Dyadic Analysis workshop, Zurich Nov. 24: RSA Model

Author

Eran Bar-Kalifa, Ben-Gurion Univ. Israel

RSA Model

Libraries

pacman::p_load(dplyr, RSA,rio,ggplot2,psych, nlme,GGally,tidyr,sjPlot,osfr,car,msm) 

Simulating data

data <- data.frame(x = rnorm(500),
                   y = rnorm(500))

data <- data %>% mutate(z=x*.25+rnorm(500,mean=0,sd=.94),
                        diff=x-y,
                        abs_diff=abs(x-y),
                        sqrt_diff=(x-y)^2)
ggpairs(data)

Loading the data from OSF

file <- osf_retrieve_file("6718dd0a2295d821b91b3a1f")
setwd("C:\\Users\\97254\\Downloads")
osf_download(file, progress = T,conflicts = "overwrigt") 
temp1 <- import("RSAData.csv")

Descriptive stats

Number of completed diaries

descriptive <- temp1 %>% group_by(Id,Female) %>% 
  summarise(n=n())
describeBy(descriptive$n,descriptive$Female)

 Descriptive statistics by group 
group: 0
   vars  n  mean   sd median trimmed  mad min max range  skew kurtosis   se
X1    1 82 18.07 2.96     19   18.32 2.97  11  22    11 -0.71     -0.5 0.33
------------------------------------------------------------ 
group: 1
   vars  n  mean   sd median trimmed  mad min max range  skew kurtosis   se
X1    1 82 18.84 2.52     19   19.09 2.97  12  22    10 -0.76    -0.13 0.28

Correlation matrix

ggpairs(temp1 %>% select(Pro_Emo:zSPIN), title="Corr Matrix")

Ploting Terciles of difference scores

# Step 1: Create the difference between the two variables
temp <- temp1%>%
  mutate(difference = Pro_Emo  - Partner_Pro_Emo )

# Step 2: Calculate quantiles (terciles)
tercile_cutoffs <- quantile(temp$difference, probs = c(1/3, 2/3), na.rm = TRUE)

# Step 3: Assign tercile based on the cutoffs
temp <- temp %>%
  mutate(tercile = case_when(
    difference <= tercile_cutoffs[1] ~ "Lower",
    difference > tercile_cutoffs[1] & difference <= tercile_cutoffs[2] ~ "Medium",
    difference > tercile_cutoffs[2] ~ "High"
  ))

# Step 4: Plot histogram of the difference scores by tercile
ggplot(temp, aes(x = difference, fill = tercile)) +
  geom_histogram(bins = 30, position = "identity", alpha = 0.7) +
  labs(title = "Histogram of Difference Scores by Tercile",
       x = "Difference (Providing vs. Receiving)",
       y = "Count",
       fill = "Tercile") +
  theme_minimal()

Preparing variables

temp1 <- temp1 %>% group_by(Id) %>% 
  mutate(
         #centering variables 
         x_dyadic=Pro_Emo-mean(Pro_Emo,na.rm=T),
         y_dyadic=Partner_Pro_Emo-mean(Pro_Emo,na.rm=T),
         x2_dyadic=x_dyadic^2,
         xy_dyadic=x_dyadic*y_dyadic,
         y2_dyadic=y_dyadic^2,
         
         x_monadic=Pro_Emo-mean(Pro_Emo,na.rm=T),
         y_monadic=Rec_Emo-mean(Rec_Emo,na.rm=T),
         x2_monadic=x_monadic^2,
         xy_monadic=x_monadic*y_monadic,
         y2_monadic=y_monadic^2) %>% ungroup() %>% 
        #standardizing level2 moderator
        mutate(zMod = scale(SPIN),
               #creating gender_specfic variables
               Male=1-Female,
               Gender=0.5-Female,
               #creating terms manually, so i can then use them for computing SE
               M_x_dyadic=Male*x_dyadic,
               M_y_dyadic=Male*y_dyadic,
               M_x2_dyadic=Male*x2_dyadic,
               M_xy_dyadic=Male*xy_dyadic,
               M_y2_dyadic=Male*y2_dyadic,
               F_x_dyadic=Female*x_dyadic,
               F_y_dyadic=Female*y_dyadic,
               F_x2_dyadic=Female*x2_dyadic,
               F_xy_dyadic=Female*xy_dyadic,
               F_y2_dyadic=Female*y2_dyadic,
               
               
               M_x_monadic=Male*x_monadic,
               M_y_monadic=Male*y_monadic,
               M_x2_monadic=Male*x2_monadic,
               M_xy_monadic=Male*xy_monadic,
               M_y2_monadic=Male*y2_monadic,
               F_x_monadic=Female*x_monadic,
               F_y_monadic=Female*y_monadic,
               F_x2_monadic=Female*x2_monadic,
               F_xy_monadic=Female*xy_monadic,
               F_y2_monadic=Female*y2_monadic
               

               )

RSA models

PPR - Dyadic

Model1.1<- lme(PPR ~ -1 + 
                 Male+ M_x_dyadic+M_y_dyadic+M_x2_dyadic+M_xy_dyadic+M_y2_dyadic+
                 Female+ F_x_dyadic+F_y_dyadic+F_x2_dyadic+F_xy_dyadic+F_y2_dyadic,
               
               random = ~ -1 + 
                 Male+ 
                 Female| Couple,
               # Male+ Male:x_dyadic+Male:y_dyadic+
               # Female+ Female:x_dyadic+Female:y_dyadic| Couple,
               weights = varIdent(form=~1|Gender),
               # corr=corAR1(form = ~1 | Couple/DiaryDay),
               correlation = corCompSymm(form = ~1|Couple/DiaryDay),
               data = temp1,na.action = na.exclude,
               )
summary(Model1.1)
Linear mixed-effects model fit by REML
  Data: temp1 
       AIC      BIC    logLik
  6144.151 6250.601 -3054.075

Random effects:
 Formula: ~-1 + Male + Female | Couple
 Structure: General positive-definite, Log-Cholesky parametrization
         StdDev    Corr 
Male     0.8176050 Male 
Female   0.7843441 0.528
Residual 0.6974472      

Correlation Structure: Compound symmetry
 Formula: ~1 | Couple/DiaryDay 
 Parameter estimate(s):
      Rho 
0.2211914 
Variance function:
 Structure: Different standard deviations per stratum
 Formula: ~1 | Gender 
 Parameter estimates:
     0.5     -0.5 
1.000000 0.930997 
Fixed effects:  PPR ~ -1 + Male + M_x_dyadic + M_y_dyadic + M_x2_dyadic + M_xy_dyadic +      M_y2_dyadic + Female + F_x_dyadic + F_y_dyadic + F_x2_dyadic +      F_xy_dyadic + F_y2_dyadic 
                Value  Std.Error   DF  t-value p-value
Male         5.918616 0.09508869 2654 62.24311  0.0000
M_x_dyadic   0.119239 0.02396410 2654  4.97572  0.0000
M_y_dyadic  -0.001789 0.02308741 2654 -0.07748  0.9382
M_x2_dyadic -0.048305 0.01864758 2654 -2.59043  0.0096
M_xy_dyadic  0.056410 0.02060884 2654  2.73717  0.0062
M_y2_dyadic -0.014127 0.01285092 2654 -1.09930  0.2717
Female       6.025943 0.09093398 2654 66.26723  0.0000
F_x_dyadic   0.124555 0.02211020 2654  5.63337  0.0000
F_y_dyadic   0.056784 0.02238367 2654  2.53684  0.0112
F_x2_dyadic -0.046313 0.01944135 2654 -2.38221  0.0173
F_xy_dyadic  0.010029 0.01868324 2654  0.53677  0.5915
F_y2_dyadic -0.023040 0.01167830 2654 -1.97291  0.0486
 Correlation: 
            Male   M_x_dy M_y_dy M_x2_d M_xy_d M_y2_d Female F_x_dy F_y_dy
M_x_dyadic  -0.005                                                        
M_y_dyadic   0.027 -0.163                                                 
M_x2_dyadic -0.134 -0.147  0.046                                          
M_xy_dyadic  0.044  0.347 -0.039 -0.347                                   
M_y2_dyadic -0.183  0.001  0.258  0.036 -0.141                            
Female       0.494 -0.010 -0.002 -0.023  0.023 -0.025                     
F_x_dyadic   0.013 -0.046  0.209  0.010 -0.038  0.020  0.021              
F_y_dyadic   0.003  0.211 -0.058 -0.062  0.062 -0.008 -0.018 -0.188       
F_x2_dyadic -0.025  0.000  0.036  0.000 -0.020  0.138 -0.151 -0.089  0.033
F_xy_dyadic  0.027  0.044 -0.039 -0.034  0.147 -0.148  0.047 -0.228  0.085
F_y2_dyadic -0.024 -0.055  0.013  0.151 -0.153  0.044 -0.154  0.068 -0.408
            F_x2_d F_xy_d
M_x_dyadic               
M_y_dyadic               
M_x2_dyadic              
M_xy_dyadic              
M_y2_dyadic              
Female                   
F_x_dyadic               
F_y_dyadic               
F_x2_dyadic              
F_xy_dyadic -0.260       
F_y2_dyadic  0.013 -0.221

Standardized Within-Group Residuals:
       Min         Q1        Med         Q3        Max 
-7.2177425 -0.3245818  0.1122012  0.4915106  3.6628245 

Number of Observations: 2747
Number of Groups: 82 
tab_model(Model1.1,show.r2=F)
  PPR
Predictors Estimates CI p
Male 5.92 5.73 – 6.11 <0.001
M x dyadic 0.12 0.07 – 0.17 <0.001
M y dyadic -0.00 -0.05 – 0.04 0.938
M x2 dyadic -0.05 -0.08 – -0.01 0.010
M xy dyadic 0.06 0.02 – 0.10 0.006
M y2 dyadic -0.01 -0.04 – 0.01 0.272
Female 6.03 5.85 – 6.20 <0.001
F x dyadic 0.12 0.08 – 0.17 <0.001
F y dyadic 0.06 0.01 – 0.10 0.011
F x2 dyadic -0.05 -0.08 – -0.01 0.017
F xy dyadic 0.01 -0.03 – 0.05 0.591
F y2 dyadic -0.02 -0.05 – -0.00 0.049
Random Effects
σ2 0.49
τ00  
τ00  
τ11 Couple.Female 0.62
ρ01 Couple 0.53
ICC 0.57
N Couple 82
Observations 2747

Plotting surface

# Plotting 
(fixed_effects <- fixef(Model1.1))
        Male   M_x_dyadic   M_y_dyadic  M_x2_dyadic  M_xy_dyadic  M_y2_dyadic 
 5.918615945  0.119238583 -0.001788835 -0.048305206  0.056409883 -0.014126993 
      Female   F_x_dyadic   F_y_dyadic  F_x2_dyadic  F_xy_dyadic  F_y2_dyadic 
 6.025942526  0.124554889  0.056783905 -0.046313300  0.010028691 -0.023040264 
# Men's plot
plotRSA(x=fixed_effects[2],
         y=fixed_effects[3],
         x2=fixed_effects[4],
         xy=fixed_effects[5],
         y2=fixed_effects[6]
         
         )

# Women's plot
plotRSA(x=fixed_effects[8],
        y=fixed_effects[9],
        x2=fixed_effects[10],
        xy=fixed_effects[11],
        y2=fixed_effects[12]
        
)

Getting estimates and their SE using the deltaMethod

# Define a function that receives var_names and builds the expression list
build_and_evaluate_expressions <- function(model, vars) {
  
  # Get the fixed effects and variance-covariance matrix from the model
  fixed_effects <- fixef(model)
  vcov_matrix <- vcov(model)
  
  # Build the expressions dynamically based on the provided variable names
  
  # Male expressions
  expressions_list <- list(
    "a1" = paste(vars[1], "+", vars[2]),  # M_x_monadic + M_y_monadic
    "a2" = paste(vars[3], "+", vars[4], "+", vars[5]),  # M_x2_monadic + M_xy_monadic + M_y2_monadic
    "a3" = paste(vars[1], "-", vars[2]),  # M_x_monadic - M_y_monadic
    "a4" = paste(vars[3], "-", vars[4], "+", vars[5]),  # M_x2_monadic - M_xy_monadic + M_y2_monadic
    "X0" = paste("(", vars[2], "*", vars[4], "- 2 *", vars[1], "*", vars[5], ") / (4 *", 
                 vars[3], "*", vars[5], "-", vars[4], "^2)"),
    "Y0" = paste("(", vars[1], "*", vars[4], "- 2 *", vars[2], "*", vars[3], ") / (4 *", 
                 vars[3], "*", vars[5], "-", vars[4], "^2)"),
    "p10" = paste("((", vars[1], "*", vars[4], "- 2 *", vars[2], "*", vars[3], ") / (4 *", 
                  vars[3], "*", vars[5], "-", vars[4], "^2)) - ((", vars[5], "-", 
                  vars[3], "+ sqrt((", vars[3], "-", vars[5], ")^2 +", vars[4], "^2))/", 
                  vars[4], ") * ((", vars[2], "*", vars[4], "- 2 *", vars[1], "*", 
                  vars[5], ") / (4 *", vars[3], "*", vars[5], "-", vars[4], "^2))"),
    "p11" = paste("(", vars[5], "-", vars[3], "+ sqrt((", vars[3], "-", vars[5], ")^2 +",
                  vars[4], "^2)) /", vars[4]),
    "p20" = paste("((", vars[1], "*", vars[4], "- 2 *", vars[2], "*", vars[3], ") / (4 *",
                  vars[3], "*", vars[5], "-", vars[4], "^2)) - ((", vars[5], "-",
                  vars[3], "- sqrt((", vars[3], "-", vars[5], ")^2 +", vars[4], "^2))/",
                  vars[4], ") * ((", vars[2], "*", vars[4], "- 2 *", vars[1], "*",
                  vars[5], ") / (4 *", vars[3], "*", vars[5], "-", vars[4], "^2))"),
    "p21" = paste("(", vars[5], "-", vars[3], "- sqrt((", vars[3], "-", vars[5], ")^2 +",
                  vars[4], "^2)) /", vars[4])
  )
  
  # Initialize an empty dataframe to store results
  results_df <- data.frame(Expression = character(), Estimate = numeric(), SE = numeric(),CI_2.5= numeric(),CI_97.5= numeric(), Z = numeric(), p_value = numeric(), stringsAsFactors = FALSE)
  
  # Iterate over the expressions and apply deltaMethod for each
  for (expr_name in names(expressions_list)) {
    expr <- expressions_list[[expr_name]]
    
    # Apply deltaMethod using the current expression
    result <- deltaMethod(object = fixed_effects, 
                          g = expr, 
                          vcov. = vcov_matrix)
    
    # Calculate Z-score and p-value
    z_score <- result$Estimate / result$SE
    
    
    p_value <- round(2 * (1 - pnorm(abs(z_score))),4)
    
    # Append result to the dataframe
    results_df <- results_df %>%
      add_row(Expression = expr_name, Estimate = result$Estimate, SE = result$SE,CI_2.5=result$`2.5 %`,CI_97.5=result$`97.5 %`, Z = z_score, p_value = p_value)
  }
  
  # Return the results dataframe
  return(results_df)
}

Use the function

# Define the male and female variable names 
male_vars <- c("M_x_dyadic", "M_y_dyadic", "M_x2_dyadic", "M_xy_dyadic", "M_y2_dyadic")
female_vars <- c("F_x_dyadic", "F_y_dyadic", "F_x2_dyadic", "F_xy_dyadic", "F_y2_dyadic")

# Apply the function to the model (in this case Model1.1)
results <- build_and_evaluate_expressions(Model1.1, male_vars)

# View the results
print(results)
   Expression      Estimate           SE        CI_2.5      CI_97.5          Z
1          a1   0.117449748   0.03044755    0.05777364   0.17712586  3.8574444
2          a2  -0.006022316   0.02477884   -0.05458795   0.04254332 -0.2430427
3          a3   0.121027419   0.03588259    0.05069884   0.19135600  3.3728731
4          a4  -0.118842082   0.03599637   -0.18939368  -0.04829049 -3.3015016
5          X0  -7.223094168  53.58059320 -112.23912712  97.79293878 -0.1348080
6          Y0 -14.484424524  94.73936398 -200.17016584 171.20131679 -0.1528871
7         p10  -1.662547884   0.69832334   -3.03123649  -0.29385928 -2.3807709
8         p11   1.775122453   0.62265958    0.55473211   2.99551280  2.8508715
9         p20 -18.553492636 124.97838919 -263.50663429 226.39964902 -0.1484536
10        p21  -0.563341418   0.19760323   -0.95063663  -0.17604621 -2.8508715
   p_value
1   0.0001
2   0.8080
3   0.0007
4   0.0010
5   0.8928
6   0.8785
7   0.0173
8   0.0044
9   0.8820
10  0.0044
# Apply the function to the model (in this case Model1.1)
results <- build_and_evaluate_expressions(Model1.1, female_vars)

# View the results
print(results)
   Expression    Estimate          SE        CI_2.5     CI_97.5          Z
1          a1  0.18133879  0.02834302  1.257875e-01  0.23689009  6.3980062
2          a2 -0.05932487  0.02416042 -1.066784e-01 -0.01197132 -2.4554571
3          a3  0.06777098  0.03429946  5.452841e-04  0.13499668  1.9758617
4          a4 -0.07938226  0.03397742 -1.459768e-01 -0.01278774 -2.3363240
5          X0  1.51378728  0.65465362  2.306898e-01  2.79688479  2.3123484
6          Y0  1.56172713  0.91031939 -2.224661e-01  3.34592035  1.7155815
7         p10 -5.77647672 12.39579125 -3.007178e+01 18.51882769 -0.4660031
8         p11  4.84757929  8.91974648 -1.263480e+01 22.32996114  0.5434660
9         p20  1.87400408  1.32404546 -7.210773e-01  4.46908549  1.4153623
10        p21 -0.20628853  0.37957943 -9.502505e-01  0.53767348 -0.5434660
   p_value
1   0.0000
2   0.0141
3   0.0482
4   0.0195
5   0.0208
6   0.0862
7   0.6412
8   0.5868
9   0.1570
10  0.5868

PPR - Monadic

Model1.2<- lme(PPR ~ -1 + 
                 Male+ M_x_monadic+M_y_monadic+M_x2_monadic+M_xy_monadic+M_y2_monadic+
                 Female+ F_x_monadic+F_y_monadic+F_x2_monadic+F_xy_monadic+F_y2_monadic,
               
               random = ~ -1 + 
                 Male+ 
                 Female| Couple,
               # Male+ Male:x_dyadic+Male:y_dyadic+
               # Female+ Female:x_dyadic+Female:y_dyadic| Couple,
               weights = varIdent(form=~1|Gender),
               # corr=corAR1(form = ~1 | Couple/DiaryDay),
               correlation = corCompSymm(form = ~1|Couple/DiaryDay),
               data = temp1,na.action = na.exclude)
summary(Model1.1)
Linear mixed-effects model fit by REML
  Data: temp1 
       AIC      BIC    logLik
  6144.151 6250.601 -3054.075

Random effects:
 Formula: ~-1 + Male + Female | Couple
 Structure: General positive-definite, Log-Cholesky parametrization
         StdDev    Corr 
Male     0.8176050 Male 
Female   0.7843441 0.528
Residual 0.6974472      

Correlation Structure: Compound symmetry
 Formula: ~1 | Couple/DiaryDay 
 Parameter estimate(s):
      Rho 
0.2211914 
Variance function:
 Structure: Different standard deviations per stratum
 Formula: ~1 | Gender 
 Parameter estimates:
     0.5     -0.5 
1.000000 0.930997 
Fixed effects:  PPR ~ -1 + Male + M_x_dyadic + M_y_dyadic + M_x2_dyadic + M_xy_dyadic +      M_y2_dyadic + Female + F_x_dyadic + F_y_dyadic + F_x2_dyadic +      F_xy_dyadic + F_y2_dyadic 
                Value  Std.Error   DF  t-value p-value
Male         5.918616 0.09508869 2654 62.24311  0.0000
M_x_dyadic   0.119239 0.02396410 2654  4.97572  0.0000
M_y_dyadic  -0.001789 0.02308741 2654 -0.07748  0.9382
M_x2_dyadic -0.048305 0.01864758 2654 -2.59043  0.0096
M_xy_dyadic  0.056410 0.02060884 2654  2.73717  0.0062
M_y2_dyadic -0.014127 0.01285092 2654 -1.09930  0.2717
Female       6.025943 0.09093398 2654 66.26723  0.0000
F_x_dyadic   0.124555 0.02211020 2654  5.63337  0.0000
F_y_dyadic   0.056784 0.02238367 2654  2.53684  0.0112
F_x2_dyadic -0.046313 0.01944135 2654 -2.38221  0.0173
F_xy_dyadic  0.010029 0.01868324 2654  0.53677  0.5915
F_y2_dyadic -0.023040 0.01167830 2654 -1.97291  0.0486
 Correlation: 
            Male   M_x_dy M_y_dy M_x2_d M_xy_d M_y2_d Female F_x_dy F_y_dy
M_x_dyadic  -0.005                                                        
M_y_dyadic   0.027 -0.163                                                 
M_x2_dyadic -0.134 -0.147  0.046                                          
M_xy_dyadic  0.044  0.347 -0.039 -0.347                                   
M_y2_dyadic -0.183  0.001  0.258  0.036 -0.141                            
Female       0.494 -0.010 -0.002 -0.023  0.023 -0.025                     
F_x_dyadic   0.013 -0.046  0.209  0.010 -0.038  0.020  0.021              
F_y_dyadic   0.003  0.211 -0.058 -0.062  0.062 -0.008 -0.018 -0.188       
F_x2_dyadic -0.025  0.000  0.036  0.000 -0.020  0.138 -0.151 -0.089  0.033
F_xy_dyadic  0.027  0.044 -0.039 -0.034  0.147 -0.148  0.047 -0.228  0.085
F_y2_dyadic -0.024 -0.055  0.013  0.151 -0.153  0.044 -0.154  0.068 -0.408
            F_x2_d F_xy_d
M_x_dyadic               
M_y_dyadic               
M_x2_dyadic              
M_xy_dyadic              
M_y2_dyadic              
Female                   
F_x_dyadic               
F_y_dyadic               
F_x2_dyadic              
F_xy_dyadic -0.260       
F_y2_dyadic  0.013 -0.221

Standardized Within-Group Residuals:
       Min         Q1        Med         Q3        Max 
-7.2177425 -0.3245818  0.1122012  0.4915106  3.6628245 

Number of Observations: 2747
Number of Groups: 82 
tab_model(Model1.1,Model1.2,show.r2=F)
  PPR PPR
Predictors Estimates CI p Estimates CI p
Male 5.92 5.73 – 6.11 <0.001 5.90 5.72 – 6.09 <0.001
M x dyadic 0.12 0.07 – 0.17 <0.001
M y dyadic -0.00 -0.05 – 0.04 0.938
M x2 dyadic -0.05 -0.08 – -0.01 0.010
M xy dyadic 0.06 0.02 – 0.10 0.006
M y2 dyadic -0.01 -0.04 – 0.01 0.272
Female 6.03 5.85 – 6.20 <0.001 6.06 5.89 – 6.23 <0.001
F x dyadic 0.12 0.08 – 0.17 <0.001
F y dyadic 0.06 0.01 – 0.10 0.011
F x2 dyadic -0.05 -0.08 – -0.01 0.017
F xy dyadic 0.01 -0.03 – 0.05 0.591
F y2 dyadic -0.02 -0.05 – -0.00 0.049
M x monadic 0.02 -0.03 – 0.07 0.406
M y monadic 0.16 0.12 – 0.20 <0.001
M x2 monadic -0.02 -0.06 – 0.02 0.236
M xy monadic 0.08 0.03 – 0.12 0.001
M y2 monadic -0.05 -0.09 – -0.02 0.005
F x monadic 0.05 0.00 – 0.09 0.031
F y monadic 0.19 0.15 – 0.23 <0.001
F x2 monadic -0.05 -0.09 – -0.01 0.007
F xy monadic 0.02 -0.02 – 0.07 0.337
F y2 monadic -0.04 -0.08 – -0.01 0.008
Random Effects
σ2 0.49 0.46
τ00    
τ00    
τ11 0.62 Couple.Female 0.60 Couple.Female
ρ01 0.53 Couple 0.53 Couple
ICC 0.57 0.58
N 82 Couple 82 Couple
Observations 2747 3020
# Getting estimates and their SE using the deltaMethod
# Define the expression for the new parameter
(fixed_effects <- fixef(Model1.2))
        Male  M_x_monadic  M_y_monadic M_x2_monadic M_xy_monadic M_y2_monadic 
  5.90393305   0.01986546   0.15984800  -0.02430408   0.07739961  -0.05209454 
      Female  F_x_monadic  F_y_monadic F_x2_monadic F_xy_monadic F_y2_monadic 
  6.05867952   0.04690093   0.19001384  -0.05328445   0.02257610  -0.04360192 
# Men's plot
plotRSA(x=fixed_effects[2],
        y=fixed_effects[3],
        x2=fixed_effects[4],
        xy=fixed_effects[5],
        y2=fixed_effects[6]
        
)

# Women's plot
plotRSA(x=fixed_effects[8],
        y=fixed_effects[9],
        x2=fixed_effects[10],
        xy=fixed_effects[11],
        y2=fixed_effects[12]
        
)

# Define the male and female variable names 
male_vars <- c("M_x_monadic", "M_y_monadic", "M_x2_monadic", "M_xy_monadic", "M_y2_monadic")
female_vars <- c("F_x_monadic", "F_y_monadic", "F_x2_monadic", "F_xy_monadic", "F_y2_monadic")

# Apply the function to the model (in this case Model1.2)
results <- build_and_evaluate_expressions(Model1.2, male_vars)

# View the results
print(results)
   Expression      Estimate           SE        CI_2.5      CI_97.5           Z
1          a1   0.179713467   0.02311233    0.13441412   0.22501281  7.77565176
2          a2   0.001000984   0.02098565   -0.04013014   0.04213211  0.04769849
3          a3  -0.139982541   0.04065633   -0.21966748  -0.06029761 -3.44306916
4          a4  -0.153798235   0.04457618   -0.24116595  -0.06643052 -3.45023325
5          X0 -15.591679582  59.60382236 -132.41302475 101.22966558 -0.26158859
6          Y0 -10.048479623  43.75998662  -95.81647737  75.71951812 -0.22962712
7         p10   0.919548123   0.35600948    0.22178237   1.61731388  2.58293158
8         p11   0.703453896   0.27330684    0.16778234   1.23912545  2.57386134
9         p20 -32.212945086 125.16606687 -277.53392823 213.10803806 -0.25736165
10        p21  -1.421557270   0.55230530   -2.50405578  -0.33905876 -2.57386134
   p_value
1   0.0000
2   0.9620
3   0.0006
4   0.0006
5   0.7936
6   0.8184
7   0.0098
8   0.0101
9   0.7969
10  0.0101
results <- build_and_evaluate_expressions(Model1.2, female_vars)

# View the results
print(results)
   Expression    Estimate         SE      CI_2.5     CI_97.5          Z p_value
1          a1  0.23691477 0.02130531  0.19515712  0.27867241 11.1199859  0.0000
2          a2 -0.07431027 0.01951389 -0.11255680 -0.03606374 -3.8080695  0.0001
3          a3 -0.14311291 0.03609114 -0.21385025 -0.07237557 -3.9653196  0.0001
4          a4 -0.11946246 0.04455942 -0.20679732 -0.03212761 -2.6809701  0.0073
5          X0  0.95402485 0.49711697 -0.02030651  1.92835620  1.9191154  0.0550
6          Y0  2.42594842 0.85048647  0.75902558  4.09287126  2.8524245  0.0043
7         p10  0.97871636 0.92231417 -0.82898620  2.78641893  1.0611529  0.2886
8         p11  1.51697523 1.67930037 -1.77439301  4.80834346  0.9033376  0.3663
9         p20  3.05484784 0.91332135  1.26477090  4.84492479  3.3447678  0.0008
10        p21 -0.65920655 0.72974546 -2.08948137  0.77106828 -0.9033376  0.3663

Positive Mood - Dyadic

Model2.1<- lme(PosMood ~ -1 + 
                 Male+ M_x_dyadic+M_y_dyadic+M_x2_dyadic+M_xy_dyadic+M_y2_dyadic+
                 Female+ F_x_dyadic+F_y_dyadic+F_x2_dyadic+F_xy_dyadic+F_y2_dyadic,
               
               random = ~ -1 + 
                 Male+ 
                 Female| Couple,
               # Male+ Male:x_dyadic+Male:y_dyadic+
               # Female+ Female:x_dyadic+Female:y_dyadic| Couple,
               weights = varIdent(form=~1|Gender),
               # corr=corAR1(form = ~1 | Couple/DiaryDay),
               correlation = corCompSymm(form = ~1|Couple/DiaryDay),
               data = temp1,na.action = na.exclude)

summary(Model2.1)
Linear mixed-effects model fit by REML
  Data: temp1 
       AIC      BIC    logLik
  23482.92 23589.37 -11723.46

Random effects:
 Formula: ~-1 + Male + Female | Couple
 Structure: General positive-definite, Log-Cholesky parametrization
         StdDev   Corr 
Male     15.13628 Male 
Female   13.83860 0.478
Residual 15.19309      

Correlation Structure: Compound symmetry
 Formula: ~1 | Couple/DiaryDay 
 Parameter estimate(s):
      Rho 
0.2798224 
Variance function:
 Structure: Different standard deviations per stratum
 Formula: ~1 | Gender 
 Parameter estimates:
     0.5     -0.5 
1.000000 1.159945 
Fixed effects:  PosMood ~ -1 + Male + M_x_dyadic + M_y_dyadic + M_x2_dyadic +      M_xy_dyadic + M_y2_dyadic + Female + F_x_dyadic + F_y_dyadic +      F_x2_dyadic + F_xy_dyadic + F_y2_dyadic 
               Value Std.Error   DF  t-value p-value
Male        62.78209 1.7918912 2655 35.03677  0.0000
M_x_dyadic   2.66960 0.5207106 2655  5.12684  0.0000
M_y_dyadic  -0.90357 0.4997481 2655 -1.80806  0.0707
M_x2_dyadic -0.84872 0.4019108 2655 -2.11171  0.0348
M_xy_dyadic  0.71340 0.4467348 2655  1.59693  0.1104
M_y2_dyadic  0.08308 0.2767632 2655  0.30018  0.7641
Female      59.94347 1.6986030 2655 35.28986  0.0000
F_x_dyadic   2.76044 0.5987163 2655  4.61059  0.0000
F_y_dyadic   0.07564 0.5937280 2655  0.12740  0.8986
F_x2_dyadic -0.52182 0.5188657 2655 -1.00569  0.3147
F_xy_dyadic -0.24909 0.5041970 2655 -0.49403  0.6213
F_y2_dyadic -1.31770 0.3089958 2655 -4.26445  0.0000
 Correlation: 
            Male   M_x_dy M_y_dy M_x2_d M_xy_d M_y2_d Female F_x_dy F_y_dy
M_x_dyadic  -0.005                                                        
M_y_dyadic   0.031 -0.166                                                 
M_x2_dyadic -0.154 -0.149  0.045                                          
M_xy_dyadic  0.054  0.346 -0.042 -0.354                                   
M_y2_dyadic -0.209 -0.003  0.261  0.041 -0.151                            
Female       0.435 -0.016 -0.004 -0.041  0.041 -0.046                     
F_x_dyadic   0.019 -0.057  0.263  0.013 -0.048  0.026  0.029              
F_y_dyadic   0.005  0.262 -0.076 -0.078  0.078 -0.011 -0.025 -0.189       
F_x2_dyadic -0.036  0.000  0.046  0.002 -0.028  0.175 -0.217 -0.085  0.032
F_xy_dyadic  0.040  0.056 -0.049 -0.043  0.187 -0.188  0.069 -0.227  0.086
F_y2_dyadic -0.036 -0.070  0.018  0.188 -0.191  0.060 -0.219  0.069 -0.412
            F_x2_d F_xy_d
M_x_dyadic               
M_y_dyadic               
M_x2_dyadic              
M_xy_dyadic              
M_y2_dyadic              
Female                   
F_x_dyadic               
F_y_dyadic               
F_x2_dyadic              
F_xy_dyadic -0.269       
F_y2_dyadic  0.017 -0.228

Standardized Within-Group Residuals:
       Min         Q1        Med         Q3        Max 
-5.0835974 -0.5780277  0.1015159  0.6407224  3.6087976 

Number of Observations: 2748
Number of Groups: 82 
tab_model(Model2.1,show.r2=F)
  Pos Mood
Predictors Estimates CI p
Male 62.78 59.27 – 66.30 <0.001
M x dyadic 2.67 1.65 – 3.69 <0.001
M y dyadic -0.90 -1.88 – 0.08 0.071
M x2 dyadic -0.85 -1.64 – -0.06 0.035
M xy dyadic 0.71 -0.16 – 1.59 0.110
M y2 dyadic 0.08 -0.46 – 0.63 0.764
Female 59.94 56.61 – 63.27 <0.001
F x dyadic 2.76 1.59 – 3.93 <0.001
F y dyadic 0.08 -1.09 – 1.24 0.899
F x2 dyadic -0.52 -1.54 – 0.50 0.315
F xy dyadic -0.25 -1.24 – 0.74 0.621
F y2 dyadic -1.32 -1.92 – -0.71 <0.001
Random Effects
σ2 230.83
τ00  
τ00  
τ11 Couple.Female 191.51
ρ01 Couple 0.48
ICC 0.48
N Couple 82
Observations 2748
# Getting estimates and their SE using the deltaMethod
# Define the expression for the new parameter
(fixed_effects <- fixef(Model2.1))
       Male  M_x_dyadic  M_y_dyadic M_x2_dyadic M_xy_dyadic M_y2_dyadic 
62.78208848  2.66959726 -0.90357453 -0.84871908  0.71340221  0.08307784 
     Female  F_x_dyadic  F_y_dyadic F_x2_dyadic F_xy_dyadic F_y2_dyadic 
59.94346844  2.76043702  0.07564339 -0.52181758 -0.24908946 -1.31769864 
# Men's plot
plotRSA(x=fixed_effects[2],
        y=fixed_effects[3],
        x2=fixed_effects[4],
        xy=fixed_effects[5],
        y2=fixed_effects[6]
        
)

# Women's plot
plotRSA(x=fixed_effects[8],
        y=fixed_effects[9],
        x2=fixed_effects[10],
        xy=fixed_effects[11],
        y2=fixed_effects[12]
        
)

# Define the male and female variable names 
male_vars <- c("M_x_dyadic", "M_y_dyadic", "M_x2_dyadic", "M_xy_dyadic", "M_y2_dyadic")
female_vars <- c("F_x_dyadic", "F_y_dyadic", "F_x2_dyadic", "F_xy_dyadic", "F_y2_dyadic")

results <- build_and_evaluate_expressions(Model2.1, male_vars)

# View the results
print(results)
   Expression    Estimate        SE      CI_2.5    CI_97.5            Z p_value
1          a1  1.76602274 0.6591319   0.4741480 3.05789745  2.679316276  0.0074
2          a2 -0.05223903 0.5312400  -1.0934503 0.98897221 -0.098334147  0.9217
3          a3  3.57317179 0.7793078   2.0457567 5.10058691  4.585058708  0.0000
4          a4 -1.47904345 0.7819433  -3.0116242 0.05353726 -1.891497053  0.0586
5          X0  1.37573450 0.8384339  -0.2675657 3.01903468  1.640838409  0.1008
6          Y0 -0.46870197 1.7442424  -3.8873542 2.94995025 -0.268713787  0.7881
7         p10 -4.52865577 2.9651099 -10.3401644 1.28285290 -1.527314629  0.1267
8         p11  2.95111725 1.6909251  -0.3630351 6.26526960  1.745267843  0.0809
9         p20 -0.00252785 1.7301699  -3.3935985 3.38854283 -0.001461041  0.9988
10        p21 -0.33885472 0.1941563  -0.7193940 0.04168460 -1.745267843  0.0809
results <- build_and_evaluate_expressions(Model2.1, female_vars)

# View the results
print(results)
   Expression    Estimate         SE      CI_2.5    CI_97.5          Z p_value
1          a1   2.8360804  0.7593657   1.3477510  4.3244098  3.7348019  0.0002
2          a2  -2.0886057  0.6424947  -3.3478722 -0.8293392 -3.2507749  0.0012
3          a3   2.6847936  0.9194086   0.8827858  4.4868014  2.9201310  0.0035
4          a4  -1.5904268  0.9144499  -3.3827156  0.2018620 -1.7392170  0.0820
5          X0   2.6990579  2.8446562  -2.8763658  8.2744816  0.9488169  0.3427
6          Y0  -0.2264036  0.7416986  -1.6801062  1.2272989 -0.3052502  0.7602
7         p10   0.1860974  0.3551387  -0.5099617  0.8821565  0.5240132  0.6003
8         p11  -0.1528315  0.3029263  -0.7465560  0.4408931 -0.5045171  0.6139
9         p20 -17.8867569 37.8614233 -92.0937830 56.3202693 -0.4724270  0.6366
10        p21   6.5431546 12.9691433 -18.8758991 31.9622083  0.5045171  0.6139

Positive Mood - Monadic

Model2.2<- lme(PosMood ~ -1 + 
                 Male+ M_x_monadic+M_y_monadic+M_x2_monadic+M_xy_monadic+M_y2_monadic+
                 Female+ F_x_monadic+F_y_monadic+F_x2_monadic+F_xy_monadic+F_y2_monadic,
               
               random = ~ -1 + 
                 Male+ 
                 Female| Couple,
               # Male+ Male:x_dyadic+Male:y_dyadic+
               # Female+ Female:x_dyadic+Female:y_dyadic| Couple,
               weights = varIdent(form=~1|Gender),
               # corr=corAR1(form = ~1 | Couple/DiaryDay),
               correlation = corCompSymm(form = ~1|Couple/DiaryDay),
               data = temp1,na.action = na.exclude)
summary(Model1.2)
Linear mixed-effects model fit by REML
  Data: temp1 
       AIC      BIC    logLik
  6566.815 6674.978 -3265.408

Random effects:
 Formula: ~-1 + Male + Female | Couple
 Structure: General positive-definite, Log-Cholesky parametrization
         StdDev    Corr 
Male     0.8202994 Male 
Female   0.7749915 0.533
Residual 0.6747535      

Correlation Structure: Compound symmetry
 Formula: ~1 | Couple/DiaryDay 
 Parameter estimate(s):
      Rho 
0.2201971 
Variance function:
 Structure: Different standard deviations per stratum
 Formula: ~1 | Gender 
 Parameter estimates:
      0.5      -0.5 
1.0000000 0.9451634 
Fixed effects:  PPR ~ -1 + Male + M_x_monadic + M_y_monadic + M_x2_monadic +      M_xy_monadic + M_y2_monadic + Female + F_x_monadic + F_y_monadic +      F_x2_monadic + F_xy_monadic + F_y2_monadic 
                 Value  Std.Error   DF  t-value p-value
Male          5.903933 0.09351989 2927 63.13024  0.0000
M_x_monadic   0.019865 0.02391115 2927  0.83080  0.4062
M_y_monadic   0.159848 0.02284328 2927  6.99759  0.0000
M_x2_monadic -0.024304 0.02048779 2927 -1.18627  0.2356
M_xy_monadic  0.077400 0.02382414 2927  3.24879  0.0012
M_y2_monadic -0.052095 0.01869336 2927 -2.78679  0.0054
Female        6.058680 0.08847011 2927 68.48278  0.0000
F_x_monadic   0.046901 0.02175687 2927  2.15568  0.0312
F_y_monadic   0.190014 0.02012168 2927  9.44324  0.0000
F_x2_monadic -0.053284 0.01983221 2927 -2.68676  0.0073
F_xy_monadic  0.022576 0.02348669 2927  0.96123  0.3365
F_y2_monadic -0.043602 0.01643096 2927 -2.65364  0.0080
 Correlation: 
             Male   M_x_mn M_y_mn M_x2_m M_xy_m M_y2_m Female F_x_mn F_y_mn
M_x_monadic   0.006                                                        
M_y_monadic  -0.016 -0.512                                                 
M_x2_monadic -0.085 -0.174  0.152                                          
M_xy_monadic  0.032  0.149 -0.052 -0.475                                   
M_y2_monadic -0.098  0.045 -0.019 -0.161 -0.347                            
Female        0.507  0.000  0.000 -0.004  0.002 -0.001                     
F_x_monadic  -0.001 -0.032  0.065  0.012 -0.006 -0.003 -0.005              
F_y_monadic   0.001  0.065 -0.025 -0.008  0.002  0.005  0.013 -0.485       
F_x2_monadic -0.002 -0.001  0.001 -0.007 -0.012  0.024 -0.107 -0.153  0.021
F_xy_monadic  0.001  0.005 -0.004 -0.018  0.028 -0.005  0.052 -0.045  0.189
F_y2_monadic -0.004 -0.003  0.002  0.044 -0.018 -0.011 -0.109  0.214 -0.221
             F_x2_m F_xy_m
M_x_monadic               
M_y_monadic               
M_x2_monadic              
M_xy_monadic              
M_y2_monadic              
Female                    
F_x_monadic               
F_y_monadic               
F_x2_monadic              
F_xy_monadic -0.502       
F_y2_monadic -0.049 -0.434

Standardized Within-Group Residuals:
       Min         Q1        Med         Q3        Max 
-7.5485127 -0.3572585  0.1099496  0.5018733  3.8163289 

Number of Observations: 3020
Number of Groups: 82 
tab_model(Model2.1,Model2.2,show.r2=F)
  Pos Mood Pos Mood
Predictors Estimates CI p Estimates CI p
Male 62.78 59.27 – 66.30 <0.001 63.14 59.64 – 66.65 <0.001
M x dyadic 2.67 1.65 – 3.69 <0.001
M y dyadic -0.90 -1.88 – 0.08 0.071
M x2 dyadic -0.85 -1.64 – -0.06 0.035
M xy dyadic 0.71 -0.16 – 1.59 0.110
M y2 dyadic 0.08 -0.46 – 0.63 0.764
Female 59.94 56.61 – 63.27 <0.001 57.88 54.72 – 61.05 <0.001
F x dyadic 2.76 1.59 – 3.93 <0.001
F y dyadic 0.08 -1.09 – 1.24 0.899
F x2 dyadic -0.52 -1.54 – 0.50 0.315
F xy dyadic -0.25 -1.24 – 0.74 0.621
F y2 dyadic -1.32 -1.92 – -0.71 <0.001
M x monadic 2.44 1.39 – 3.49 <0.001
M y monadic 0.39 -0.61 – 1.38 0.449
M x2 monadic -0.85 -1.75 – 0.04 0.061
M xy monadic 1.74 0.70 – 2.78 0.001
M y2 monadic -0.86 -1.67 – -0.04 0.039
F x monadic 3.44 2.26 – 4.62 <0.001
F y monadic -0.65 -1.74 – 0.45 0.247
F x2 monadic -0.86 -1.93 – 0.21 0.115
F xy monadic -0.03 -1.31 – 1.24 0.958
F y2 monadic 0.30 -0.59 – 1.19 0.507
Random Effects
σ2 230.83 232.98
τ00    
τ00    
τ11 191.51 Couple.Female 181.90 Couple.Female
ρ01 0.48 Couple 0.47 Couple
ICC 0.48 0.47
N 82 Couple 82 Couple
Observations 2748 3021
# Define the expression for the new parameter
(fixed_effects <- fixef(Model2.2))
        Male  M_x_monadic  M_y_monadic M_x2_monadic M_xy_monadic M_y2_monadic 
 63.14385867   2.44028729   0.38535943  -0.85483590   1.74315294  -0.85855261 
      Female  F_x_monadic  F_y_monadic F_x2_monadic F_xy_monadic F_y2_monadic 
 57.88132688   3.44237684  -0.64568724  -0.86156511  -0.03449452   0.30090845 
# Men's plot
plotRSA(x=fixed_effects[2],
        y=fixed_effects[3],
        x2=fixed_effects[4],
        xy=fixed_effects[5],
        y2=fixed_effects[6]
        
)

# Women's plot
plotRSA(x=fixed_effects[8],
        y=fixed_effects[9],
        x2=fixed_effects[10],
        xy=fixed_effects[11],
        y2=fixed_effects[12]
        
)

# Define the male and female variable names 
male_vars <- c("M_x_monadic", "M_y_monadic", "M_x2_monadic", "M_xy_monadic", "M_y2_monadic")
female_vars <- c("F_x_monadic", "F_y_monadic", "F_x2_monadic", "F_xy_monadic", "F_y2_monadic")

results <- build_and_evaluate_expressions(Model2.2, male_vars)

# View the results
print(results)
   Expression     Estimate           SE        CI_2.5      CI_97.5           Z
1          a1   2.82564671    0.5159059     1.8144896    3.8368038  5.47705783
2          a2   0.02976443    0.4670672    -0.8856704    0.9451992  0.06372624
3          a3   2.05492786    0.9063387     0.2785366    3.8313191  2.26728469
4          a4  -3.45654145    0.9919078    -5.4006450   -1.5124379 -3.48474062
5          X0 -47.25139129  745.3929126 -1508.1946542 1413.6918717 -0.06339125
6          Y0 -47.74375012  743.4792072 -1504.9362194 1409.4487192 -0.06421666
7         p10  -0.59299967    0.4112249    -1.3989857    0.2129864 -1.44203235
8         p11   0.99787010    0.3808083     0.2514995    1.7442407  2.62039985
9         p20 -95.09599707 1490.7734670 -3016.9583015 2826.7663074 -0.06378970
10        p21  -1.00213445    0.3824357    -1.7516946   -0.2525743 -2.62039985
   p_value
1   0.0000
2   0.9492
3   0.0234
4   0.0005
5   0.9495
6   0.9488
7   0.1493
8   0.0088
9   0.9491
10  0.0088
results <- build_and_evaluate_expressions(Model2.2, female_vars)

# View the results
print(results)
   Expression     Estimate           SE        CI_2.5      CI_97.5           Z
1          a1   2.79668960    0.5907927     1.6387572    3.9546220  4.73379166
2          a2  -0.59515117    0.5383999    -1.6503956    0.4600933 -1.10540726
3          a3   4.08806408    0.9996535     2.1287792    6.0473489  4.08948113
4          a4  -0.52616213    1.2273802    -2.9317831    1.8794588 -0.42868717
5          X0   1.97400341    1.0716268    -0.1263465    4.0743534  1.84206236
6          Y0   1.18604103    2.3196192    -3.3603290    5.7324111  0.51130851
7         p10 134.26409871 2496.2521689 -4758.3002487 5026.8284461  0.05378627
8         p11 -67.41531280 1271.4091694 -2559.3314945 2424.5008689 -0.05302409
9         p20   1.15675979    1.9813331    -2.7265817    5.0401013  0.58382904
10        p21   0.01483343    0.2797488    -0.5334641    0.5631310  0.05302409
   p_value
1   0.0000
2   0.2690
3   0.0000
4   0.6682
5   0.0655
6   0.6091
7   0.9571
8   0.9577
9   0.5593
10  0.9577

Moderated RSA

Average Sx

Model3.1<- lme(PPR ~ -1 + 
                 Male+ M_x_dyadic+M_y_dyadic+M_x2_dyadic+M_xy_dyadic+M_y2_dyadic+
                 Male:zSPIN+ M_x_dyadic:zSPIN+M_y_dyadic:zSPIN+M_x2_dyadic:zSPIN+M_xy_dyadic:zSPIN+M_y2_dyadic:zSPIN+
                 Female+ F_x_dyadic+F_y_dyadic+F_x2_dyadic+F_xy_dyadic+F_y2_dyadic+
                 Female:zSPIN+ F_x_dyadic:zSPIN+F_y_dyadic:zSPIN+F_x2_dyadic:zSPIN+F_xy_dyadic:zSPIN+F_y2_dyadic:zSPIN,
               
               random = ~ -1 + 
                 Male+ 
                 Female| Couple,
               # Male+ Male:x_dyadic+Male:y_dyadic+
               # Female+ Female:x_dyadic+Female:y_dyadic| Couple,
               weights = varIdent(form=~1|Gender),
               # corr=corAR1(form = ~1 | Couple/DiaryDay),
               correlation = corCompSymm(form = ~1|Couple/DiaryDay),
               data = temp1,na.action = na.exclude)
summary(Model3.1)
Linear mixed-effects model fit by REML
  Data: temp1 
       AIC      BIC    logLik
  6214.184 6391.469 -3077.092

Random effects:
 Formula: ~-1 + Male + Female | Couple
 Structure: General positive-definite, Log-Cholesky parametrization
         StdDev    Corr 
Male     0.8261990 Male 
Female   0.7914660 0.529
Residual 0.6950983      

Correlation Structure: Compound symmetry
 Formula: ~1 | Couple/DiaryDay 
 Parameter estimate(s):
      Rho 
0.2229805 
Variance function:
 Structure: Different standard deviations per stratum
 Formula: ~1 | Gender 
 Parameter estimates:
      0.5      -0.5 
1.0000000 0.9338685 
Fixed effects:  PPR ~ -1 + Male + M_x_dyadic + M_y_dyadic + M_x2_dyadic + M_xy_dyadic +      M_y2_dyadic + Male:zSPIN + M_x_dyadic:zSPIN + M_y_dyadic:zSPIN +      M_x2_dyadic:zSPIN + M_xy_dyadic:zSPIN + M_y2_dyadic:zSPIN +      Female + F_x_dyadic + F_y_dyadic + F_x2_dyadic + F_xy_dyadic +      F_y2_dyadic + Female:zSPIN + F_x_dyadic:zSPIN + F_y_dyadic:zSPIN +      F_x2_dyadic:zSPIN + F_xy_dyadic:zSPIN + F_y2_dyadic:zSPIN 
                      Value  Std.Error   DF  t-value p-value
Male               5.909116 0.09606896 2642 61.50911  0.0000
M_x_dyadic         0.117202 0.02405648 2642  4.87197  0.0000
M_y_dyadic         0.000240 0.02307963 2642  0.01039  0.9917
M_x2_dyadic       -0.039631 0.01884549 2642 -2.10292  0.0356
M_xy_dyadic        0.055807 0.02065558 2642  2.70179  0.0069
M_y2_dyadic       -0.013954 0.01282746 2642 -1.08783  0.2768
Female             6.029026 0.09173292 2642 65.72368  0.0000
F_x_dyadic         0.120741 0.02228197 2642  5.41877  0.0000
F_y_dyadic         0.055820 0.02246626 2642  2.48464  0.0130
F_x2_dyadic       -0.047125 0.01965932 2642 -2.39708  0.0166
F_xy_dyadic        0.013566 0.01898793 2642  0.71446  0.4750
F_y2_dyadic       -0.022593 0.01171524 2642 -1.92847  0.0539
Male:zSPIN        -0.176240 0.10267471 2642 -1.71649  0.0862
M_x_dyadic:zSPIN  -0.043367 0.02966131 2642 -1.46206  0.1438
M_y_dyadic:zSPIN   0.059491 0.02679760 2642  2.22002  0.0265
M_x2_dyadic:zSPIN  0.067206 0.02247696 2642  2.99001  0.0028
M_xy_dyadic:zSPIN -0.011152 0.02484928 2642 -0.44877  0.6536
M_y2_dyadic:zSPIN  0.015948 0.01498931 2642  1.06393  0.2875
zSPIN:Female      -0.043571 0.07376976 2642 -0.59064  0.5548
zSPIN:F_x_dyadic  -0.019129 0.02157070 2642 -0.88680  0.3753
zSPIN:F_y_dyadic  -0.021583 0.02131870 2642 -1.01240  0.3114
zSPIN:F_x2_dyadic  0.005749 0.01931386 2642  0.29765  0.7660
zSPIN:F_xy_dyadic  0.008043 0.02083664 2642  0.38598  0.6995
zSPIN:F_y2_dyadic  0.015790 0.01268737 2642  1.24457  0.2134
 Correlation: 
                  Male   M_x_dy M_y_dy M_x2_d M_xy_d M_y2_d Female F_x_dy
M_x_dyadic        -0.005                                                 
M_y_dyadic         0.028 -0.156                                          
M_x2_dyadic       -0.133 -0.151  0.044                                   
M_xy_dyadic        0.044  0.354 -0.034 -0.348                            
M_y2_dyadic       -0.181  0.005  0.259  0.033 -0.136                     
Female             0.494 -0.009 -0.002 -0.023  0.023 -0.024              
F_x_dyadic         0.014 -0.046  0.209  0.010 -0.039  0.018  0.020       
F_y_dyadic         0.004  0.209 -0.058 -0.061  0.060 -0.009 -0.017 -0.181
F_x2_dyadic       -0.024 -0.001  0.035  0.001 -0.022  0.136 -0.150 -0.076
F_xy_dyadic        0.026  0.045 -0.038 -0.033  0.146 -0.145  0.045 -0.229
F_y2_dyadic       -0.024 -0.054  0.013  0.149 -0.151  0.045 -0.153  0.061
Male:zSPIN         0.045  0.002  0.012 -0.021  0.005 -0.009 -0.001  0.003
M_x_dyadic:zSPIN   0.002  0.104  0.012 -0.048  0.082  0.026 -0.001 -0.002
M_y_dyadic:zSPIN   0.011  0.015  0.046 -0.010  0.047  0.012  0.002  0.006
M_x2_dyadic:zSPIN -0.019 -0.038 -0.010  0.163 -0.044 -0.018  0.000 -0.002
M_xy_dyadic:zSPIN  0.002  0.073  0.055 -0.030  0.044  0.033  0.000 -0.001
M_y2_dyadic:zSPIN -0.012  0.026  0.002 -0.013  0.023  0.002  0.000  0.001
zSPIN:Female       0.001 -0.002 -0.002  0.000 -0.003 -0.011 -0.027 -0.003
zSPIN:F_x_dyadic   0.002 -0.003 -0.003 -0.006 -0.007 -0.008 -0.004  0.086
zSPIN:F_y_dyadic   0.001  0.000  0.003  0.004  0.000 -0.002 -0.011  0.046
zSPIN:F_x2_dyadic  0.001 -0.003 -0.001  0.006 -0.006 -0.009 -0.003  0.045
zSPIN:F_xy_dyadic -0.002  0.004  0.003 -0.003  0.007  0.011 -0.012 -0.013
zSPIN:F_y2_dyadic -0.003  0.001 -0.004  0.003  0.001  0.011  0.008 -0.069
                  F_y_dy F_x2_d F_xy_d F_y2_d M:SPIN M_x_d:SPIN M_y_:SPIN
M_x_dyadic                                                               
M_y_dyadic                                                               
M_x2_dyadic                                                              
M_xy_dyadic                                                              
M_y2_dyadic                                                              
Female                                                                   
F_x_dyadic                                                               
F_y_dyadic                                                               
F_x2_dyadic        0.035                                                 
F_xy_dyadic        0.074 -0.243                                          
F_y2_dyadic       -0.411  0.011 -0.210                                   
Male:zSPIN         0.004  0.000 -0.003  0.001                            
M_x_dyadic:zSPIN  -0.007 -0.010  0.008  0.014  0.022                     
M_y_dyadic:zSPIN   0.001 -0.003 -0.009 -0.005  0.064 -0.131              
M_x2_dyadic:zSPIN  0.000  0.000  0.005  0.001 -0.150 -0.247      0.010   
M_xy_dyadic:zSPIN -0.004 -0.005  0.003  0.006  0.039  0.264      0.068   
M_y2_dyadic:zSPIN -0.002  0.004  0.000 -0.004 -0.236  0.041      0.042   
zSPIN:Female      -0.012 -0.006 -0.016  0.012 -0.006 -0.001     -0.014   
zSPIN:F_x_dyadic   0.046  0.051 -0.014 -0.063 -0.002  0.004      0.005   
zSPIN:F_y_dyadic   0.005  0.037 -0.071  0.008  0.014  0.005      0.012   
zSPIN:F_x2_dyadic  0.032  0.116  0.027 -0.013  0.004 -0.015      0.032   
zSPIN:F_xy_dyadic -0.074  0.039  0.145  0.056 -0.001  0.003     -0.004   
zSPIN:F_y2_dyadic  0.006  0.000  0.068  0.002 -0.004  0.017     -0.008   
                  M_x2_:SPIN M_xy_:SPIN M_y2_:SPIN zSPIN:Fm zSPIN:F_x_d
M_x_dyadic                                                             
M_y_dyadic                                                             
M_x2_dyadic                                                            
M_xy_dyadic                                                            
M_y2_dyadic                                                            
Female                                                                 
F_x_dyadic                                                             
F_y_dyadic                                                             
F_x2_dyadic                                                            
F_xy_dyadic                                                            
F_y2_dyadic                                                            
Male:zSPIN                                                             
M_x_dyadic:zSPIN                                                       
M_y_dyadic:zSPIN                                                       
M_x2_dyadic:zSPIN                                                      
M_xy_dyadic:zSPIN -0.315                                               
M_y2_dyadic:zSPIN  0.027     -0.076                                    
zSPIN:Female      -0.001      0.002      0.001                         
zSPIN:F_x_dyadic  -0.003     -0.009      0.007      0.007              
zSPIN:F_y_dyadic  -0.006     -0.014     -0.002     -0.023   -0.105     
zSPIN:F_x2_dyadic -0.002     -0.001      0.018     -0.164   -0.019     
zSPIN:F_xy_dyadic  0.012      0.005      0.003      0.015   -0.178     
zSPIN:F_y2_dyadic  0.040     -0.002     -0.009     -0.174   -0.002     
                  zSPIN:F_y_ zSPIN:F_x2_ zSPIN:F_xy_
M_x_dyadic                                          
M_y_dyadic                                          
M_x2_dyadic                                         
M_xy_dyadic                                         
M_y2_dyadic                                         
Female                                              
F_x_dyadic                                          
F_y_dyadic                                          
F_x2_dyadic                                         
F_xy_dyadic                                         
F_y2_dyadic                                         
Male:zSPIN                                          
M_x_dyadic:zSPIN                                    
M_y_dyadic:zSPIN                                    
M_x2_dyadic:zSPIN                                   
M_xy_dyadic:zSPIN                                   
M_y2_dyadic:zSPIN                                   
zSPIN:Female                                        
zSPIN:F_x_dyadic                                    
zSPIN:F_y_dyadic                                    
zSPIN:F_x2_dyadic  0.043                            
zSPIN:F_xy_dyadic  0.007     -0.144                 
zSPIN:F_y2_dyadic -0.269      0.015      -0.068     

Standardized Within-Group Residuals:
       Min         Q1        Med         Q3        Max 
-7.2103389 -0.3185911  0.1146734  0.4997438  3.6658387 

Number of Observations: 2747
Number of Groups: 82 
tab_model(Model3.1,show.r2=F)
  PPR
Predictors Estimates CI p
Male 5.91 5.72 – 6.10 <0.001
M x dyadic 0.12 0.07 – 0.16 <0.001
M y dyadic 0.00 -0.05 – 0.05 0.992
M x2 dyadic -0.04 -0.08 – -0.00 0.036
M xy dyadic 0.06 0.02 – 0.10 0.007
M y2 dyadic -0.01 -0.04 – 0.01 0.277
Female 6.03 5.85 – 6.21 <0.001
F x dyadic 0.12 0.08 – 0.16 <0.001
F y dyadic 0.06 0.01 – 0.10 0.013
F x2 dyadic -0.05 -0.09 – -0.01 0.017
F xy dyadic 0.01 -0.02 – 0.05 0.475
F y2 dyadic -0.02 -0.05 – 0.00 0.054
Male × zSPIN -0.18 -0.38 – 0.03 0.086
M x dyadic × zSPIN -0.04 -0.10 – 0.01 0.144
M y dyadic × zSPIN 0.06 0.01 – 0.11 0.027
M x2 dyadic × zSPIN 0.07 0.02 – 0.11 0.003
M xy dyadic × zSPIN -0.01 -0.06 – 0.04 0.654
M y2 dyadic × zSPIN 0.02 -0.01 – 0.05 0.287
zSPIN × Female -0.04 -0.19 – 0.10 0.555
zSPIN × F x dyadic -0.02 -0.06 – 0.02 0.375
zSPIN × F y dyadic -0.02 -0.06 – 0.02 0.311
zSPIN × F x2 dyadic 0.01 -0.03 – 0.04 0.766
zSPIN × F xy dyadic 0.01 -0.03 – 0.05 0.700
zSPIN × F y2 dyadic 0.02 -0.01 – 0.04 0.213
Random Effects
σ2 0.48
τ00  
τ00  
τ11 Couple.Female 0.63
ρ01 Couple 0.53
ICC 0.58
N Couple 82
Observations 2747
# Plotting 
(fixed_effects <- fixef(Model3.1))
             Male        M_x_dyadic        M_y_dyadic       M_x2_dyadic 
     5.9091158986      0.1172024934      0.0002397662     -0.0396306512 
      M_xy_dyadic       M_y2_dyadic            Female        F_x_dyadic 
     0.0558069953     -0.0139540994      6.0290256198      0.1207409264 
       F_y_dyadic       F_x2_dyadic       F_xy_dyadic       F_y2_dyadic 
     0.0558204717     -0.0471248705      0.0135661683     -0.0225925192 
       Male:zSPIN  M_x_dyadic:zSPIN  M_y_dyadic:zSPIN M_x2_dyadic:zSPIN 
    -0.1762402029     -0.0433666970      0.0594913221      0.0672063859 
M_xy_dyadic:zSPIN M_y2_dyadic:zSPIN      zSPIN:Female  zSPIN:F_x_dyadic 
    -0.0111516286      0.0159475411     -0.0435710382     -0.0191288185 
 zSPIN:F_y_dyadic zSPIN:F_x2_dyadic zSPIN:F_xy_dyadic zSPIN:F_y2_dyadic 
    -0.0215830422      0.0057488166      0.0080425059      0.0157903132 
# Men's plot
plotRSA(x=fixed_effects[2],
        y=fixed_effects[3],
        x2=fixed_effects[4],
        xy=fixed_effects[5],
        y2=fixed_effects[6]
        
)

# Women's plot
plotRSA(x=fixed_effects[8],
        y=fixed_effects[9],
        x2=fixed_effects[10],
        xy=fixed_effects[11],
        y2=fixed_effects[12]
        
)

# Define the male and female variable names 
male_vars <- c("M_x_dyadic", "M_y_dyadic", "M_x2_dyadic", "M_xy_dyadic", "M_y2_dyadic")
female_vars <- c("F_x_dyadic", "F_y_dyadic", "F_x2_dyadic", "F_xy_dyadic", "F_y2_dyadic")


results <- build_and_evaluate_expressions(Model3.1, male_vars)

# View the results
print(results)
   Expression     Estimate          SE       CI_2.5     CI_97.5           Z
1          a1  0.117442260  0.03062036   0.05742745  0.17745707  3.83542985
2          a2  0.002222245  0.02487428  -0.04653045  0.05097494  0.08933905
3          a3  0.116962727  0.03584913   0.04669972  0.18722573  3.26263786
4          a4 -0.109391746  0.03613229  -0.18020974 -0.03857375 -3.02753392
5          X0 -3.639585460 13.19114540 -29.49375536 22.21458444 -0.27591125
6          Y0 -7.269353501 20.31629852 -47.08856690 32.54985990 -0.35780895
7         p10 -1.588460835  0.69778352  -2.95609140 -0.22083027 -2.27643788
8         p11  1.560862557  0.56962738   0.44441341  2.67731171  2.74014664
9         p20 -9.601131815 28.78962939 -66.02776854 46.82550491 -0.33349272
10        p21 -0.640671400  0.23380917  -1.09892894 -0.18241386 -2.74014664
   p_value
1   0.0001
2   0.9288
3   0.0011
4   0.0025
5   0.7826
6   0.7205
7   0.0228
8   0.0061
9   0.7388
10  0.0061
results <- build_and_evaluate_expressions(Model3.1, female_vars)

# View the results
print(results)
   Expression    Estimate         SE        CI_2.5      CI_97.5          Z
1          a1  0.17656140 0.02863259   0.120442545  0.232680251  6.1664479
2          a2 -0.05615122 0.02479484  -0.104748211 -0.007554232 -2.2646335
3          a3  0.06492045 0.03438914  -0.002481028  0.132321937  1.8878183
4          a4 -0.08328356 0.03411095  -0.150139794 -0.016427322 -2.4415490
5          X0  1.52478685 0.69535248   0.161921032  2.887652676  2.1928258
6          Y0  1.69317078 1.01514225  -0.296471472  3.682813028  1.6679148
7         p10 -4.21503550 7.14469296 -18.218376378  9.788305369 -0.5899533
8         p11  3.87477520 5.42278692  -6.753691870 14.503242265  0.7145358
9         p20  2.08668699 1.42674514  -0.709682103  4.883056081  1.4625506
10        p21 -0.25807949 0.36118484  -0.965988774  0.449829797 -0.7145358
   p_value
1   0.0000
2   0.0235
3   0.0591
4   0.0146
5   0.0283
6   0.0953
7   0.5552
8   0.4749
9   0.1436
10  0.4749

High Sx

#High Sx
new_data <- temp1 %>% mutate(zSPIN=zSPIN-1)
Model3.2<- lme(PPR ~ -1 + 
                 Male+ M_x_dyadic+M_y_dyadic+M_x2_dyadic+M_xy_dyadic+M_y2_dyadic+
                 Male:zSPIN+ M_x_dyadic:zSPIN+M_y_dyadic:zSPIN+M_x2_dyadic:zSPIN+M_xy_dyadic:zSPIN+M_y2_dyadic:zSPIN+
                 Female+ F_x_dyadic+F_y_dyadic+F_x2_dyadic+F_xy_dyadic+F_y2_dyadic+
                 Female:zSPIN+ F_x_dyadic:zSPIN+F_y_dyadic:zSPIN+F_x2_dyadic:zSPIN+F_xy_dyadic:zSPIN+F_y2_dyadic:zSPIN,
               
               random = ~ -1 + 
                 Male+ 
                 Female| Couple,
               # Male+ Male:x_dyadic+Male:y_dyadic+
               # Female+ Female:x_dyadic+Female:y_dyadic| Couple,
               weights = varIdent(form=~1|Gender),
               # corr=corAR1(form = ~1 | Couple/DiaryDay),
               correlation = corCompSymm(form = ~1|Couple/DiaryDay),
               data = new_data,na.action = na.exclude)
summary(Model3.2)
Linear mixed-effects model fit by REML
  Data: new_data 
       AIC      BIC    logLik
  6214.184 6391.469 -3077.092

Random effects:
 Formula: ~-1 + Male + Female | Couple
 Structure: General positive-definite, Log-Cholesky parametrization
         StdDev    Corr 
Male     0.8261989 Male 
Female   0.7914661 0.529
Residual 0.6950983      

Correlation Structure: Compound symmetry
 Formula: ~1 | Couple/DiaryDay 
 Parameter estimate(s):
      Rho 
0.2229805 
Variance function:
 Structure: Different standard deviations per stratum
 Formula: ~1 | Gender 
 Parameter estimates:
      0.5      -0.5 
1.0000000 0.9338685 
Fixed effects:  PPR ~ -1 + Male + M_x_dyadic + M_y_dyadic + M_x2_dyadic + M_xy_dyadic +      M_y2_dyadic + Male:zSPIN + M_x_dyadic:zSPIN + M_y_dyadic:zSPIN +      M_x2_dyadic:zSPIN + M_xy_dyadic:zSPIN + M_y2_dyadic:zSPIN +      Female + F_x_dyadic + F_y_dyadic + F_x2_dyadic + F_xy_dyadic +      F_y2_dyadic + Female:zSPIN + F_x_dyadic:zSPIN + F_y_dyadic:zSPIN +      F_x2_dyadic:zSPIN + F_xy_dyadic:zSPIN + F_y2_dyadic:zSPIN 
                      Value  Std.Error   DF  t-value p-value
Male               5.732876 0.14369872 2642 39.89511  0.0000
M_x_dyadic         0.073836 0.04009177 2642  1.84167  0.0656
M_y_dyadic         0.059731 0.03615559 2642  1.65206  0.0986
M_x2_dyadic        0.027576 0.03159581 2642  0.87277  0.3829
M_xy_dyadic        0.044655 0.03300811 2642  1.35286  0.1762
M_y2_dyadic        0.001993 0.01974998 2642  0.10093  0.9196
Female             5.985455 0.11616648 2642 51.52480  0.0000
F_x_dyadic         0.101612 0.03232423 2642  3.14353  0.0017
F_y_dyadic         0.034237 0.03104321 2642  1.10290  0.2702
F_x2_dyadic       -0.041376 0.02911263 2642 -1.42124  0.1554
F_xy_dyadic        0.021609 0.03015209 2642  0.71666  0.4736
F_y2_dyadic       -0.006802 0.01728294 2642 -0.39358  0.6939
Male:zSPIN        -0.176240 0.10267472 2642 -1.71649  0.0862
M_x_dyadic:zSPIN  -0.043367 0.02966131 2642 -1.46206  0.1438
M_y_dyadic:zSPIN   0.059491 0.02679760 2642  2.22002  0.0265
M_x2_dyadic:zSPIN  0.067206 0.02247696 2642  2.99001  0.0028
M_xy_dyadic:zSPIN -0.011152 0.02484928 2642 -0.44877  0.6536
M_y2_dyadic:zSPIN  0.015948 0.01498931 2642  1.06393  0.2875
zSPIN:Female      -0.043571 0.07376978 2642 -0.59064  0.5548
zSPIN:F_x_dyadic  -0.019129 0.02157070 2642 -0.88680  0.3753
zSPIN:F_y_dyadic  -0.021583 0.02131870 2642 -1.01240  0.3114
zSPIN:F_x2_dyadic  0.005749 0.01931386 2642  0.29765  0.7660
zSPIN:F_xy_dyadic  0.008043 0.02083664 2642  0.38598  0.6995
zSPIN:F_y2_dyadic  0.015790 0.01268737 2642  1.24457  0.2134
 Correlation: 
                  Male   M_x_dy M_y_dy M_x2_d M_xy_d M_y2_d Female F_x_dy
M_x_dyadic         0.012                                                 
M_y_dyadic         0.057 -0.119                                          
M_x2_dyadic       -0.148 -0.221  0.013                                   
M_xy_dyadic        0.043  0.351  0.072 -0.332                            
M_y2_dyadic       -0.217  0.049  0.137  0.013 -0.072                     
Female             0.259 -0.006 -0.007 -0.011  0.011 -0.016              
F_x_dyadic         0.008 -0.019  0.096 -0.001 -0.025  0.008  0.010       
F_y_dyadic         0.011  0.090 -0.019 -0.028  0.018 -0.008 -0.031 -0.094
F_x2_dyadic       -0.008 -0.014  0.029  0.002 -0.014  0.067 -0.153  0.000
F_xy_dyadic        0.009  0.024 -0.021 -0.005  0.065 -0.053  0.016 -0.193
F_y2_dyadic       -0.014 -0.005 -0.003  0.083 -0.062  0.018 -0.154 -0.036
Male:zSPIN         0.744  0.018  0.055 -0.119  0.033 -0.185 -0.004  0.001
M_x_dyadic:zSPIN   0.017  0.802 -0.089 -0.204  0.250  0.048 -0.001  0.001
M_y_dyadic:zSPIN   0.053 -0.087  0.770  0.001  0.081  0.039 -0.007  0.008
M_x2_dyadic:zSPIN -0.120 -0.206  0.001  0.808 -0.265  0.009 -0.001 -0.004
M_xy_dyadic:zSPIN  0.029  0.239  0.085 -0.242  0.780 -0.037  0.001 -0.007
M_y2_dyadic:zSPIN -0.177  0.046  0.032  0.012 -0.043  0.760  0.001  0.005
zSPIN:Female      -0.003 -0.002 -0.012 -0.001  0.000 -0.006  0.614  0.002
zSPIN:F_x_dyadic   0.000  0.001  0.002 -0.006 -0.011  0.000  0.001  0.727
zSPIN:F_y_dyadic   0.010  0.004  0.011 -0.002 -0.011 -0.003 -0.024 -0.038
zSPIN:F_x2_dyadic  0.004 -0.013  0.023  0.002 -0.004  0.008 -0.106  0.019
zSPIN:F_xy_dyadic -0.002  0.005 -0.001  0.007  0.008  0.009  0.000 -0.127
zSPIN:F_y2_dyadic -0.005  0.013 -0.008  0.030 -0.001  0.000 -0.104 -0.049
                  F_y_dy F_x2_d F_xy_d F_y2_d M:SPIN M_x_d:SPIN M_y_:SPIN
M_x_dyadic                                                               
M_y_dyadic                                                               
M_x2_dyadic                                                              
M_xy_dyadic                                                              
M_y2_dyadic                                                              
Female                                                                   
F_x_dyadic                                                               
F_y_dyadic                                                               
F_x2_dyadic        0.069                                                 
F_xy_dyadic       -0.031 -0.140                                          
F_y2_dyadic       -0.330  0.007 -0.067                                   
Male:zSPIN         0.012  0.003 -0.002 -0.002                            
M_x_dyadic:zSPIN  -0.001 -0.016  0.007  0.022  0.022                     
M_y_dyadic:zSPIN   0.009  0.019 -0.009 -0.009  0.064 -0.131              
M_x2_dyadic:zSPIN -0.004 -0.001  0.012  0.030 -0.150 -0.247      0.010   
M_xy_dyadic:zSPIN -0.013 -0.004  0.005  0.002  0.039  0.264      0.068   
M_y2_dyadic:zSPIN -0.003  0.015  0.002 -0.009 -0.236  0.041      0.042   
zSPIN:Female      -0.024 -0.113  0.000 -0.120 -0.006 -0.001     -0.014   
zSPIN:F_x_dyadic  -0.039  0.022 -0.132 -0.044 -0.002  0.004      0.005   
zSPIN:F_y_dyadic   0.690  0.053 -0.040 -0.192  0.014  0.005      0.012   
zSPIN:F_x2_dyadic  0.052  0.742 -0.083  0.002  0.004 -0.015      0.032   
zSPIN:F_xy_dyadic -0.049 -0.069  0.782 -0.012 -0.001  0.003     -0.004   
zSPIN:F_y2_dyadic -0.180  0.010 -0.004  0.735 -0.004  0.017     -0.008   
                  M_x2_:SPIN M_xy_:SPIN M_y2_:SPIN zSPIN:Fm zSPIN:F_x_d
M_x_dyadic                                                             
M_y_dyadic                                                             
M_x2_dyadic                                                            
M_xy_dyadic                                                            
M_y2_dyadic                                                            
Female                                                                 
F_x_dyadic                                                             
F_y_dyadic                                                             
F_x2_dyadic                                                            
F_xy_dyadic                                                            
F_y2_dyadic                                                            
Male:zSPIN                                                             
M_x_dyadic:zSPIN                                                       
M_y_dyadic:zSPIN                                                       
M_x2_dyadic:zSPIN                                                      
M_xy_dyadic:zSPIN -0.315                                               
M_y2_dyadic:zSPIN  0.027     -0.076                                    
zSPIN:Female      -0.001      0.002      0.001                         
zSPIN:F_x_dyadic  -0.003     -0.009      0.007      0.007              
zSPIN:F_y_dyadic  -0.006     -0.014     -0.002     -0.023   -0.105     
zSPIN:F_x2_dyadic -0.002     -0.001      0.018     -0.164   -0.019     
zSPIN:F_xy_dyadic  0.012      0.005      0.003      0.015   -0.178     
zSPIN:F_y2_dyadic  0.040     -0.002     -0.009     -0.174   -0.002     
                  zSPIN:F_y_ zSPIN:F_x2_ zSPIN:F_xy_
M_x_dyadic                                          
M_y_dyadic                                          
M_x2_dyadic                                         
M_xy_dyadic                                         
M_y2_dyadic                                         
Female                                              
F_x_dyadic                                          
F_y_dyadic                                          
F_x2_dyadic                                         
F_xy_dyadic                                         
F_y2_dyadic                                         
Male:zSPIN                                          
M_x_dyadic:zSPIN                                    
M_y_dyadic:zSPIN                                    
M_x2_dyadic:zSPIN                                   
M_xy_dyadic:zSPIN                                   
M_y2_dyadic:zSPIN                                   
zSPIN:Female                                        
zSPIN:F_x_dyadic                                    
zSPIN:F_y_dyadic                                    
zSPIN:F_x2_dyadic  0.043                            
zSPIN:F_xy_dyadic  0.007     -0.144                 
zSPIN:F_y2_dyadic -0.269      0.015      -0.068     

Standardized Within-Group Residuals:
       Min         Q1        Med         Q3        Max 
-7.2103389 -0.3185911  0.1146734  0.4997438  3.6658387 

Number of Observations: 2747
Number of Groups: 82 
tab_model(Model3.1,Model3.2,show.r2=F)
  PPR PPR
Predictors Estimates CI p Estimates CI p
Male 5.91 5.72 – 6.10 <0.001 5.73 5.45 – 6.01 <0.001
M x dyadic 0.12 0.07 – 0.16 <0.001 0.07 -0.00 – 0.15 0.066
M y dyadic 0.00 -0.05 – 0.05 0.992 0.06 -0.01 – 0.13 0.099
M x2 dyadic -0.04 -0.08 – -0.00 0.036 0.03 -0.03 – 0.09 0.383
M xy dyadic 0.06 0.02 – 0.10 0.007 0.04 -0.02 – 0.11 0.176
M y2 dyadic -0.01 -0.04 – 0.01 0.277 0.00 -0.04 – 0.04 0.920
Female 6.03 5.85 – 6.21 <0.001 5.99 5.76 – 6.21 <0.001
F x dyadic 0.12 0.08 – 0.16 <0.001 0.10 0.04 – 0.16 0.002
F y dyadic 0.06 0.01 – 0.10 0.013 0.03 -0.03 – 0.10 0.270
F x2 dyadic -0.05 -0.09 – -0.01 0.017 -0.04 -0.10 – 0.02 0.155
F xy dyadic 0.01 -0.02 – 0.05 0.475 0.02 -0.04 – 0.08 0.474
F y2 dyadic -0.02 -0.05 – 0.00 0.054 -0.01 -0.04 – 0.03 0.694
Male × zSPIN -0.18 -0.38 – 0.03 0.086 -0.18 -0.38 – 0.03 0.086
M x dyadic × zSPIN -0.04 -0.10 – 0.01 0.144 -0.04 -0.10 – 0.01 0.144
M y dyadic × zSPIN 0.06 0.01 – 0.11 0.027 0.06 0.01 – 0.11 0.027
M x2 dyadic × zSPIN 0.07 0.02 – 0.11 0.003 0.07 0.02 – 0.11 0.003
M xy dyadic × zSPIN -0.01 -0.06 – 0.04 0.654 -0.01 -0.06 – 0.04 0.654
M y2 dyadic × zSPIN 0.02 -0.01 – 0.05 0.287 0.02 -0.01 – 0.05 0.287
zSPIN × Female -0.04 -0.19 – 0.10 0.555 -0.04 -0.19 – 0.10 0.555
zSPIN × F x dyadic -0.02 -0.06 – 0.02 0.375 -0.02 -0.06 – 0.02 0.375
zSPIN × F y dyadic -0.02 -0.06 – 0.02 0.311 -0.02 -0.06 – 0.02 0.311
zSPIN × F x2 dyadic 0.01 -0.03 – 0.04 0.766 0.01 -0.03 – 0.04 0.766
zSPIN × F xy dyadic 0.01 -0.03 – 0.05 0.700 0.01 -0.03 – 0.05 0.700
zSPIN × F y2 dyadic 0.02 -0.01 – 0.04 0.213 0.02 -0.01 – 0.04 0.213
Random Effects
σ2 0.48 0.48
τ00    
τ00    
τ11 0.63 Couple.Female 0.63 Couple.Female
ρ01 0.53 Couple 0.53 Couple
ICC 0.58 0.58
N 82 Couple 82 Couple
Observations 2747 2747
# Plotting 
(fixed_effects <- fixef(Model3.2))
             Male        M_x_dyadic        M_y_dyadic       M_x2_dyadic 
      5.732875711       0.073835798       0.059731093       0.027575733 
      M_xy_dyadic       M_y2_dyadic            Female        F_x_dyadic 
      0.044655367       0.001993444       5.985454583       0.101612107 
       F_y_dyadic       F_x2_dyadic       F_xy_dyadic       F_y2_dyadic 
      0.034237431      -0.041376054       0.021608676      -0.006802207 
       Male:zSPIN  M_x_dyadic:zSPIN  M_y_dyadic:zSPIN M_x2_dyadic:zSPIN 
     -0.176240189      -0.043366697       0.059491323       0.067206385 
M_xy_dyadic:zSPIN M_y2_dyadic:zSPIN      zSPIN:Female  zSPIN:F_x_dyadic 
     -0.011151628       0.015947543      -0.043571037      -0.019128818 
 zSPIN:F_y_dyadic zSPIN:F_x2_dyadic zSPIN:F_xy_dyadic zSPIN:F_y2_dyadic 
     -0.021583047       0.005748817       0.008042506       0.015790313 
# Men's plot
plotRSA(x=fixed_effects[2],
        y=fixed_effects[3],
        x2=fixed_effects[4],
        xy=fixed_effects[5],
        y2=fixed_effects[6]
        
)

# Women's plot
plotRSA(x=fixed_effects[8],
        y=fixed_effects[9],
        x2=fixed_effects[10],
        xy=fixed_effects[11],
        y2=fixed_effects[12]
        
)

# Define the male and female variable names 
male_vars <- c("M_x_dyadic", "M_y_dyadic", "M_x2_dyadic", "M_xy_dyadic", "M_y2_dyadic")
female_vars <- c("F_x_dyadic", "F_y_dyadic", "F_x2_dyadic", "F_xy_dyadic", "F_y2_dyadic")

results <- build_and_evaluate_expressions(Model3.2, male_vars)

# View the results
print(results)
   Expression     Estimate         SE       CI_2.5    CI_97.5             Z
1          a1  0.133566891 0.05068406  0.034227950 0.23290583  2.6352837515
2          a2  0.074224544 0.04133212 -0.006784923 0.15523401  1.7958078025
3          a3  0.014104704 0.05709886 -0.097807002 0.12601641  0.2470225298
4          a4 -0.015086190 0.05727694 -0.127346922 0.09717454 -0.2633903109
5          X0 -1.337455361 1.48381020 -4.245669919 1.57075920 -0.9013655241
6          Y0 -0.001638622 3.55693493 -6.973102986 6.96982574 -0.0004606837
7         p10  0.773537836 3.80067174 -6.675641892 8.22271756  0.2035266102
8         p11  0.579590527 0.51268499 -0.425253595 1.58443465  1.1305002775
9         p20 -2.309225270 1.49005075 -5.229671071 0.61122053 -1.5497628336
10        p21 -1.725356012 1.52618805 -4.716629619 1.26591760 -1.1305002775
   p_value
1   0.0084
2   0.0725
3   0.8049
4   0.7922
5   0.3674
6   0.9996
7   0.8387
8   0.2583
9   0.1212
10  0.2583
results <- build_and_evaluate_expressions(Model3.2, female_vars)

# View the results
print(results)
   Expression    Estimate          SE       CI_2.5     CI_97.5          Z
1          a1  0.13584954  0.04265645   0.05224444  0.21945464  3.1847363
2          a2 -0.02656959  0.04179868  -0.10849349  0.05535432 -0.6356561
3          a3  0.06737468  0.04687750  -0.02450353  0.15925288  1.4372498
4          a4 -0.06978694  0.04875206  -0.16533921  0.02576534 -1.4314665
5          X0  3.22102053 11.34410716 -19.01302095 25.45506201  0.2839378
6          Y0  7.63277366 36.40793692 -63.72547145 78.99101877  0.2096459
7         p10 -3.59825901  6.10396925 -15.56181890  8.36530088 -0.5894949
8         p11  3.48679326  4.82682992  -5.97361954 12.94720605  0.7223775
9         p20  8.55655098 39.83631189 -69.52118560 86.63428756  0.2147927
10        p21 -0.28679647  0.39701745  -1.06493638  0.49134344 -0.7223775
   p_value
1   0.0014
2   0.5250
3   0.1506
4   0.1523
5   0.7765
6   0.8339
7   0.5555
8   0.4701
9   0.8299
10  0.4701