var2.prd)
fanchart(var2.prd, names="dlagro",
main = "Fanchart para la Var. dlagro",
xlab = "Horizonte", ylab = "d3im",
xlim =c(70,90))
fanchart(var2.prd, names="Explotacion.mc",
main = "Fanchart para la Var. Explotacion.mc",
xlab = "Horizonte", ylab = "d3im",
xlim =c(70,90))
Dar formato a la serie de tiempo 1. Para Agropecuaria
agro=ts(data[,3], start=c(2005, 1),freq=4)
agro
## Qtr1 Qtr2 Qtr3 Qtr4
## 2005 5851.407 6234.029 6792.167 6561.396
## 2006 6079.042 6508.167 7552.915 7284.876
## 2007 6793.362 7021.584 8126.768 7773.286
## 2008 7447.905 7384.270 8902.276 8134.549
## 2009 7902.048 8102.346 9224.480 8325.126
## 2010 7785.010 8208.667 9314.265 9103.058
## 2011 9154.131 8835.691 9975.994 9743.184
## 2012 9055.488 9007.215 10116.487 9029.810
## 2013 8885.503 9954.775 10416.933 9251.789
## 2014 9598.004 10210.468 10918.279 10828.249
## 2015 11150.806 11183.750 12948.349 12841.096
## 2016 13147.359 13508.151 15333.027 15076.463
## 2017 14418.331 13804.086 15647.191 14945.391
## 2018 14692.306 14814.137 16361.709 15628.848
## 2019 15275.540 16113.673 18734.911 17833.876
## 2020 17941.993 17585.231 19888.453 19554.323
## 2021 20223.513 21372.156 24369.462 26713.868
## 2022 30214.925 31262.462 34467.353 34494.261
## 2023 35386.036 33115.546 34183.143 34686.244
exp=ts(data[,4], start=c(2005,1), freq=4)
exp
## Qtr1 Qtr2 Qtr3 Qtr4
## 2005 4995.062 5524.756 5773.560 5777.623
## 2006 5837.665 6790.322 7059.576 6439.437
## 2007 6151.134 5784.494 6805.799 7701.573
## 2008 8454.959 9238.138 11329.058 9652.845
## 2009 7917.920 9027.861 9624.817 10663.402
## 2010 10769.083 11970.514 11360.188 13005.215
## 2011 14590.999 18299.920 17668.955 19988.127
## 2012 18391.611 19646.975 17337.367 19181.047
## 2013 17673.115 18795.246 18563.725 18307.914
## 2014 16753.599 15855.876 16211.440 15453.085
## 2015 11739.242 11952.500 12507.875 11427.383
## 2016 9007.123 9728.128 10280.523 11983.226
## 2017 10799.923 10998.750 11857.333 13881.994
## 2018 12993.736 14141.353 15078.667 15574.244
## 2019 13501.455 14817.421 14386.995 15611.129
## 2020 11706.436 7373.263 10226.906 11382.394
## 2021 12074.851 14007.317 16948.160 21204.672
## 2022 21406.322 26747.533 29916.998 28078.146
## 2023 24199.383 21032.294 21220.098 20472.020
Se transforma la serie en Logaritmos 1. Para Agropecuaria
x=log(agro)
x
## Qtr1 Qtr2 Qtr3 Qtr4
## 2005 8.674437 8.737778 8.823525 8.788959
## 2006 8.712602 8.780813 8.929689 8.893556
## 2007 8.823701 8.856744 9.002919 8.958448
## 2008 8.915688 8.907107 9.094062 9.003876
## 2009 8.974877 8.999909 9.129616 9.027033
## 2010 8.959955 9.012946 9.139302 9.116366
## 2011 9.121961 9.086555 9.207937 9.184323
## 2012 9.111126 9.105781 9.221922 9.108287
## 2013 9.092176 9.205808 9.251188 9.132572
## 2014 9.169310 9.231169 9.298194 9.289914
## 2015 9.319267 9.322217 9.468724 9.460406
## 2016 9.483976 9.511049 9.637764 9.620890
## 2017 9.576256 9.532720 9.658047 9.612158
## 2018 9.595079 9.603337 9.702699 9.656874
## 2019 9.634008 9.687423 9.838144 9.788855
## 2020 9.794899 9.774815 9.897895 9.880952
## 2021 9.914601 9.969844 10.101086 10.192938
## 2022 10.316091 10.350173 10.447768 10.448548
## 2023 10.474073 10.407758 10.439488 10.454098
y=log(exp)
y
## Qtr1 Qtr2 Qtr3 Qtr4
## 2005 8.516205 8.616994 8.661044 8.661748
## 2006 8.672086 8.823254 8.862140 8.770196
## 2007 8.724392 8.662936 8.825530 8.949180
## 2008 9.042508 9.131096 9.335126 9.175008
## 2009 8.976884 9.108071 9.172100 9.274573
## 2010 9.284435 9.390202 9.337870 9.473106
## 2011 9.588160 9.814652 9.779564 9.902894
## 2012 9.819650 9.885679 9.760619 9.861678
## 2013 9.779800 9.841359 9.828965 9.815089
## 2014 9.726368 9.671295 9.693472 9.645564
## 2015 9.370693 9.388696 9.434114 9.343768
## 2016 9.105771 9.182777 9.238006 9.391263
## 2017 9.287294 9.305537 9.380702 9.538348
## 2018 9.472223 9.556859 9.621036 9.653374
## 2019 9.510553 9.603559 9.574080 9.655739
## 2020 9.367894 8.905616 9.232777 9.339823
## 2021 9.398880 9.547335 9.737915 9.961977
## 2022 9.971442 10.194198 10.306182 10.242747
## 2023 10.094082 9.953814 9.962704 9.926814
Se organizan en una tabla
data_1=cbind(x, y)
data_1
## x y
## 2005 Q1 8.674437 8.516205
## 2005 Q2 8.737778 8.616994
## 2005 Q3 8.823525 8.661044
## 2005 Q4 8.788959 8.661748
## 2006 Q1 8.712602 8.672086
## 2006 Q2 8.780813 8.823254
## 2006 Q3 8.929689 8.862140
## 2006 Q4 8.893556 8.770196
## 2007 Q1 8.823701 8.724392
## 2007 Q2 8.856744 8.662936
## 2007 Q3 9.002919 8.825530
## 2007 Q4 8.958448 8.949180
## 2008 Q1 8.915688 9.042508
## 2008 Q2 8.907107 9.131096
## 2008 Q3 9.094062 9.335126
## 2008 Q4 9.003876 9.175008
## 2009 Q1 8.974877 8.976884
## 2009 Q2 8.999909 9.108071
## 2009 Q3 9.129616 9.172100
## 2009 Q4 9.027033 9.274573
## 2010 Q1 8.959955 9.284435
## 2010 Q2 9.012946 9.390202
## 2010 Q3 9.139302 9.337870
## 2010 Q4 9.116366 9.473106
## 2011 Q1 9.121961 9.588160
## 2011 Q2 9.086555 9.814652
## 2011 Q3 9.207937 9.779564
## 2011 Q4 9.184323 9.902894
## 2012 Q1 9.111126 9.819650
## 2012 Q2 9.105781 9.885679
## 2012 Q3 9.221922 9.760619
## 2012 Q4 9.108287 9.861678
## 2013 Q1 9.092176 9.779800
## 2013 Q2 9.205808 9.841359
## 2013 Q3 9.251188 9.828965
## 2013 Q4 9.132572 9.815089
## 2014 Q1 9.169310 9.726368
## 2014 Q2 9.231169 9.671295
## 2014 Q3 9.298194 9.693472
## 2014 Q4 9.289914 9.645564
## 2015 Q1 9.319267 9.370693
## 2015 Q2 9.322217 9.388696
## 2015 Q3 9.468724 9.434114
## 2015 Q4 9.460406 9.343768
## 2016 Q1 9.483976 9.105771
## 2016 Q2 9.511049 9.182777
## 2016 Q3 9.637764 9.238006
## 2016 Q4 9.620890 9.391263
## 2017 Q1 9.576256 9.287294
## 2017 Q2 9.532720 9.305537
## 2017 Q3 9.658047 9.380702
## 2017 Q4 9.612158 9.538348
## 2018 Q1 9.595079 9.472223
## 2018 Q2 9.603337 9.556859
## 2018 Q3 9.702699 9.621036
## 2018 Q4 9.656874 9.653374
## 2019 Q1 9.634008 9.510553
## 2019 Q2 9.687423 9.603559
## 2019 Q3 9.838144 9.574080
## 2019 Q4 9.788855 9.655739
## 2020 Q1 9.794899 9.367894
## 2020 Q2 9.774815 8.905616
## 2020 Q3 9.897895 9.232777
## 2020 Q4 9.880952 9.339823
## 2021 Q1 9.914601 9.398880
## 2021 Q2 9.969844 9.547335
## 2021 Q3 10.101086 9.737915
## 2021 Q4 10.192938 9.961977
## 2022 Q1 10.316091 9.971442
## 2022 Q2 10.350173 10.194198
## 2022 Q3 10.447768 10.306182
## 2022 Q4 10.448548 10.242747
## 2023 Q1 10.474073 10.094082
## 2023 Q2 10.407758 9.953814
## 2023 Q3 10.439488 9.962704
## 2023 Q4 10.454098 9.926814
Se grafica
ts.plot(data_1, col=c("blue", "red"), main="Tendencia")
modelo1=lm(x~y)
summary(modelo1)
##
## Call:
## lm(formula = x ~ y)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.66299 -0.28294 -0.02491 0.29096 0.76231
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.1405 0.9565 2.238 0.0282 *
## y 0.7717 0.1013 7.615 6.91e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3736 on 74 degrees of freedom
## Multiple R-squared: 0.4393, Adjusted R-squared: 0.4318
## F-statistic: 57.98 on 1 and 74 DF, p-value: 6.914e-11
residualesmodelo1=modelo1$residuals
summary(residualesmodelo1)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.66299 -0.28294 -0.02491 0.00000 0.29096 0.76231
residualPlots(modelo1, fitted=TRUE)
## Test stat Pr(>|Test stat|)
## y 0.9216 0.3598
## Tukey test 0.9216 0.3567
H0:=0 Existe raíz unitaria- No estacionaria H1:≠0 No existe raíz unitaria - Es estacionaria
adf.test(residualesmodelo1)
##
## Augmented Dickey-Fuller Test
##
## data: residualesmodelo1
## Dickey-Fuller = -2.1917, Lag order = 4, p-value = 0.4973
## alternative hypothesis: stationary
La serie es no estacionaria, existe raíz unitaria
adftest1= ur.df(residualesmodelo1, type="trend", selectlags = "AIC")
summary(adftest1)
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression trend
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.24324 -0.07659 0.00693 0.07340 0.35604
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0546819 0.0334561 -1.634 0.1067
## z.lag.1 -0.0803815 0.0472770 -1.700 0.0935 .
## tt 0.0016838 0.0007966 2.114 0.0381 *
## z.diff.lag -0.1455953 0.1170710 -1.244 0.2178
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1087 on 70 degrees of freedom
## Multiple R-squared: 0.08655, Adjusted R-squared: 0.0474
## F-statistic: 2.211 on 3 and 70 DF, p-value: 0.09447
##
##
## Value of test-statistic is: -1.7002 1.7911 2.3134
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau3 -4.04 -3.45 -3.15
## phi2 6.50 4.88 4.16
## phi3 8.73 6.49 5.47
La serie es No estacionaria tiene Raiz unitaria
adftest2= ur.df(residualesmodelo1, type="drift", selectlags = "AIC")
summary(adftest2)
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression drift
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 + 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.23945 -0.07795 0.00125 0.06288 0.36652
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.01075 0.01299 0.827 0.411
## z.lag.1 -0.01415 0.03625 -0.390 0.698
## z.diff.lag -0.15170 0.11986 -1.266 0.210
##
## Residual standard error: 0.1113 on 71 degrees of freedom
## Multiple R-squared: 0.02825, Adjusted R-squared: 0.0008784
## F-statistic: 1.032 on 2 and 71 DF, p-value: 0.3615
##
##
## Value of test-statistic is: -0.3902 0.432
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau2 -3.51 -2.89 -2.58
## phi1 6.70 4.71 3.86
La serie es No estacionaria tiene Raiz unitaria
adftest3= ur.df(residualesmodelo1, type="none", selectlags = "AIC")
summary(adftest3)
##
## ###############################################
## # Augmented Dickey-Fuller Test Unit Root Test #
## ###############################################
##
## Test regression none
##
##
## Call:
## lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.22850 -0.06882 0.01294 0.07367 0.37584
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## z.lag.1 -0.01537 0.03614 -0.425 0.672
## z.diff.lag -0.14319 0.11915 -1.202 0.233
##
## Residual standard error: 0.1111 on 72 degrees of freedom
## Multiple R-squared: 0.02612, Adjusted R-squared: -0.0009292
## F-statistic: 0.9656 on 2 and 72 DF, p-value: 0.3856
##
##
## Value of test-statistic is: -0.4252
##
## Critical values for test statistics:
## 1pct 5pct 10pct
## tau1 -2.6 -1.95 -1.61
La serie es No estacionaria tiene Raiz unitaria.
test.PO=ca.po(data_1, type = "Pz")
summary(test.PO)
##
## ########################################
## # Phillips and Ouliaris Unit Root Test #
## ########################################
##
## Test of type Pz
## detrending of series none
##
## Response x :
##
## Call:
## lm(formula = x ~ zr - 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.13540 -0.05153 -0.01341 0.05535 0.16694
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## zrx 1.01414 0.02253 45.018 <2e-16 ***
## zry -0.01161 0.02249 -0.516 0.607
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.07378 on 73 degrees of freedom
## Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999
## F-statistic: 6.138e+05 on 2 and 73 DF, p-value: < 2.2e-16
##
##
## Response y :
##
## Call:
## lm(formula = y ~ zr - 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.50872 -0.06070 0.01553 0.08930 0.25313
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## zrx 0.06449 0.04014 1.607 0.112
## zry 0.93753 0.04007 23.398 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1315 on 73 degrees of freedom
## Multiple R-squared: 0.9998, Adjusted R-squared: 0.9998
## F-statistic: 1.937e+05 on 2 and 73 DF, p-value: < 2.2e-16
##
##
##
## Value of test-statistic is: 8.997
##
## Critical values of Pz are:
## 10pct 5pct 1pct
## critical values 33.9267 40.8217 55.1911
Las variables no estan cointegradas, no hay una tendencia a lago plazo
test.PU=ca.po(data_1, type = "Pu")
summary(test.PO)
##
## ########################################
## # Phillips and Ouliaris Unit Root Test #
## ########################################
##
## Test of type Pz
## detrending of series none
##
## Response x :
##
## Call:
## lm(formula = x ~ zr - 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.13540 -0.05153 -0.01341 0.05535 0.16694
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## zrx 1.01414 0.02253 45.018 <2e-16 ***
## zry -0.01161 0.02249 -0.516 0.607
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.07378 on 73 degrees of freedom
## Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999
## F-statistic: 6.138e+05 on 2 and 73 DF, p-value: < 2.2e-16
##
##
## Response y :
##
## Call:
## lm(formula = y ~ zr - 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.50872 -0.06070 0.01553 0.08930 0.25313
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## zrx 0.06449 0.04014 1.607 0.112
## zry 0.93753 0.04007 23.398 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1315 on 73 degrees of freedom
## Multiple R-squared: 0.9998, Adjusted R-squared: 0.9998
## F-statistic: 1.937e+05 on 2 and 73 DF, p-value: < 2.2e-16
##
##
##
## Value of test-statistic is: 8.997
##
## Critical values of Pz are:
## 10pct 5pct 1pct
## critical values 33.9267 40.8217 55.1911
Las variables no estan cointegradas, no hay una tendencia a lago plazo
En suma si los residuales no son estacionarios las variables no estan cointegradas.
-Las pruebas de raíz unitaria aplicadas a las series de Agropecuaria y Explotación de Minas y Canteras muestran que ambas series presentan evidencia de no estacionariedad, por ejemplo en la serie de Agropecuaria, aunque la prueba ADF sin constante ni tendencia indica estacionariedad, las configuraciones con constante y tendencia no muestran suficiente evidencia para rechazar la no estacionariedad. En el caso de Explotación de Minas y Canteras, todas las configuraciones de la prueba ADF indican no estacionariedad, lo cual sugiere que esta serie contiene raíz unitaria.
-Los resultados de la prueba de causalidad de Granger muentran que no existe evidencia estadísticamente significativa de causalidad entre las variables Agropecuaria y Explotación mc en ambas direcciones.
-Para el modelo VAR se utilizaron los modelos con 4 y 7 rezagos son adecuados según los criterios de información AIC, HQ, SC y FPE.
-Tanto en los modelo, var1 y var2, los residuos no siguen una distribución normal, especialmente debido a diferencias en la curtosis, por lo tanto, se rechazar la hipótesis nula; sin embargo, en los modelos var1 y var2, presentan residuos que no muestran signos de heterocedasticidad, ya que en ambos casos no se rechaza la hipótesis nula de homocedasticidad. Esto sugiere que la variabilidad de los residuos es constante a lo largo de las observaciones.
-A partir de los resultados obtenidos en las pruebas de Phillips-Ouliaris (tanto Pz como Pu), no se puede rechazar la hipótesis nula de que no existe cointegración entre las series temporales, por ello, no hay evidencia suficiente para concluir que las series estén cointegradas.