## Warning: package 'tidytext' was built under R version 4.4.2
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.5.1 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
e:
get_sentiments("bing") %>%
group_by(sentiment) %>%
count(sentiment)
## # A tibble: 2 × 2
## # Groups: sentiment [2]
## sentiment n
## <chr> <int>
## 1 negative 4781
## 2 positive 2005
url<- "https://raw.githubusercontent.com/stormwhale/data-mines/refs/heads/main/sentimentdataset.csv"
tweet<- read.csv(url) %>%
select(c(Year, Text))
tok_tweet<- tweet %>%
unnest_tokens(word, Text)
data("stop_words")
clean_tweet<- tok_tweet %>%
anti_join(stop_words)
## Joining with `by = join_by(word)`
clean_tweet %>%
count(word, sort = TRUE) %>%
slice_max(n, n = 10) %>%
mutate(word = reorder(word, n)) %>%
ggplot(aes(n, word)) +
geom_col() +
labs(title = "Top ten frequently used tweeter words")
aff_score<- clean_tweet %>%
inner_join(get_sentiments('afinn'), by = "word") %>%
group_by(Year) %>%
summarise(sentiment=sum(value))
ggplot(aff_score, aes(x=Year, y=sentiment))+
geom_bar(stat='identity')+
scale_x_continuous(breaks = seq(2010, 2023, 1))+
labs(title = 'Overall tweeter sentiment by years')