Hi Daniel! Here are the results of our pilot. We had N = 350 (approximately 100 participants per condition after exclusions) participants respond to a bunch of self report measures after we exposed them to a vignette. In this vignette, we manipulated whether the participants encountered an endorsement of an unconventional idea, a dismissal of an unconventional idea, or no reaction to an unconventional idea.
Here is the vignette we used:
Jamie:
“So, it sounds like we’re going with a two-hour presentation where the new hires will listen to an overview of the company’s history, mission, and key policies. That seems to be working for everyone?”
Taylor:
“Yeah, that works.”
Alex:
“How about this: What if instead of a presentation, we drop new hires into a virtual escape room? They’d solve puzzles that teach them the same things—our history, mission, and policies—but in a different way.”
[This is not shown in the control] Taylor:
“I [don’t really] like it. It’s [not] feasible/efficient/effective and it [doesn’t] aligns with our goals.”
You:
…
Question text is commented below for each of the visuals / analyses.
library(tidyverse)
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
data <- read.csv("~/Google Drive/My Drive/YEAR 2/PROJECTS/DANIEL/RTDs/Study 1/Data/study1_11.11.24.csv") %>%
slice(-c(1:2)) %>%
filter(attn == 1) %>%
mutate(Condition = ifelse(FL_7_DO == "Endorsementconditions", "Endorse",
ifelse(FL_7_DO == "DismissalConditions", "Dismiss",
ifelse(FL_7_DO == "ControlCondition", "Control", NA))))
Question:
Quality: How do you rate the quality of Alex’s idea?
ggplot(data = data,
aes(x = Condition, y = as.numeric(quality))) +
geom_point(alpha = 0.1,
size = 2,
position = position_jitter(0.1)) +
stat_summary(fun.data = "mean_cl_boot",
size = 1,
geom = "linerange",
color = "grey50")+
stat_summary(fun = "mean",
size = 0.3)+
theme_bw() +
labs(y = "Idea Quality Rating")
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_segment()`).
# Fit model
model <- data %>%
mutate(Condition = relevel(as.factor(Condition), ref = "Control")) %>%
lm(as.numeric(quality) ~ Condition, .)
# Display model summary
summary(model)
##
## Call:
## lm(formula = as.numeric(quality) ~ Condition, data = .)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.9200 -0.8350 0.1650 0.4732 1.4732
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.83505 0.10554 36.336 <2e-16 ***
## ConditionDismiss -0.30827 0.14418 -2.138 0.0333 *
## ConditionEndorse 0.08495 0.14814 0.573 0.5668
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.039 on 306 degrees of freedom
## Multiple R-squared: 0.02699, Adjusted R-squared: 0.02063
## F-statistic: 4.244 on 2 and 306 DF, p-value: 0.0152
An RTD of dismissal makes perceptions of deviant idea quality lower (b = -0.30827, p = 0.03). There is not a positive effect of endorsement on perceptions of deviant idea quality (b = 0.08495, p = 0.5).
Questions:
Quality: How do you rate the quality of Alex’s idea?
Influence: How much were you influenced by Taylor’s opinion in making your own judgment about Alex’s idea?
ggplot(data,
aes(x = as.numeric(quality), y = as.numeric(taylor_weight), color = Condition))+
geom_point(alpha = 0.1,
size = 2,
position = position_jitter(0.05)) +
geom_smooth(method=lm, se = F)+
theme_bw()+
labs(x ="Idea Quality Rating", y = "Self-reported RTD Influence")
## `geom_smooth()` using formula = 'y ~ x'
# Fit model
model <- data %>%
mutate(Condition = relevel(as.factor(Condition), ref = "Control")) %>%
lm(as.numeric(taylor_weight) ~ Condition * as.numeric(quality), .)
# Display model summary
summary(model)
##
## Call:
## lm(formula = as.numeric(taylor_weight) ~ Condition * as.numeric(quality),
## data = .)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4306 -0.8022 -0.0940 0.3786 3.1978
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.50083 0.35938 4.176 3.88e-05 ***
## ConditionDismiss 1.13555 0.47339 2.399 0.0171 *
## ConditionEndorse -0.10692 0.54242 -0.197 0.8439
## as.numeric(quality) 0.06027 0.09025 0.668 0.5048
## ConditionDismiss:as.numeric(quality) -0.26603 0.12300 -2.163 0.0313 *
## ConditionEndorse:as.numeric(quality) 0.11476 0.13527 0.848 0.3969
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9524 on 303 degrees of freedom
## Multiple R-squared: 0.05046, Adjusted R-squared: 0.03479
## F-statistic: 3.221 on 5 and 303 DF, p-value: 0.007543
Those in the dismissal RTD condition reported that as quality went up, self reported influence of the RTD went down, as compared to the control condition.
Question:
Raise: How likely are you to raise a new idea for onboarding to the group?
ggplot(data = data,
aes(x = Condition, y = as.numeric(raise))) +
geom_point(alpha = 0.1,
size = 2,
position = position_jitter(0.1)) +
stat_summary(fun.data = "mean_cl_boot",
size = 1,
geom = "linerange",
color = "grey50")+
stat_summary(fun = "mean",
size = 0.3)+
theme_bw() +
labs(y = "Likelihood of Raising a New Idea")
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_segment()`).
Question:
Generate: How likely are you to generate a new idea for onboarding?
ggplot(data = data,
aes(x = Condition, y = as.numeric(generate))) +
geom_point(alpha = 0.1,
size = 2,
position = position_jitter(0.1)) +
stat_summary(fun.data = "mean_cl_boot",
size = 1,
geom = "linerange",
color = "grey50")+
stat_summary(fun = "mean",
size = 0.3)+
theme_bw() +
labs(y = "Likelihood of Generating a New Idea")
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_segment()`).
Question:
Group Interest: How much would you want the group to hear more about and discuss Alex’s idea?
ggplot(data = data,
aes(x = Condition, y = as.numeric(group_interest))) +
geom_point(alpha = 0.1,
size = 2,
position = position_jitter(0.1)) +
stat_summary(fun.data = "mean_cl_boot",
size = 1,
geom = "linerange",
color = "grey50")+
stat_summary(fun = "mean",
size = 0.3)+
theme_bw() +
labs(y = "Interest in the Idea")
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_segment()`).
Question:
Group Explore: How much would you want the group to explore other directions in addition to Alex’s idea?
ggplot(data = data,
aes(x = Condition, y = as.numeric(group_explore))) +
geom_point(alpha = 0.1,
size = 2,
position = position_jitter(0.1)) +
stat_summary(fun.data = "mean_cl_boot",
size = 1,
geom = "linerange",
color = "grey50")+
stat_summary(fun = "mean",
size = 0.3)+
theme_bw() +
labs(y = "Interest in Exploring Other Ideas")
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_segment()`).
Not much here for our other DVs.
ggplot(data = data,
aes(x = Condition, y = as.numeric(WSS2_Alex))) +
geom_point(alpha = 0.1,
size = 2,
position = position_jitter(0.1)) +
stat_summary(fun.data = "mean_cl_boot",
size = 1,
geom = "linerange",
color = "grey50")+
stat_summary(fun = "mean",
size = 0.3)+
theme_bw() +
labs(y = "Alex's Status")
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_segment()`).
# Fit model
model <- data %>%
mutate(Condition = relevel(as.factor(Condition), ref = "Control")) %>%
lm(as.numeric(WSS2_Alex) ~ Condition, .)
# Display model summary
summary(model)
##
## Call:
## lm(formula = as.numeric(WSS2_Alex) ~ Condition, data = .)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.96429 -0.43000 0.03571 0.57000 2.03571
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.35052 0.07443 45.013 < 2e-16 ***
## ConditionDismiss -0.38623 0.10168 -3.798 0.000176 ***
## ConditionEndorse 0.07948 0.10447 0.761 0.447353
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7331 on 306 degrees of freedom
## Multiple R-squared: 0.07485, Adjusted R-squared: 0.0688
## F-statistic: 12.38 on 2 and 306 DF, p-value: 6.771e-06
An RTD of dismissal makes perceptions of deviant’ idea quality’s status lower (b = -0.38623, p < 0.001). There is not a positive effect of endorsement on perceptions of deviant idea quality (b = 0.07948, p = 0.45).
ggplot(data = data,
aes(x = Condition, y = as.numeric(WSS2_Taylor))) +
geom_point(alpha = 0.1,
size = 2,
position = position_jitter(0.1)) +
stat_summary(fun.data = "mean_cl_boot",
size = 1,
geom = "linerange",
color = "grey50")+
stat_summary(fun = "mean",
size = 0.3)+
theme_bw() +
labs(y = "Taylor's Status")
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_segment()`).
# Fit model
model <- data %>%
mutate(Condition = relevel(as.factor(Condition), ref = "Control")) %>%
lm(as.numeric(WSS2_Taylor) ~ Condition, .)
# Display model summary
summary(model)
##
## Call:
## lm(formula = as.numeric(WSS2_Taylor) ~ Condition, data = .)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2887 -0.5000 -0.2887 0.5000 1.7113
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.28866 0.06791 48.428 <2e-16 ***
## ConditionDismiss 0.21134 0.09276 2.278 0.0234 *
## ConditionEndorse 0.23134 0.09531 2.427 0.0158 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6688 on 306 degrees of freedom
## Multiple R-squared: 0.0233, Adjusted R-squared: 0.01691
## F-statistic: 3.649 on 2 and 306 DF, p-value: 0.02714
A reaction makes you higher status than no reaction.
Question:
How often: How often are you in a situation where a team member raises an unconventional idea and you have to decide how to respond? (1 = Never, 5 = Very often)
table(data$how_often)
##
## 1 2 3 4 5
## 31 98 150 24 6
Ok, this is a phenomenon that people encounter rarely/sometimes. Good to know!