::p_load(dplyr, rio,ggplot2,psych, nlme,GGally,lavaan,tidyr,sjPlot,lavaanPlot,osfr) pacman
Dyadic Analysis workshop, Zurich Nov. 24: T&B Model
Truth & Bias Model
Libraries
Loading the data from OSF
#Retrieve the file using its ID
<- osf_retrieve_file("671645fab93a400661a5e041")
file setwd("C:\\Users\\97254\\Downloads")
osf_download(file, progress = T,conflicts = "overwrigt")
<- import("TBData.csv") temp1
Descriptive stats
Number of completed diaries
<- temp1 %>% group_by(ID,Female) %>%
descriptive summarise(n=n())
describeBy(descriptive$n,descriptive$Female)
Descriptive statistics by group
group: 0
vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 76 23.76 4.28 25 24.23 4.45 8 29 21 -1.03 0.88 0.49
------------------------------------------------------------
group: 1
vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 76 24.84 3.68 26 25.37 2.97 13 29 16 -1.12 0.49 0.42
Correlation matrix
ggpairs(temp1 %>% select(Self_Pos_Mood:Sex), title="Corr Matrix")
Scatter plot for each individual
ggplot(temp1 %>% filter(Male==1), aes(x = Partner_Pos_Mood, y = Judg_Pos_Mood)) +
geom_point() +
facet_wrap(~ID) + # Create separate plots for each individual
geom_smooth(method = "lm", se = FALSE) +# Regression line without confidence interval
labs(title = "Scatter Plot for Males",
x = "Truth Value",
y = "Judgment Value") +
theme_minimal()
ggplot(temp1 %>% filter(Female==1), aes(x = Partner_Pos_Mood, y = Judg_Pos_Mood)) +
geom_point() +
facet_wrap(~ID) + # Create separate plots for each individual
geom_smooth(method = "lm", se = FALSE) +# Regression line without confidence interval
labs(title = "Scatter Plot for Females",
x = "Truth Value",
y = "Judgment Value") +
theme_minimal()
Spaghetti plot
ggplot(temp1, aes(x = Partner_Pos_Mood, y = Judg_Pos_Mood)) +
# Individual regression lines
geom_smooth(method = "lm", se = FALSE, aes(color = as.factor(ID)), show.legend = FALSE,, size = 0.5) +
# Overall regression line (thicker)
geom_smooth(method = "lm", se = FALSE, color = "red", size = 1.5) +
labs(title = "Spaghetti Plot with Individual and Overall Regression Lines",
x = "Truth Value",
y = "Judgment Value") +
theme_minimal()
Cross-Sectional T&B
Using variables’ averages
<- temp1 %>%group_by(Couple,ID,Female,Male) %>%
CS1 summarise(Judg_Pos_Mood=mean(Judg_Pos_Mood,na.rm=T),
Partner_Pos_Mood=mean(Partner_Pos_Mood,na.rm=T),
Self_Pos_Mood=mean(Self_Pos_Mood,na.rm=T)
)
Centering variables on the truth variable
=mean(CS1$Partner_Pos_Mood,na.rm=T)
AvgTruth<- CS1 %>% mutate(Judg_Pos_MoodMC=Judg_Pos_Mood-AvgTruth,
CS1 Partner_Pos_MoodMC=Partner_Pos_Mood-AvgTruth,
Self_Pos_MoodMC=Self_Pos_Mood-AvgTruth,
Gender=Female-0.5
)
Models
Model 1: Only Truth - Dyadic two intercepts/slopes model
<- gls(Judg_Pos_MoodMC~
TB_CS_Model1 -1+
+Male:Partner_Pos_MoodMC+
Male+Female:Partner_Pos_MoodMC,
Femalecorrelation = corSymm(form=~1|Couple), #estimate partners' non-independence
weights = varIdent(form=~1|Gender), #allows for different error terms for the two variables
data = CS1, na.action=na.exclude
)summary(TB_CS_Model1)
Generalized least squares fit by REML
Model: Judg_Pos_MoodMC ~ -1 + Male + Male:Partner_Pos_MoodMC + Female + Female:Partner_Pos_MoodMC
Data: CS1
AIC BIC logLik
1168.388 1189.369 -577.194
Correlation Structure: General
Formula: ~1 | Couple
Parameter estimate(s):
Correlation:
1
2 -0.899
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | Gender
Parameter estimates:
-0.5 0.5
1.000000 1.145675
Coefficients:
Value Std.Error t-value p-value
Male 1.060655 1.7523675 0.605270 0.5459
Female -3.787339 2.0088232 -1.885352 0.0613
Male:Partner_Pos_MoodMC 0.801133 0.0476422 16.815623 0.0000
Partner_Pos_MoodMC:Female 1.046936 0.0599488 17.463854 0.0000
Correlation:
Male Female M:P_P_
Female -0.891
Male:Partner_Pos_MoodMC 0.075 0.023
Partner_Pos_MoodMC:Female -0.021 -0.083 -0.283
Standardized residuals:
Min Q1 Med Q3 Max
-2.53772592 -0.74097678 0.01049945 0.65667294 2.53873557
Residual standard error: 15.23323
Degrees of freedom: 152 total; 148 residual
tab_model(TB_CS_Model1,show.r2=F)
Judg Pos Mood MC | |||
Predictors | Estimates | CI | p |
Male | 1.06 | -2.40 – 4.52 | 0.546 |
Female | -3.79 | -7.76 – 0.18 | 0.061 |
Male × Partner Pos MoodMC | 0.80 | 0.71 – 0.90 | <0.001 |
Partner Pos MoodMC × Female |
1.05 | 0.93 – 1.17 | <0.001 |
Observations | 152 |
Model 2: Bias (assumed similarity)
<- gls(Judg_Pos_MoodMC~
TB_CS_Model2 -1+
+Male:Partner_Pos_MoodMC+Male:Self_Pos_MoodMC+
Male+Female:Partner_Pos_MoodMC+Female:Self_Pos_MoodMC,
Femalecorrelation = corSymm(form=~1|Couple), #estimate partners' non-independence
weights = varIdent(form=~1|Female), #allows for different error terms for the two variables
data = CS1, na.action=na.exclude
)summary(TB_CS_Model2)
Generalized least squares fit by REML
Model: Judg_Pos_MoodMC ~ -1 + Male + Male:Partner_Pos_MoodMC + Male:Self_Pos_MoodMC + Female + Female:Partner_Pos_MoodMC + Female:Self_Pos_MoodMC
Data: CS1
AIC BIC logLik
1027.293 1054.145 -504.6465
Correlation Structure: General
Formula: ~1 | Couple
Parameter estimate(s):
Correlation:
1
2 -0.489
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | Female
Parameter estimates:
0 1
1.00000 1.14516
Coefficients:
Value Std.Error t-value p-value
Male -2.9711522 0.7787850 -3.815112 0.0002
Female 1.3058664 0.8992917 1.452105 0.1486
Male:Partner_Pos_MoodMC 0.1143463 0.0468142 2.442558 0.0158
Male:Self_Pos_MoodMC 0.7808744 0.0517753 15.082000 0.0000
Partner_Pos_MoodMC:Female 0.2103531 0.0588848 3.572281 0.0005
Self_Pos_MoodMC:Female 0.8417496 0.0541363 15.548698 0.0000
Correlation:
Male Female M:P_P_ M:S_P_ P_P_MM
Female -0.488
Male:Partner_Pos_MoodMC 0.224 -0.124
Male:Self_Pos_MoodMC -0.234 0.119 -0.315
Partner_Pos_MoodMC:Female 0.113 -0.244 0.152 -0.487
Self_Pos_MoodMC:Female -0.109 0.255 -0.485 0.152 -0.313
Standardized residuals:
Min Q1 Med Q3 Max
-3.55982536 -0.61382646 0.06485507 0.54897542 3.08489059
Residual standard error: 6.513399
Degrees of freedom: 152 total; 146 residual
tab_model(TB_CS_Model1,TB_CS_Model2,show.r2=F)
Judg Pos Mood MC | Judg Pos Mood MC | |||||
Predictors | Estimates | CI | p | Estimates | CI | p |
Male | 1.06 | -2.40 – 4.52 | 0.546 | -2.97 | -4.51 – -1.43 | <0.001 |
Female | -3.79 | -7.76 – 0.18 | 0.061 | 1.31 | -0.47 – 3.08 | 0.149 |
Male × Partner Pos MoodMC | 0.80 | 0.71 – 0.90 | <0.001 | 0.11 | 0.02 – 0.21 | 0.016 |
Partner Pos MoodMC × Female |
1.05 | 0.93 – 1.17 | <0.001 | 0.21 | 0.09 – 0.33 | <0.001 |
Male × Self Pos MoodMC | 0.78 | 0.68 – 0.88 | <0.001 | |||
Self Pos MoodMC × Female | 0.84 | 0.73 – 0.95 | <0.001 | |||
Observations | 152 | 152 |
Model 3: Moderated T&B model
Are happy people (>avg above 50) biased?
<- CS1 %>% mutate(Happy=ifelse(Self_Pos_Mood>50,1,0))
CS1 table(CS1$Happy)
0 1
94 58
<- gls(Judg_Pos_MoodMC~
TB_CS_Model3 -1+
+Male:Partner_Pos_MoodMC+
Male:Happy+Male:Happy:Partner_Pos_MoodMC+
Male+Female:Partner_Pos_MoodMC+
Female:Happy+Female:Happy:Partner_Pos_MoodMC,
Femalecorrelation = corSymm(form=~1|Couple), #estimate partners' non-independence
weights = varIdent(form=~1|Female), #allows for different error terms for the two variables
data = CS1, na.action=na.exclude
)summary(TB_CS_Model3)
Generalized least squares fit by REML
Model: Judg_Pos_MoodMC ~ -1 + Male + Male:Partner_Pos_MoodMC + Male:Happy + Male:Happy:Partner_Pos_MoodMC + Female + Female:Partner_Pos_MoodMC + Female:Happy + Female:Happy:Partner_Pos_MoodMC
Data: CS1
AIC BIC logLik
1167.659 1200.327 -572.8297
Correlation Structure: General
Formula: ~1 | Couple
Parameter estimate(s):
Correlation:
1
2 -0.427
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | Female
Parameter estimates:
0 1
1.000000 1.167893
Coefficients:
Value Std.Error t-value p-value
Male -5.444977 1.6281064 -3.344362 0.0011
Female -8.428235 1.7354335 -4.856559 0.0000
Male:Partner_Pos_MoodMC 0.444143 0.0961729 4.618172 0.0000
Male:Happy 13.711638 2.4003901 5.712254 0.0000
Partner_Pos_MoodMC:Female 0.465803 0.1207762 3.856747 0.0002
Happy:Female 16.948182 3.1162481 5.438650 0.0000
Male:Partner_Pos_MoodMC:Happy -0.129834 0.1385068 -0.937386 0.3501
Partner_Pos_MoodMC:Happy:Female 0.069680 0.1862237 0.374176 0.7088
Correlation:
Male Female Ml:P_P_MMC Ml:Hpp P_P_MMC:F
Female -0.243
Male:Partner_Pos_MoodMC 0.323 0.120
Male:Happy -0.641 0.006 -0.207
Partner_Pos_MoodMC:Female 0.105 0.055 -0.114 -0.222
Happy:Female -0.084 -0.525 -0.257 0.065 -0.029
Male:Partner_Pos_MoodMC:Happy -0.224 0.027 -0.681 0.101 0.194
Partner_Pos_MoodMC:Happy:Female 0.052 -0.043 0.183 -0.013 -0.642
Hppy:F M:P_P_MMC:
Female
Male:Partner_Pos_MoodMC
Male:Happy
Partner_Pos_MoodMC:Female
Happy:Female
Male:Partner_Pos_MoodMC:Happy 0.050
Partner_Pos_MoodMC:Happy:Female -0.301 -0.271
Standardized residuals:
Min Q1 Med Q3 Max
-2.27412428 -0.67857938 -0.05022552 0.66481701 2.21178297
Residual standard error: 10.52934
Degrees of freedom: 152 total; 144 residual
tab_model(TB_CS_Model1,TB_CS_Model2,TB_CS_Model3,show.r2=F)
Judg Pos Mood MC | Judg Pos Mood MC | Judg Pos Mood MC | |||||||
Predictors | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p |
Male | 1.06 | -2.40 – 4.52 | 0.546 | -2.97 | -4.51 – -1.43 | <0.001 | -5.44 | -8.66 – -2.23 | 0.001 |
Female | -3.79 | -7.76 – 0.18 | 0.061 | 1.31 | -0.47 – 3.08 | 0.149 | -8.43 | -11.86 – -5.00 | <0.001 |
Male × Partner Pos MoodMC | 0.80 | 0.71 – 0.90 | <0.001 | 0.11 | 0.02 – 0.21 | 0.016 | 0.44 | 0.25 – 0.63 | <0.001 |
Partner Pos MoodMC × Female |
1.05 | 0.93 – 1.17 | <0.001 | 0.21 | 0.09 – 0.33 | <0.001 | 0.47 | 0.23 – 0.70 | <0.001 |
Male × Self Pos MoodMC | 0.78 | 0.68 – 0.88 | <0.001 | ||||||
Self Pos MoodMC × Female | 0.84 | 0.73 – 0.95 | <0.001 | ||||||
Male × Happy | 13.71 | 8.97 – 18.46 | <0.001 | ||||||
Happy × Female | 16.95 | 10.79 – 23.11 | <0.001 | ||||||
Male × Partner Pos MoodMC × Happy |
-0.13 | -0.40 – 0.14 | 0.350 | ||||||
Partner Pos MoodMC × Happy × Female |
0.07 | -0.30 – 0.44 | 0.709 | ||||||
Observations | 152 | 152 | 152 |
Model 4: Full moderated T&B model
Is this explained by assumed similarity?
<- gls(Judg_Pos_MoodMC~
TB_CS_Model4 -1+
+Male:Partner_Pos_MoodMC+
Male:Happy+Male:Happy:Partner_Pos_MoodMC+Male:Self_Pos_MoodMC+
Male+Female:Partner_Pos_MoodMC+
Female:Happy+Female:Happy:Partner_Pos_MoodMC+Female:Self_Pos_MoodMC,
Femalecorrelation = corSymm(form=~1|Couple), #estimate partners' non-independence
weights = varIdent(form=~1|Female), #allows for different error terms for the two variables
data = CS1, na.action=na.exclude
)summary(TB_CS_Model4)
Generalized least squares fit by REML
Model: Judg_Pos_MoodMC ~ -1 + Male + Male:Partner_Pos_MoodMC + Male:Happy + Male:Happy:Partner_Pos_MoodMC + Male:Self_Pos_MoodMC + Female + Female:Partner_Pos_MoodMC + Female:Happy + Female:Happy:Partner_Pos_MoodMC + Female:Self_Pos_MoodMC
Data: CS1
AIC BIC logLik
1030.417 1068.843 -502.2085
Correlation Structure: General
Formula: ~1 | Couple
Parameter estimate(s):
Correlation:
1
2 -0.531
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | Female
Parameter estimates:
0 1
1.000000 1.144816
Coefficients:
Value Std.Error t-value p-value
Male -2.437242 1.0528521 -2.314895 0.0221
Female 3.135126 1.3934181 2.249953 0.0260
Male:Partner_Pos_MoodMC 0.142537 0.0624647 2.281884 0.0240
Male:Happy -1.202497 1.9586122 -0.613954 0.5402
Male:Self_Pos_MoodMC 0.806444 0.0708970 11.374866 0.0000
Partner_Pos_MoodMC:Female 0.206549 0.0752866 2.743509 0.0069
Happy:Female -4.583098 2.5642983 -1.787272 0.0760
Self_Pos_MoodMC:Female 0.936852 0.0774254 12.100068 0.0000
Male:Partner_Pos_MoodMC:Happy -0.057791 0.0835694 -0.691531 0.4904
Partner_Pos_MoodMC:Happy:Female 0.036695 0.1099233 0.333821 0.7390
Correlation:
Male Female Ml:P_P_MMC Ml:Hpp M:S_P_
Female -0.275
Male:Partner_Pos_MoodMC 0.238 -0.097
Male:Happy -0.638 0.009 -0.001
Male:Self_Pos_MoodMC 0.283 0.060 -0.228 -0.667
Partner_Pos_MoodMC:Female 0.046 -0.039 -0.036 -0.012 -0.286
Happy:Female 0.005 -0.730 -0.017 -0.013 0.010
Self_Pos_MoodMC:Female -0.078 0.651 -0.307 0.014 0.081
Male:Partner_Pos_MoodMC:Happy -0.191 0.054 -0.649 0.035 0.055
Partner_Pos_MoodMC:Happy:Female 0.048 -0.036 0.218 0.014 -0.036
P_P_MMC:F Hppy:F S_P_MM M:P_P_MMC:
Female
Male:Partner_Pos_MoodMC
Male:Happy
Male:Self_Pos_MoodMC
Partner_Pos_MoodMC:Female
Happy:Female 0.041
Self_Pos_MoodMC:Female -0.112 -0.688
Male:Partner_Pos_MoodMC:Happy 0.211 0.018 0.042
Partner_Pos_MoodMC:Happy:Female -0.602 -0.211 -0.003 -0.338
Standardized residuals:
Min Q1 Med Q3 Max
-3.63130383 -0.73774505 0.09535328 0.53694180 3.30232054
Residual standard error: 6.61251
Degrees of freedom: 152 total; 142 residual
tab_model(TB_CS_Model3,TB_CS_Model4,show.r2=F)
Judg Pos Mood MC | Judg Pos Mood MC | |||||
Predictors | Estimates | CI | p | Estimates | CI | p |
Male | -5.44 | -8.66 – -2.23 | 0.001 | -2.44 | -4.52 – -0.36 | 0.022 |
Female | -8.43 | -11.86 – -5.00 | <0.001 | 3.14 | 0.38 – 5.89 | 0.026 |
Male × Partner Pos MoodMC | 0.44 | 0.25 – 0.63 | <0.001 | 0.14 | 0.02 – 0.27 | 0.024 |
Male × Happy | 13.71 | 8.97 – 18.46 | <0.001 | -1.20 | -5.07 – 2.67 | 0.540 |
Partner Pos MoodMC × Female |
0.47 | 0.23 – 0.70 | <0.001 | 0.21 | 0.06 – 0.36 | 0.007 |
Happy × Female | 16.95 | 10.79 – 23.11 | <0.001 | -4.58 | -9.65 – 0.49 | 0.076 |
Male × Partner Pos MoodMC × Happy |
-0.13 | -0.40 – 0.14 | 0.350 | -0.06 | -0.22 – 0.11 | 0.490 |
Partner Pos MoodMC × Happy × Female |
0.07 | -0.30 – 0.44 | 0.709 | 0.04 | -0.18 – 0.25 | 0.739 |
Male × Self Pos MoodMC | 0.81 | 0.67 – 0.95 | <0.001 | |||
Self Pos MoodMC × Female | 0.94 | 0.78 – 1.09 | <0.001 | |||
Observations | 152 | 152 |
Model 5: Mediated T&B model
We use lavaan - easier to estimate bootstrapping CI for indirect effects
Transforming data into wide dataframe
<- CS1 %>% ungroup() %>% select(Couple,Female,Judg_Pos_MoodMC,Partner_Pos_MoodMC,Self_Pos_MoodMC) %>%
CS2 pivot_wider(id_cols = Couple,
names_from = Female,
values_from = Judg_Pos_MoodMC:Self_Pos_MoodMC)
<- CS2 %>%
CS2 rename_with(~ gsub("_0", "_Male", .)) %>%
rename_with(~ gsub("_1", "_Female", .))
Define the basic model and run it:
<- '
model
# intercepts/means
Judg_Pos_MoodMC_Male ~ 1
Judg_Pos_MoodMC_Female ~ 1
Partner_Pos_MoodMC_Male~1
Partner_Pos_MoodMC_Female~1
#regression
Judg_Pos_MoodMC_Male~Truth_M*Partner_Pos_MoodMC_Male
Judg_Pos_MoodMC_Female~Truth_F*Partner_Pos_MoodMC_Female
#variances/residuals
Judg_Pos_MoodMC_Male ~~ resid_M*Judg_Pos_MoodMC_Male
Judg_Pos_MoodMC_Female ~~ resid_W*Judg_Pos_MoodMC_Female
Partner_Pos_MoodMC_Male~~Partner_Pos_MoodMC_Male
Partner_Pos_MoodMC_Female~~Partner_Pos_MoodMC_Female
#covariance
Judg_Pos_MoodMC_Male~~Judg_Pos_MoodMC_Female
Partner_Pos_MoodMC_Male~~Partner_Pos_MoodMC_Female
'
<- sem(model, data = CS2, fixed.x = FALSE)
fit summary(fit,standardized = TRUE)
lavaan 0.6.16 ended normally after 87 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 12
Number of observations 76
Model Test User Model:
Test statistic 151.464
Degrees of freedom 2
P-value (Chi-square) 0.000
Parameter Estimates:
Standard errors Standard
Information Expected
Information saturated (h1) model Structured
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv
Judg_Pos_MoodMC_Male ~
P_P_MMC (Tr_M) 0.802 0.047 17.163 0.000 0.802
Judg_Pos_MoodMC_Female ~
P_P_MMC (Tr_F) 1.048 0.059 17.817 0.000 1.048
Std.all
0.665
0.679
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv
.Judg_Pos_MoodMC_Male ~~
.Jdg_Ps_MdMC_Fm -235.992 40.440 -5.836 0.000 -235.992
Partner_Pos_MoodMC_Male ~~
Prtnr_Ps_MMC_F 80.939 30.858 2.623 0.009 80.939
Std.all
-0.901
0.315
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.Jdg_Ps_MdMC_Ml 1.064 1.740 0.612 0.541 1.064 0.053
.Jdg_Ps_MdMC_Fm -3.790 1.993 -1.901 0.057 -3.790 -0.161
Prtnr_Ps_MMC_M -2.776 1.926 -1.441 0.149 -2.776 -0.165
Prtnr_Ps_MMC_F 2.776 1.753 1.583 0.113 2.776 0.182
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.J_P_MMC (rs_M) 228.691 37.099 6.164 0.000 228.691 0.558
.J_P_MMC (rs_W) 299.961 48.660 6.164 0.000 299.961 0.539
P_P_MMC 281.774 45.710 6.164 0.000 281.774 1.000
P_P_MMC 233.586 37.893 6.164 0.000 233.586 1.000
Now the Mediation model:
<- '
model_mediation
# intercepts/means
Judg_Pos_MoodMC_Male ~ 1
Judg_Pos_MoodMC_Female ~ 1
Partner_Pos_MoodMC_Male~1
Partner_Pos_MoodMC_Female~1
Self_Pos_MoodMC_Male~1
Self_Pos_MoodMC_Female~1
#regression X+M->Y
#Direct effect and Mediated effects
Judg_Pos_MoodMC_Male~Truth_M*Partner_Pos_MoodMC_Male+Bias_M*Self_Pos_MoodMC_Male
Judg_Pos_MoodMC_Female~Truth_F*Partner_Pos_MoodMC_Female+Bias_F*Self_Pos_MoodMC_Female
#a paths X->M
Self_Pos_MoodMC_Male~Similarity_M*Partner_Pos_MoodMC_Male
Self_Pos_MoodMC_Female~Similarity_F*Partner_Pos_MoodMC_Female
#variances/residuals
Judg_Pos_MoodMC_Male ~~ resid_M*Judg_Pos_MoodMC_Male
Judg_Pos_MoodMC_Female ~~ resid_W*Judg_Pos_MoodMC_Female
Partner_Pos_MoodMC_Male~~Partner_Pos_MoodMC_Male
Partner_Pos_MoodMC_Female~~Partner_Pos_MoodMC_Female
Self_Pos_MoodMC_Male~~Self_Pos_MoodMC_Male
Self_Pos_MoodMC_Female~~Self_Pos_MoodMC_Female
#covariance
Judg_Pos_MoodMC_Male~~Judg_Pos_MoodMC_Female
Partner_Pos_MoodMC_Male~~Partner_Pos_MoodMC_Female
Self_Pos_MoodMC_Male~~Self_Pos_MoodMC_Female
# indirect effect (a*b)
Indirect_M := Similarity_M*Bias_M
Indirect_F := Similarity_F*Bias_F
# total effect
total_M := Truth_M + (Similarity_M*Bias_M)
total_F := Truth_F + (Similarity_F*Bias_F)
'
<- sem(model_mediation, data = CS2, fixed.x = FALSE,se = "bootstrap",
fit2 bootstrap = 100,
parallel = "snow", ncpus = 4)
summary(fit2,standardized = TRUE)
lavaan 0.6.16 ended normally after 177 iterations
Estimator ML
Optimization method NLMINB
Number of model parameters 21
Number of observations 76
Model Test User Model:
Test statistic 454.511
Degrees of freedom 6
P-value (Chi-square) 0.000
Parameter Estimates:
Standard errors Bootstrap
Number of requested bootstrap draws 100
Number of successful bootstrap draws 100
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv
Judg_Pos_MoodMC_Male ~
P_P_MMC (Tr_M) 0.114 0.042 2.746 0.006 0.114
S_P_MMC (Bs_M) 0.781 0.050 15.570 0.000 0.781
Judg_Pos_MoodMC_Female ~
P_P_MMC (Tr_F) 0.210 0.046 4.546 0.000 0.210
S_P_MMC (Bs_F) 0.842 0.056 14.954 0.000 0.842
Self_Pos_MoodMC_Male ~
P_P_MMC (Sm_M) 0.771 0.084 9.179 0.000 0.771
Self_Pos_MoodMC_Female ~
P_P_MMC (Sm_F) 1.258 0.129 9.754 0.000 1.258
Std.all
0.102
0.874
0.118
0.880
0.616
0.674
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv
.Judg_Pos_MoodMC_Male ~~
.Jdg_Ps_MdMC_Fm -22.818 8.002 -2.852 0.004 -22.818
Partner_Pos_MoodMC_Male ~~
Prtnr_Ps_MMC_F 80.939 35.759 2.263 0.024 80.939
.Self_Pos_MoodMC_Male ~~
.Slf_Ps_MdMC_Fm -347.188 65.962 -5.263 0.000 -347.188
Std.all
-0.489
0.315
-0.994
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.Jdg_Ps_MdMC_Ml -2.971 0.708 -4.198 0.000 -2.971 -0.158
.Jdg_Ps_MdMC_Fm 1.306 0.902 1.447 0.148 1.306 0.048
Prtnr_Ps_MMC_M -2.776 1.888 -1.470 0.142 -2.776 -0.165
Prtnr_Ps_MMC_F 2.776 1.590 1.746 0.081 2.776 0.182
.Slf_Ps_MdMC_Ml 4.862 1.767 2.752 0.006 4.862 0.231
.Slf_Ps_MdMC_Fm -6.785 2.063 -3.289 0.001 -6.785 -0.238
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.J_P_MMC (rs_M) 40.753 8.269 4.929 0.000 40.753 0.116
.J_P_MMC (rs_W) 53.443 9.726 5.495 0.000 53.443 0.072
P_P_MMC 281.774 42.255 6.668 0.000 281.774 1.000
P_P_MMC 233.586 39.512 5.912 0.000 233.586 1.000
.S_P_MMC 273.976 53.826 5.090 0.000 273.976 0.621
.S_P_MMC 445.462 106.576 4.180 0.000 445.462 0.546
Defined Parameters:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
Indirect_M 0.602 0.075 8.024 0.000 0.602 0.538
Indirect_F 1.059 0.128 8.250 0.000 1.059 0.593
total_M 0.716 0.078 9.227 0.000 0.716 0.641
total_F 1.270 0.121 10.459 0.000 1.270 0.711
#CI
<- parameterEstimates(fit2)
est 22:25,] est[
lhs op rhs label est se z
22 Indirect_M := Similarity_M*Bias_M Indirect_M 0.602 0.075 8.024
23 Indirect_F := Similarity_F*Bias_F Indirect_F 1.059 0.128 8.250
24 total_M := Truth_M+(Similarity_M*Bias_M) total_M 0.716 0.078 9.227
25 total_F := Truth_F+(Similarity_F*Bias_F) total_F 1.270 0.121 10.459
pvalue ci.lower ci.upper
22 0 0.448 0.744
23 0 0.815 1.368
24 0 0.547 0.837
25 0 1.014 1.572
#% of mediated effect
paste0("% of mediated effect for males: ",round(est[22,5]/est[24,5]*100,3),"%")
[1] "% of mediated effect for males: 84.038%"
paste0("% of mediated effect for females: ",round(est[23,5]/est[25,5]*100,3),"%")
[1] "% of mediated effect for females: 83.433%"
Within-person Longitudinal T&B
Centering variables on the truth variable
=mean(temp1$Partner_Pos_Mood,na.rm=T)
AvgTruth<- temp1 %>% mutate(Judg_Pos_MoodMC=Judg_Pos_Mood-AvgTruth,
Long1 Partner_Pos_MoodMC=Partner_Pos_Mood-AvgTruth,
Self_Pos_MoodMC=Self_Pos_Mood-AvgTruth,
Gender=Female-0.5
)
Models
Model 1: Only Truth
<- lme(Judg_Pos_MoodMC ~ -1 +
TB_Long_Model1+ Male:Partner_Pos_MoodMC+
Male+ Female:Partner_Pos_MoodMC,
Femalerandom = ~ -1 + Male+Male:Partner_Pos_MoodMC+
+Female:Partner_Pos_MoodMC| Couple,
Femaleweights = varIdent(form=~1|Gender),
# corr=corAR1(form = ~1 | Couple/DiaryDay),
correlation = corCompSymm(form = ~1|Couple/DiaryDay),
data = Long1,na.action = na.exclude)
summary(TB_Long_Model1)
Linear mixed-effects model fit by REML
Data: Long1
AIC BIC logLik
27082.74 27186.57 -13524.37
Random effects:
Formula: ~-1 + Male + Male:Partner_Pos_MoodMC + Female + Female:Partner_Pos_MoodMC | Couple
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
Male 12.5294642 Male Female M:P_P_
Female 15.5964920 -0.189
Male:Partner_Pos_MoodMC 0.2098416 -0.215 -0.239
Partner_Pos_MoodMC:Female 0.1733956 -0.086 -0.171 0.458
Residual 12.8247507
Correlation Structure: Compound symmetry
Formula: ~1 | Couple/DiaryDay
Parameter estimate(s):
Rho
-0.09541552
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | Gender
Parameter estimates:
-0.5 0.5
1.000000 1.028375
Fixed effects: Judg_Pos_MoodMC ~ -1 + Male + Male:Partner_Pos_MoodMC + Female + Female:Partner_Pos_MoodMC
Value Std.Error DF t-value p-value
Male 0.2361687 1.5008399 3245 0.157358 0.8750
Female -1.4270326 1.8369016 3245 -0.776869 0.4373
Male:Partner_Pos_MoodMC 0.3253314 0.0335198 3245 9.705644 0.0000
Partner_Pos_MoodMC:Female 0.2792401 0.0326877 3245 8.542659 0.0000
Correlation:
Male Female M:P_P_
Female -0.178
Male:Partner_Pos_MoodMC -0.115 -0.167
Partner_Pos_MoodMC:Female -0.053 -0.132 0.193
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-4.4021060 -0.6017420 0.0260356 0.5899257 3.6305571
Number of Observations: 3324
Number of Groups: 76
tab_model(TB_Long_Model1,show.r2=F)
Judg Pos Mood MC | |||
---|---|---|---|
Predictors | Estimates | CI | p |
Male | 0.24 | -2.71 – 3.18 | 0.875 |
Female | -1.43 | -5.03 – 2.17 | 0.437 |
Male × Partner Pos MoodMC | 0.33 | 0.26 – 0.39 | <0.001 |
Partner Pos MoodMC × Female |
0.28 | 0.22 – 0.34 | <0.001 |
Random Effects | |||
σ2 | 164.47 | ||
τ00 | |||
τ00 | |||
τ11 Couple.Female | 243.25 | ||
τ11 Couple.Male:Partner_Pos_MoodMC | 0.04 | ||
τ11 Couple.Partner_Pos_MoodMC:Female | 0.03 | ||
ρ01 | -0.19 | ||
-0.21 | |||
-0.09 | |||
ICC | 0.57 | ||
N Couple | 76 | ||
Observations | 3324 |
Extracting the empirical Bayes estimates of the random effects to examine between-person associations
<- as.data.frame(TB_Long_Model1$coefficients$random$Couple)
Random ggpairs(Random, title="Corr Matrix of Random Effects")
Model 2: Adding bias
<- lme(Judg_Pos_MoodMC ~ -1 +
TB_Long_Model2+ Male:Partner_Pos_MoodMC+Male:Self_Pos_MoodMC+
Male+ Female:Partner_Pos_MoodMC+Female:Self_Pos_MoodMC,
Female# random = ~ -1 + Male+Male:Partner_Pos_MoodMC+Male:Self_Pos_MoodMC+
# Female+Female:Partner_Pos_MoodMC+Female:Self_Pos_MoodMC| Couple,
# Didn't converge with adding bias effects into random effect, so I moved to the simpler model
random = ~ -1 + Male+Male:Partner_Pos_MoodMC+
+Female:Partner_Pos_MoodMC| Couple,
Female
weights = varIdent(form=~1|Gender),
# corr=corAR1(form = ~1 | Couple/DiaryDay),
correlation = corCompSymm(form = ~1|Couple/DiaryDay),
data = Long1,na.action = na.exclude)
summary(TB_Long_Model2)
Linear mixed-effects model fit by REML
Data: Long1
AIC BIC logLik
26275.82 26391.86 -13118.91
Random effects:
Formula: ~-1 + Male + Male:Partner_Pos_MoodMC + Female + Female:Partner_Pos_MoodMC | Couple
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
Male 7.1534681 Male Female M:P_P_
Female 9.3978323 -0.448
Male:Partner_Pos_MoodMC 0.1582051 -0.185 -0.283
Partner_Pos_MoodMC:Female 0.1744764 0.176 -0.341 0.199
Residual 11.6520210
Correlation Structure: Compound symmetry
Formula: ~1 | Couple/DiaryDay
Parameter estimate(s):
Rho
-0.01550273
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | Gender
Parameter estimates:
-0.5 0.5
1.000000 1.008277
Fixed effects: Judg_Pos_MoodMC ~ -1 + Male + Male:Partner_Pos_MoodMC + Male:Self_Pos_MoodMC + Female + Female:Partner_Pos_MoodMC + Female:Self_Pos_MoodMC
Value Std.Error DF t-value p-value
Male -1.4276853 0.9015429 3243 -1.583602 0.1134
Female 0.0835905 1.1447070 3243 0.073024 0.9418
Male:Partner_Pos_MoodMC 0.2112275 0.0272099 3243 7.762881 0.0000
Male:Self_Pos_MoodMC 0.4770385 0.0211961 3243 22.505972 0.0000
Partner_Pos_MoodMC:Female 0.1680286 0.0304955 3243 5.509943 0.0000
Self_Pos_MoodMC:Female 0.4752247 0.0203876 3243 23.309518 0.0000
Correlation:
Male Female M:P_P_ M:S_P_ P_P_MM
Female -0.387
Male:Partner_Pos_MoodMC -0.060 -0.181
Male:Self_Pos_MoodMC -0.072 0.013 -0.146
Partner_Pos_MoodMC:Female 0.106 -0.262 0.092 -0.046
Self_Pos_MoodMC:Female -0.025 0.064 -0.052 0.010 -0.142
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-5.063013015 -0.564336214 0.005797968 0.584927716 3.534207774
Number of Observations: 3324
Number of Groups: 76
tab_model(TB_Long_Model1,TB_Long_Model2,show.r2=F)
Judg Pos Mood MC | Judg Pos Mood MC | |||||
---|---|---|---|---|---|---|
Predictors | Estimates | CI | p | Estimates | CI | p |
Male | 0.24 | -2.71 – 3.18 | 0.875 | -1.43 | -3.20 – 0.34 | 0.113 |
Female | -1.43 | -5.03 – 2.17 | 0.437 | 0.08 | -2.16 – 2.33 | 0.942 |
Male × Partner Pos MoodMC | 0.33 | 0.26 – 0.39 | <0.001 | 0.21 | 0.16 – 0.26 | <0.001 |
Partner Pos MoodMC × Female |
0.28 | 0.22 – 0.34 | <0.001 | 0.17 | 0.11 – 0.23 | <0.001 |
Male × Self Pos MoodMC | 0.48 | 0.44 – 0.52 | <0.001 | |||
Self Pos MoodMC × Female | 0.48 | 0.44 – 0.52 | <0.001 | |||
Random Effects | ||||||
σ2 | 164.47 | 135.77 | ||||
τ00 | ||||||
τ00 | ||||||
τ11 | 243.25 Couple.Female | 88.32 Couple.Female | ||||
0.04 Couple.Male:Partner_Pos_MoodMC | 0.03 Couple.Male:Partner_Pos_MoodMC | |||||
0.03 Couple.Partner_Pos_MoodMC:Female | 0.03 Couple.Partner_Pos_MoodMC:Female | |||||
ρ01 | -0.19 | -0.45 | ||||
-0.21 | -0.18 | |||||
-0.09 | 0.18 | |||||
ICC | 0.57 | 0.37 | ||||
N | 76 Couple | 76 Couple | ||||
Observations | 3324 | 3324 |
Model 3: Moderated T&B
Does daily sex affect perceptions?
<- lme(Judg_Pos_MoodMC ~ -1 +
TB_Long_Model3+ Male:Partner_Pos_MoodMC+Male:Self_Pos_MoodMC+
Male+ Female:Partner_Pos_MoodMC+Female:Self_Pos_MoodMC+
Female:Sex+ Male:Sex:Partner_Pos_MoodMC+Male:Sex:Self_Pos_MoodMC+
Male:Sex+ Female:Sex:Partner_Pos_MoodMC+Female:Sex:Self_Pos_MoodMC,
Female# random = ~ -1 + Male+Male:Partner_Pos_MoodMC+Male:Self_Pos_MoodMC+
# Female+Female:Partner_Pos_MoodMC+Female:Self_Pos_MoodMC| Couple,
# Didn't converge with adding bias effects into random effect, so I moved to the simpler model
random = ~ -1 + Male+Male:Partner_Pos_MoodMC+
+Female:Partner_Pos_MoodMC| Couple,
Female
weights = varIdent(form=~1|Gender),
# corr=corAR1(form = ~1 | Couple/DiaryDay),
correlation = corCompSymm(form = ~1|Couple/DiaryDay),
data = Long1,
# data = Long1 %>% mutate(Sex=1-Sex)#activate for simple slope analysis
na.action = na.exclude)
,summary(TB_Long_Model3)
Linear mixed-effects model fit by REML
Data: Long1
AIC BIC logLik
26271.37 26423.98 -13110.68
Random effects:
Formula: ~-1 + Male + Male:Partner_Pos_MoodMC + Female + Female:Partner_Pos_MoodMC | Couple
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
Male 7.2021284 Male Female M:P_P_
Female 9.4920994 -0.428
Male:Partner_Pos_MoodMC 0.1596882 -0.166 -0.271
Partner_Pos_MoodMC:Female 0.1789004 0.161 -0.362 0.201
Residual 11.6202646
Correlation Structure: Compound symmetry
Formula: ~1 | Couple/DiaryDay
Parameter estimate(s):
Rho
-0.02067036
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | Gender
Parameter estimates:
-0.5 0.5
1.000000 1.008277
Fixed effects: Judg_Pos_MoodMC ~ -1 + Male + Male:Partner_Pos_MoodMC + Male:Self_Pos_MoodMC + Female + Female:Partner_Pos_MoodMC + Female:Self_Pos_MoodMC + Male:Sex + Male:Sex:Partner_Pos_MoodMC + Male:Sex:Self_Pos_MoodMC + Female:Sex + Female:Sex:Partner_Pos_MoodMC + Female:Sex:Self_Pos_MoodMC
Value Std.Error DF t-value p-value
Male -1.9633663 0.9259569 3235 -2.120365 0.0341
Female -0.0476715 1.1707216 3235 -0.040720 0.9675
Male:Partner_Pos_MoodMC 0.2056630 0.0288405 3235 7.131046 0.0000
Male:Self_Pos_MoodMC 0.4790217 0.0229066 3235 20.911994 0.0000
Partner_Pos_MoodMC:Female 0.1623210 0.0322049 3235 5.040264 0.0000
Self_Pos_MoodMC:Female 0.4481544 0.0223236 3235 20.075371 0.0000
Male:Sex 2.1749659 0.7224935 3235 3.010360 0.0026
Female:Sex 0.2719124 0.7344201 3235 0.370241 0.7112
Male:Partner_Pos_MoodMC:Sex -0.0017094 0.0341627 3235 -0.050038 0.9601
Male:Self_Pos_MoodMC:Sex -0.0358208 0.0374766 3235 -0.955820 0.3392
Partner_Pos_MoodMC:Female:Sex 0.0146349 0.0380211 3235 0.384914 0.7003
Self_Pos_MoodMC:Female:Sex 0.0936723 0.0337561 3235 2.774976 0.0056
Correlation:
Male Female Ml:P_P_MMC Ml:S_P_MMC Pr_P_MMC:F
Female -0.359
Male:Partner_Pos_MoodMC -0.017 -0.164
Male:Self_Pos_MoodMC -0.057 0.009 -0.132
Partner_Pos_MoodMC:Female 0.091 -0.256 0.085 -0.041
Self_Pos_MoodMC:Female -0.024 0.083 -0.049 0.007 -0.135
Male:Sex -0.196 0.003 -0.087 -0.001 0.003
Female:Sex 0.006 -0.156 0.006 0.004 -0.006
Male:Partner_Pos_MoodMC:Sex -0.040 0.002 -0.306 0.064 0.001
Male:Self_Pos_MoodMC:Sex 0.023 0.001 0.053 -0.370 0.000
Partner_Pos_MoodMC:Female:Sex 0.002 0.010 0.000 0.006 -0.279
Self_Pos_MoodMC:Female:Sex 0.003 -0.023 0.008 0.000 0.059
Sl_P_MMC:F Mal:Sx Fml:Sx M:P_P_MMC: M:S_P_MMC:
Female
Male:Partner_Pos_MoodMC
Male:Self_Pos_MoodMC
Partner_Pos_MoodMC:Female
Self_Pos_MoodMC:Female
Male:Sex 0.009
Female:Sex -0.115 -0.022
Male:Partner_Pos_MoodMC:Sex 0.010 0.057 -0.006
Male:Self_Pos_MoodMC:Sex -0.001 -0.204 0.006 -0.252
Partner_Pos_MoodMC:Female:Sex 0.073 0.005 -0.216 0.006 -0.019
Self_Pos_MoodMC:Female:Sex -0.390 -0.004 0.014 -0.019 0.005
P_P_MMC:F:
Female
Male:Partner_Pos_MoodMC
Male:Self_Pos_MoodMC
Partner_Pos_MoodMC:Female
Self_Pos_MoodMC:Female
Male:Sex
Female:Sex
Male:Partner_Pos_MoodMC:Sex
Male:Self_Pos_MoodMC:Sex
Partner_Pos_MoodMC:Female:Sex
Self_Pos_MoodMC:Female:Sex -0.207
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-5.192535859 -0.575570734 0.004970308 0.565885729 3.500104291
Number of Observations: 3322
Number of Groups: 76
tab_model(TB_Long_Model1,TB_Long_Model2,TB_Long_Model3,show.r2=F)
Judg Pos Mood MC | Judg Pos Mood MC | Judg Pos Mood MC | |||||||
---|---|---|---|---|---|---|---|---|---|
Predictors | Estimates | CI | p | Estimates | CI | p | Estimates | CI | p |
Male | 0.24 | -2.71 – 3.18 | 0.875 | -1.43 | -3.20 – 0.34 | 0.113 | -1.96 | -3.78 – -0.15 | 0.034 |
Female | -1.43 | -5.03 – 2.17 | 0.437 | 0.08 | -2.16 – 2.33 | 0.942 | -0.05 | -2.34 – 2.25 | 0.968 |
Male × Partner Pos MoodMC | 0.33 | 0.26 – 0.39 | <0.001 | 0.21 | 0.16 – 0.26 | <0.001 | 0.21 | 0.15 – 0.26 | <0.001 |
Partner Pos MoodMC × Female |
0.28 | 0.22 – 0.34 | <0.001 | 0.17 | 0.11 – 0.23 | <0.001 | 0.16 | 0.10 – 0.23 | <0.001 |
Male × Self Pos MoodMC | 0.48 | 0.44 – 0.52 | <0.001 | 0.48 | 0.43 – 0.52 | <0.001 | |||
Self Pos MoodMC × Female | 0.48 | 0.44 – 0.52 | <0.001 | 0.45 | 0.40 – 0.49 | <0.001 | |||
Male × Sex | 2.17 | 0.76 – 3.59 | 0.003 | ||||||
Female × Sex | 0.27 | -1.17 – 1.71 | 0.711 | ||||||
Male × Partner Pos MoodMC × Sex |
-0.00 | -0.07 – 0.07 | 0.960 | ||||||
Male × Self Pos MoodMC × Sex |
-0.04 | -0.11 – 0.04 | 0.339 | ||||||
Partner Pos MoodMC × Female × Sex |
0.01 | -0.06 – 0.09 | 0.700 | ||||||
Self Pos MoodMC × Female × Sex |
0.09 | 0.03 – 0.16 | 0.006 | ||||||
Random Effects | |||||||||
σ2 | 164.47 | 135.77 | 135.03 | ||||||
τ00 | |||||||||
τ00 | |||||||||
τ11 | 243.25 Couple.Female | 88.32 Couple.Female | 90.10 Couple.Female | ||||||
0.04 Couple.Male:Partner_Pos_MoodMC | 0.03 Couple.Male:Partner_Pos_MoodMC | 0.03 Couple.Male:Partner_Pos_MoodMC | |||||||
0.03 Couple.Partner_Pos_MoodMC:Female | 0.03 Couple.Partner_Pos_MoodMC:Female | 0.03 Couple.Partner_Pos_MoodMC:Female | |||||||
ρ01 | -0.19 | -0.45 | -0.43 | ||||||
-0.21 | -0.18 | -0.17 | |||||||
-0.09 | 0.18 | 0.16 | |||||||
ICC | 0.57 | 0.37 | 0.38 | ||||||
N | 76 Couple | 76 Couple | 76 Couple | ||||||
Observations | 3324 | 3324 | 3322 |
Model 4: Mediated T&B
for simplicity I use here different models for men and women # Using the method by Bauer, D. J., Preacher, K. J., & Gil, K. M. (2006)
https://quantdev.ssri.psu.edu/sites/qdev/files/ILD_Ch07_2017_Within-PersonMedationWithMLM.html
https://quantpsy.org/medmc/medmc111.htm
For Men:
<- Long1 %>% filter(Male==1)
Men_Long1 <- Men_Long1 %>% select(ID,DiaryDay,x=Partner_Pos_MoodMC,m2=Self_Pos_MoodMC,m=Self_Pos_MoodMC,y=Judg_Pos_MoodMC)
Men_Long1 #multivariate structure
<- Men_Long1 %>% pivot_longer(cols=c(m:y), names_to="dv",values_to="z") %>% rename(m=m2)
Men_Long2
#Adding the dummy indicators
<- Men_Long2 %>% mutate(dy=ifelse(dv=="y",1,0),
Men_Long2 dm=ifelse(dv=="m",1,0),
dvnum=ifelse(dv=="m",1,0))
<- lme(fixed = z ~ -1 +
Men_Model +dm:x + #a path
dm+dy:m+dy:x ,#b+c paths
dyrandom = ~ -1+dm+dm:x +
+dy:m+dy:x | ID,
dyweights = varIdent(form = ~ 1 | dvnum), #this invokes separate sigma^{2}_{e} for each outcome
corr=corSymm(form = ~1 | ID/DiaryDay),# this invokes the off-diaginal sigma_{e1e2}
data=Men_Long2,
na.action=na.exclude,
control=lmeControl(opt="optim",maxIter = 200, msMaxIter = 200, niterEM = 50, msMaxEval = 400))
summary(Men_Model)
Linear mixed-effects model fit by REML
Data: Men_Long2
AIC BIC logLik
26602.04 26742.54 -13278.02
Random effects:
Formula: ~-1 + dm + dm:x + dy + dy:m + dy:x | ID
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
dm 14.4562005 dm dy dm:x dy:m
dy 7.8532652 0.647
dm:x 0.1267200 -0.253 -0.146
dy:m 0.1204881 -0.264 -0.163 0.560
x:dy 0.1554505 -0.281 -0.288 0.724 0.232
Residual 12.8668307
Correlation Structure: General
Formula: ~1 | ID/DiaryDay
Parameter estimate(s):
Correlation:
1
2 -0.055
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | dvnum
Parameter estimates:
1 0
1.0000000 0.8929567
Fixed effects: z ~ -1 + dm + dm:x + dy + dy:m + dy:x
Value Std.Error DF t-value p-value
dm 2.9957656 1.7014415 3247 1.760722 0.0784
dy -1.2214638 0.9870576 3247 -1.237480 0.2160
dm:x 0.1755245 0.0269896 3247 6.503404 0.0000
dy:m 0.4595154 0.0256117 3247 17.941634 0.0000
x:dy 0.1866255 0.0268265 3247 6.956767 0.0000
Correlation:
dm dy dm:x dy:m
dy 0.588
dm:x -0.096 -0.074
dy:m -0.139 -0.133 0.169
x:dy -0.176 -0.121 0.293 -0.040
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.93379612 -0.56238525 0.03358847 0.56692955 4.09769126
Number of Observations: 3327
Number of Groups: 76
Extracting model’s estimates
<- summary(Men_Model)) (medmodelsummary
Linear mixed-effects model fit by REML
Data: Men_Long2
AIC BIC logLik
26602.04 26742.54 -13278.02
Random effects:
Formula: ~-1 + dm + dm:x + dy + dy:m + dy:x | ID
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
dm 14.4562005 dm dy dm:x dy:m
dy 7.8532652 0.647
dm:x 0.1267200 -0.253 -0.146
dy:m 0.1204881 -0.264 -0.163 0.560
x:dy 0.1554505 -0.281 -0.288 0.724 0.232
Residual 12.8668307
Correlation Structure: General
Formula: ~1 | ID/DiaryDay
Parameter estimate(s):
Correlation:
1
2 -0.055
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | dvnum
Parameter estimates:
1 0
1.0000000 0.8929567
Fixed effects: z ~ -1 + dm + dm:x + dy + dy:m + dy:x
Value Std.Error DF t-value p-value
dm 2.9957656 1.7014415 3247 1.760722 0.0784
dy -1.2214638 0.9870576 3247 -1.237480 0.2160
dm:x 0.1755245 0.0269896 3247 6.503404 0.0000
dy:m 0.4595154 0.0256117 3247 17.941634 0.0000
x:dy 0.1866255 0.0268265 3247 6.956767 0.0000
Correlation:
dm dy dm:x dy:m
dy 0.588
dm:x -0.096 -0.074
dy:m -0.139 -0.133 0.169
x:dy -0.176 -0.121 0.293 -0.040
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.93379612 -0.56238525 0.03358847 0.56692955 4.09769126
Number of Observations: 3327
Number of Groups: 76
<- summary(Men_Model)) (medmodelsummary
Linear mixed-effects model fit by REML
Data: Men_Long2
AIC BIC logLik
26602.04 26742.54 -13278.02
Random effects:
Formula: ~-1 + dm + dm:x + dy + dy:m + dy:x | ID
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
dm 14.4562005 dm dy dm:x dy:m
dy 7.8532652 0.647
dm:x 0.1267200 -0.253 -0.146
dy:m 0.1204881 -0.264 -0.163 0.560
x:dy 0.1554505 -0.281 -0.288 0.724 0.232
Residual 12.8668307
Correlation Structure: General
Formula: ~1 | ID/DiaryDay
Parameter estimate(s):
Correlation:
1
2 -0.055
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | dvnum
Parameter estimates:
1 0
1.0000000 0.8929567
Fixed effects: z ~ -1 + dm + dm:x + dy + dy:m + dy:x
Value Std.Error DF t-value p-value
dm 2.9957656 1.7014415 3247 1.760722 0.0784
dy -1.2214638 0.9870576 3247 -1.237480 0.2160
dm:x 0.1755245 0.0269896 3247 6.503404 0.0000
dy:m 0.4595154 0.0256117 3247 17.941634 0.0000
x:dy 0.1866255 0.0268265 3247 6.956767 0.0000
Correlation:
dm dy dm:x dy:m
dy 0.588
dm:x -0.096 -0.074
dy:m -0.139 -0.133 0.169
x:dy -0.176 -0.121 0.293 -0.040
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.93379612 -0.56238525 0.03358847 0.56692955 4.09769126
Number of Observations: 3327
Number of Groups: 76
<- coef(medmodelsummary)) (FEmatrix
Value Std.Error DF t-value p-value
dm 2.9957656 1.70144152 3247 1.760722 7.837959e-02
dy -1.2214638 0.98705760 3247 -1.237480 2.159985e-01
dm:x 0.1755245 0.02698964 3247 6.503404 9.058942e-11
dy:m 0.4595154 0.02561168 3247 17.941634 1.044056e-68
x:dy 0.1866255 0.02682647 3247 6.956767 4.193019e-12
#Fixed effects (a,b,c')
<- FEmatrix[3]
a <- FEmatrix[4]
b <- FEmatrix[5]
cprime
#random effects
<- VarCorr(Men_Model)
REmatrix <- as.numeric(REmatrix[3])
sig2_a <- as.numeric(REmatrix[4])
sig2_b <- as.numeric(REmatrix[5])
sig2_cprime
<- getVarCov(Men_Model)
CovMatrix <- CovMatrix[3,4]
covajbj
<- a*b + covajbj
indirecteffect <- cprime + a*b + covajbj
totaleffect <- 100*(indirecteffect/totaleffect) ) (percentmediated
[1] 32.34258
#Pulling the asymptotic covariances for the fixed effects of interest
<- vcov(Men_Model)) (ACM_FE
dm dy dm:x dy:m x:dy
dm 2.894903233 0.988250742 -0.0044262108 -6.063692e-03 -8.039964e-03
dy 0.988250742 0.974282710 -0.0019674809 -3.360059e-03 -3.191336e-03
dm:x -0.004426211 -0.001967481 0.0007284406 1.170198e-04 2.124116e-04
dy:m -0.006063692 -0.003360059 0.0001170198 6.559582e-04 -2.750916e-05
x:dy -0.008039964 -0.003191336 0.0002124116 -2.750916e-05 7.196593e-04
<- ACM_FE[3,3]
vara <- ACM_FE[4,4]
varb <- ACM_FE[3,4]
covab
#Pulling the asymptotic covariances for the random effects
#Using the vcov_vc() in the bootmlm library
# (ACM_RE <- bootmlm::vcov_vc(Men_Model, sd_cor = FALSE, print_names = TRUE))#work only with lmer models
# remotes::install_github("marklhc/bootmlm")
# varcovajbj=ACM_RE[2,2]
=0 varcovajbj
running Monte Carlo simulation
=a
a=b
b=covajbj
covajbj=vara
vara=varb
varb=covab
covab=varcovajbj
varcovajbj=20000
rep=95
conf=rnorm(rep)
dvec=dvec*sqrt(vara)+a
avec=dvec*covab/sqrt(vara)+sqrt(varb)*rnorm(rep,sd=sqrt(1-(covab^2)/(vara*varb)))+b
bvec=rnorm(rep)*sqrt(varcovajbj)+covajbj
cvec=avec*bvec+cvec
ab=(1-conf/100)/2
low=((1-conf/100)/2)+(conf/100)
upp=quantile(ab,low)
LL=quantile(ab,upp)
UL=format(LL,digits=4)
LL4=format(UL,digits=4)
UL4
hist(ab,breaks='FD',col='skyblue',xlab=paste(conf,'% Confidence Interval ','LL',LL4,' UL',UL4),
main='Distribution of Indirect Effect')
For Women:
#For Females:
<- Long1 %>% filter(Female==1)
Women_Long1 <- Women_Long1 %>% select(ID,DiaryDay,x=Partner_Pos_MoodMC,m2=Self_Pos_MoodMC,m=Self_Pos_MoodMC,y=Judg_Pos_MoodMC)
Women_Long1 #multivariate structure
<- Women_Long1 %>% pivot_longer(cols=c(m:y), names_to="dv",values_to="z") %>% rename(m=m2)
Women_Long2
#Adding the dummy indicators
<- Women_Long2 %>% mutate(dy=ifelse(dv=="y",1,0),
Women_Long2 dm=ifelse(dv=="m",1,0),
dvnum=ifelse(dv=="m",1,0))
<- lme(fixed = z ~ -1 +
Women_Model +dm:x + #a path
dm+dy:m+dy:x ,#b+c paths
dyrandom = ~ -1+dm+dm:x +
+dy:m+dy:x | ID,
dyweights = varIdent(form = ~ 1 | dvnum), #this invokes separate sigma^{2}_{e} for each outcome
corr=corSymm(form = ~1 | ID/DiaryDay),# this invokes the off-diaginal sigma_{e1e2}
data=Women_Long2,
na.action=na.exclude,
control=lmeControl(opt="optim",maxIter = 200, msMaxIter = 200, niterEM = 50, msMaxEval = 400))
summary(Women_Model)
Linear mixed-effects model fit by REML
Data: Women_Long2
AIC BIC logLik
26882.02 27022.52 -13418.01
Random effects:
Formula: ~-1 + dm + dm:x + dy + dy:m + dy:x | ID
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
dm 16.11733638 dm dy dm:x dy:m
dy 9.65533742 0.657
dm:x 0.13098990 -0.083 0.067
dy:m 0.08285679 -0.395 -0.508 -0.186
x:dy 0.15565274 0.086 -0.344 0.024 0.220
Residual 13.74045801
Correlation Structure: General
Formula: ~1 | ID/DiaryDay
Parameter estimate(s):
Correlation:
1
2 -0.043
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | dvnum
Parameter estimates:
1 0
1.0000000 0.8503061
Fixed effects: z ~ -1 + dm + dm:x + dy + dy:m + dy:x
Value Std.Error DF t-value p-value
dm -3.715616 1.8934998 3247 -1.962300 0.0498
dy 0.733774 1.1760408 3247 0.623936 0.5327
dm:x 0.189320 0.0302398 3247 6.260635 0.0000
dy:m 0.473689 0.0222007 3247 21.336684 0.0000
x:dy 0.156641 0.0285439 3247 5.487721 0.0000
Correlation:
dm dy dm:x dy:m
dy 0.604
dm:x -0.072 0.035
dy:m -0.165 -0.157 -0.037
x:dy 0.053 -0.261 0.033 -0.076
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-5.15723228 -0.58020893 0.01072805 0.58355766 3.89646755
Number of Observations: 3327
Number of Groups: 76
#viewing and putting model summary into an object
<- summary(Women_Model)) (medmodelsummary
Linear mixed-effects model fit by REML
Data: Women_Long2
AIC BIC logLik
26882.02 27022.52 -13418.01
Random effects:
Formula: ~-1 + dm + dm:x + dy + dy:m + dy:x | ID
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
dm 16.11733638 dm dy dm:x dy:m
dy 9.65533742 0.657
dm:x 0.13098990 -0.083 0.067
dy:m 0.08285679 -0.395 -0.508 -0.186
x:dy 0.15565274 0.086 -0.344 0.024 0.220
Residual 13.74045801
Correlation Structure: General
Formula: ~1 | ID/DiaryDay
Parameter estimate(s):
Correlation:
1
2 -0.043
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | dvnum
Parameter estimates:
1 0
1.0000000 0.8503061
Fixed effects: z ~ -1 + dm + dm:x + dy + dy:m + dy:x
Value Std.Error DF t-value p-value
dm -3.715616 1.8934998 3247 -1.962300 0.0498
dy 0.733774 1.1760408 3247 0.623936 0.5327
dm:x 0.189320 0.0302398 3247 6.260635 0.0000
dy:m 0.473689 0.0222007 3247 21.336684 0.0000
x:dy 0.156641 0.0285439 3247 5.487721 0.0000
Correlation:
dm dy dm:x dy:m
dy 0.604
dm:x -0.072 0.035
dy:m -0.165 -0.157 -0.037
x:dy 0.053 -0.261 0.033 -0.076
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-5.15723228 -0.58020893 0.01072805 0.58355766 3.89646755
Number of Observations: 3327
Number of Groups: 76
<- summary(Women_Model)) (medmodelsummary
Linear mixed-effects model fit by REML
Data: Women_Long2
AIC BIC logLik
26882.02 27022.52 -13418.01
Random effects:
Formula: ~-1 + dm + dm:x + dy + dy:m + dy:x | ID
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
dm 16.11733638 dm dy dm:x dy:m
dy 9.65533742 0.657
dm:x 0.13098990 -0.083 0.067
dy:m 0.08285679 -0.395 -0.508 -0.186
x:dy 0.15565274 0.086 -0.344 0.024 0.220
Residual 13.74045801
Correlation Structure: General
Formula: ~1 | ID/DiaryDay
Parameter estimate(s):
Correlation:
1
2 -0.043
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | dvnum
Parameter estimates:
1 0
1.0000000 0.8503061
Fixed effects: z ~ -1 + dm + dm:x + dy + dy:m + dy:x
Value Std.Error DF t-value p-value
dm -3.715616 1.8934998 3247 -1.962300 0.0498
dy 0.733774 1.1760408 3247 0.623936 0.5327
dm:x 0.189320 0.0302398 3247 6.260635 0.0000
dy:m 0.473689 0.0222007 3247 21.336684 0.0000
x:dy 0.156641 0.0285439 3247 5.487721 0.0000
Correlation:
dm dy dm:x dy:m
dy 0.604
dm:x -0.072 0.035
dy:m -0.165 -0.157 -0.037
x:dy 0.053 -0.261 0.033 -0.076
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-5.15723228 -0.58020893 0.01072805 0.58355766 3.89646755
Number of Observations: 3327
Number of Groups: 76
<- coef(medmodelsummary)) (FEmatrix
Value Std.Error DF t-value p-value
dm -3.7156157 1.89349985 3247 -1.9623005 4.981279e-02
dy 0.7337745 1.17604083 3247 0.6239362 5.327133e-01
dm:x 0.1893202 0.03023977 3247 6.2606348 4.337169e-10
dy:m 0.4736890 0.02220069 3247 21.3366843 1.221538e-94
x:dy 0.1566408 0.02854387 3247 5.4877213 4.384036e-08
#Fixed effects (a,b,c')
<- FEmatrix[3]
a <- FEmatrix[4]
b <- FEmatrix[5]
cprime
#random effects
<- VarCorr(Women_Model)
REmatrix <- as.numeric(REmatrix[3])
sig2_a <- as.numeric(REmatrix[4])
sig2_b <- as.numeric(REmatrix[5])
sig2_cprime
<- getVarCov(Women_Model)
CovMatrix <- CovMatrix[3,4]
covajbj
<- a*b + covajbj
indirecteffect <- cprime + a*b + covajbj
totaleffect <- 100*(indirecteffect/totaleffect) ) (percentmediated
[1] 35.88231
#Pulling the asymptotic covariances for the fixed effects of interest
<- vcov(Women_Model)) (ACM_FE
dm dy dm:x dy:m x:dy
dm 3.585341677 1.344232039 -4.130315e-03 -6.921059e-03 2.870044e-03
dy 1.344232039 1.383072039 1.229820e-03 -4.090071e-03 -8.765053e-03
dm:x -0.004130315 0.001229820 9.144438e-04 -2.456088e-05 2.847951e-05
dy:m -0.006921059 -0.004090071 -2.456088e-05 4.928705e-04 -4.842403e-05
x:dy 0.002870044 -0.008765053 2.847951e-05 -4.842403e-05 8.147526e-04
<- ACM_FE[3,3]
vara <- ACM_FE[4,4]
varb <- ACM_FE[3,4]
covab
#Pulling the asymptotic covariances for the random effects
#Using the vcov_vc() in the bootmlm library
# (ACM_RE <- bootmlm::vcov_vc(Women_Model, sd_cor = FALSE, print_names = TRUE))#work only with lmer models
# remotes::install_github("marklhc/bootmlm")
# varcovajbj=ACM_RE[2,2]
=0
varcovajbj
=a
a=b
b=covajbj
covajbj=vara
vara=varb
varb=covab
covab=varcovajbj
varcovajbj=20000
rep=95
conf=rnorm(rep)
dvec=dvec*sqrt(vara)+a
avec=dvec*covab/sqrt(vara)+sqrt(varb)*rnorm(rep,sd=sqrt(1-(covab^2)/(vara*varb)))+b
bvec=rnorm(rep)*sqrt(varcovajbj)+covajbj
cvec=avec*bvec+cvec
ab=(1-conf/100)/2
low=((1-conf/100)/2)+(conf/100)
upp=quantile(ab,low)
LL=quantile(ab,upp)
UL=format(LL,digits=4)
LL4=format(UL,digits=4)
UL4
hist(ab,breaks='FD',col='skyblue',xlab=paste(conf,'% Confidence Interval ','LL',LL4,' UL',UL4),
main='Distribution of Indirect Effect')
Model 5: Multivariate T&B (positive and negative mood)
Centering the negative mood variables
=mean(temp1$Partner_Neg_Mood,na.rm=T)
AvgTruthNeg<- Long1 %>% mutate(Judg_Neg_MoodMC=Judg_Neg_Mood-AvgTruthNeg,
Long1 Partner_Neg_MoodMC=Partner_Neg_Mood-AvgTruthNeg,
Self_Neg_MoodMC=Self_Neg_Mood-AvgTruthNeg
)
Keeping only relevant variables, and changing their names
<- Long1 %>% select(Couple,DiaryDay,ID,Pos_Judg=Judg_Pos_MoodMC,Neg_Judg=Judg_Neg_MoodMC,
Long2 Pos_Truth=Partner_Pos_MoodMC,Neg_Truth=Partner_Neg_MoodMC,Female,Male)
Creating Multivariate structure:
<- Long2 %>% pivot_longer(cols=c(Pos_Judg:Neg_Truth),names_to = c("Pos_Neg","Var"), names_sep = "_",values_to="z") %>%
Long3 pivot_wider(id_cols=c(Couple:Pos_Neg),values_from = "z",names_from = "Var") %>%
mutate(Pos=ifelse(Pos_Neg=="Pos",1,0),
Neg=ifelse(Pos_Neg=="Neg",1,0),
Pos_Neg_G=paste0(Pos_Neg,"_",Male)
)head(Long3)
# A tibble: 6 × 11
Couple DiaryDay ID Female Male Pos_Neg Judg Truth Pos Neg Pos_Neg_G
<int> <int> <int> <int> <int> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
1 100 0 1000 0 1 Pos -26.6 -39.6 1 0 Pos_1
2 100 0 1000 0 1 Neg 69.7 50.1 0 1 Neg_1
3 100 1 1000 0 1 Pos -29.6 0.436 1 0 Pos_1
4 100 1 1000 0 1 Neg 19.7 -5.92 0 1 Neg_1
5 100 2 1000 0 1 Pos -29.2 -32.9 1 0 Pos_1
6 100 2 1000 0 1 Neg 14.7 11.1 0 1 Neg_1
Estimating the model
<- lme(fixed = Judg ~ -1 +
TB_Long_Model4 :Pos+Male:Pos:Truth +#men's positive
Male:Pos+Female:Pos:Truth+#women's positive
Female:Neg+Male:Neg:Truth +#men's negative
Male:Neg+Female:Neg:Truth,#women's negative
Femalerandom = ~ -1 +
:Pos+Male:Pos:Truth +
Male:Pos+Female:Pos:Truth+
Female:Neg+Male:Neg:Truth +
Male:Neg+Female:Neg:Truth
Female| Couple,
weights = varIdent(form=~1|Pos_Neg_G),
# corr=corAR1(form = ~1 | Couple/DiaryDay),
#corr=corSymm(form = ~1 | Couple/DiaryDay/Pos_Neg_G),
data=Long3,
na.action=na.exclude,
control=lmeControl(opt="optim",maxIter = 200, msMaxIter = 200, niterEM = 50, msMaxEval = 400))
summary(TB_Long_Model4)
Linear mixed-effects model fit by REML
Data: Long3
AIC BIC logLik
51843.62 52170.07 -25873.81
Random effects:
Formula: ~-1 + Male:Pos + Male:Pos:Truth + Female:Pos + Female:Pos:Truth + Male:Neg + Male:Neg:Truth + Female:Neg + Female:Neg:Truth | Couple
Structure: General positive-definite, Log-Cholesky parametrization
StdDev Corr
Male:Pos 13.0075062 Mal:Ps Ps:Fml Mal:Ng Fml:Ng Ml:P:T Ps:T:F Ml:T:N
Pos:Female 15.8392611 -0.099
Male:Neg 8.5945502 -0.074 -0.215
Female:Neg 6.7949922 0.017 -0.244 -0.041
Male:Pos:Truth 0.2344183 -0.109 -0.198 0.265 0.130
Pos:Truth:Female 0.1760986 -0.067 -0.162 0.061 0.218 0.294
Male:Truth:Neg 0.3155208 0.135 -0.178 0.332 -0.007 0.841 0.416
Truth:Female:Neg 0.2345493 0.052 0.084 -0.382 0.371 -0.094 0.701 0.082
Residual 12.7350344
Variance function:
Structure: Different standard deviations per stratum
Formula: ~1 | Pos_Neg_G
Parameter estimates:
Pos_1 Neg_1 Pos_0 Neg_0
1.0000000 0.8280895 1.0328893 0.6322623
Fixed effects: Judg ~ -1 + Male:Pos + Male:Pos:Truth + Female:Pos + Female:Pos:Truth + Male:Neg + Male:Neg:Truth + Female:Neg + Female:Neg:Truth
Value Std.Error DF t-value p-value
Male:Pos 0.019453 1.5514238 6565 0.012539 0.9900
Pos:Female -1.420586 1.8614907 6565 -0.763144 0.4454
Male:Neg 4.372406 1.0327647 6565 4.233691 0.0000
Female:Neg -0.498154 0.8145589 6565 -0.611563 0.5408
Male:Pos:Truth 0.286142 0.0355023 6565 8.059811 0.0000
Pos:Truth:Female 0.234376 0.0326561 6565 7.177120 0.0000
Male:Truth:Neg 0.407212 0.0472078 6565 8.625965 0.0000
Truth:Female:Neg 0.254566 0.0367206 6565 6.932511 0.0000
Correlation:
Mal:Ps Ps:Fml Mal:Ng Fml:Ng Ml:P:T Ps:T:F Ml:T:N
Pos:Female -0.092
Male:Neg -0.075 -0.201
Female:Neg 0.017 -0.232 -0.036
Male:Pos:Truth -0.050 -0.147 0.192 0.094
Pos:Truth:Female -0.041 -0.128 0.036 0.135 0.138
Male:Truth:Neg 0.090 -0.133 0.272 -0.006 0.507 0.201
Truth:Female:Neg 0.039 0.051 -0.267 0.314 -0.056 0.349 0.048
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-4.42215725 -0.54503780 -0.09824059 0.47667982 5.55625296
Number of Observations: 6648
Number of Groups: 76
tab_model(TB_Long_Model4,show.r2=F)
Judg | |||
---|---|---|---|
Predictors | Estimates | CI | p |
Male × Pos | 0.02 | -3.02 – 3.06 | 0.990 |
Pos × Female | -1.42 | -5.07 – 2.23 | 0.445 |
Male × Neg | 4.37 | 2.35 – 6.40 | <0.001 |
Female × Neg | -0.50 | -2.09 – 1.10 | 0.541 |
Male × Pos × Truth | 0.29 | 0.22 – 0.36 | <0.001 |
Pos × Truth × Female | 0.23 | 0.17 – 0.30 | <0.001 |
Male × Truth × Neg | 0.41 | 0.31 – 0.50 | <0.001 |
Truth × Female × Neg | 0.25 | 0.18 – 0.33 | <0.001 |
Random Effects | |||
σ2 | 162.18 | ||
τ00 | |||
τ00 | |||
τ11 Couple.Pos:Female | 250.88 | ||
τ11 Couple.Male:Neg | 73.87 | ||
τ11 Couple.Female:Neg | 46.17 | ||
τ11 Couple.Male:Pos:Truth | 0.05 | ||
τ11 Couple.Pos:Truth:Female | 0.03 | ||
τ11 Couple.Male:Truth:Neg | 0.10 | ||
τ11 Couple.Truth:Female:Neg | 0.06 | ||
ρ01 | -0.10 | ||
-0.07 | |||
0.02 | |||
-0.11 | |||
-0.07 | |||
0.14 | |||
0.05 | |||
ICC | 0.48 | ||
N Couple | 76 | ||
Observations | 6648 |
VarCorr(TB_Long_Model4)
Couple = pdLogChol(-1 + Male:Pos + Male:Pos:Truth + Female:Pos + Female:Pos:Truth + ) Couple = pdLogChol( Male:Neg + Male:Neg:Truth + Female:Neg + Female:Neg:Truth)
Variance StdDev Corr
Male:Pos 169.19521870 13.0075062 Mal:Ps Ps:Fml Mal:Ng Fml:Ng Ml:P:T
Pos:Female 250.88219223 15.8392611 -0.099
Male:Neg 73.86629261 8.5945502 -0.074 -0.215
Female:Neg 46.17191869 6.7949922 0.017 -0.244 -0.041
Male:Pos:Truth 0.05495194 0.2344183 -0.109 -0.198 0.265 0.130
Pos:Truth:Female 0.03101070 0.1760986 -0.067 -0.162 0.061 0.218 0.294
Male:Truth:Neg 0.09955340 0.3155208 0.135 -0.178 0.332 -0.007 0.841
Truth:Female:Neg 0.05501337 0.2345493 0.052 0.084 -0.382 0.371 -0.094
Residual 162.18110205 12.7350344
Male:Pos Ps:T:F Ml:T:N
Pos:Female
Male:Neg
Female:Neg
Male:Pos:Truth
Pos:Truth:Female
Male:Truth:Neg 0.416
Truth:Female:Neg 0.701 0.082
Residual