library(tidyverse)
library(tidyr)
setwd("/Users/asherscott/Desktop/Data 110")
cities500 <- read_csv("500CitiesLocalHealthIndicators.cdc.csv")
data(cities500)Healthy Cities GIS Assignment
Load the libraries and set the working directory
The GeoLocation variable has (lat, long) format
Split GeoLocation (lat, long) into two columns: lat and long
latlong <- cities500|>
mutate(GeoLocation = str_replace_all(GeoLocation, "[()]", ""))|>
separate(GeoLocation, into = c("lat", "long"), sep = ",", convert = TRUE)
head(latlong)# A tibble: 6 × 25
Year StateAbbr StateDesc CityName GeographicLevel DataSource Category
<dbl> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 CA California Hawthorne Census Tract BRFSS Health Outcom…
2 2017 CA California Hawthorne City BRFSS Unhealthy Beh…
3 2017 CA California Hayward City BRFSS Health Outcom…
4 2017 CA California Hayward City BRFSS Unhealthy Beh…
5 2017 CA California Hemet City BRFSS Prevention
6 2017 CA California Indio Census Tract BRFSS Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
# DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
# Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
# Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
Filter the dataset
Remove the StateDesc that includes the United Sates, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.
latlong_clean <- latlong |>
filter(StateDesc != "United States") |>
filter(Category == "Prevention") |>
filter(Data_Value_Type == "Crude prevalence") |>
filter(Year == 2017)
head(latlong_clean)# A tibble: 6 × 25
Year StateAbbr StateDesc CityName GeographicLevel DataSource Category
<dbl> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 AL Alabama Montgomery City BRFSS Prevention
2 2017 CA California Concord City BRFSS Prevention
3 2017 CA California Concord City BRFSS Prevention
4 2017 CA California Fontana City BRFSS Prevention
5 2017 CA California Richmond Census Tract BRFSS Prevention
6 2017 FL Florida Davie Census Tract BRFSS Prevention
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
# DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
# Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
# Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
What variables are included? (can any of them be removed?)
names(latlong_clean) [1] "Year" "StateAbbr"
[3] "StateDesc" "CityName"
[5] "GeographicLevel" "DataSource"
[7] "Category" "UniqueID"
[9] "Measure" "Data_Value_Unit"
[11] "DataValueTypeID" "Data_Value_Type"
[13] "Data_Value" "Low_Confidence_Limit"
[15] "High_Confidence_Limit" "Data_Value_Footnote_Symbol"
[17] "Data_Value_Footnote" "PopulationCount"
[19] "lat" "long"
[21] "CategoryID" "MeasureId"
[23] "CityFIPS" "TractFIPS"
[25] "Short_Question_Text"
Remove the variables that will not be used in the assignment
prevention <- latlong_clean |>
select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(prevention)# A tibble: 6 × 18
Year StateAbbr StateDesc CityName GeographicLevel Category UniqueID Measure
<dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 AL Alabama Montgome… City Prevent… 151000 Choles…
2 2017 CA California Concord City Prevent… 616000 Visits…
3 2017 CA California Concord City Prevent… 616000 Choles…
4 2017 CA California Fontana City Prevent… 624680 Visits…
5 2017 CA California Richmond Census Tract Prevent… 0660620… Choles…
6 2017 FL Florida Davie Census Tract Prevent… 1216475… Choles…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
md <- prevention |>
filter(StateAbbr=="MD")
head(md)# A tibble: 6 × 18
Year StateAbbr StateDesc CityName GeographicLevel Category UniqueID Measure
<dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Chole…
2 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Visit…
3 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Visit…
4 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Curre…
5 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Curre…
6 2017 MD Maryland Baltimore Census Tract Preventi… 2404000… "Visit…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
unique(md$CityName)[1] "Baltimore"
The new dataset “Prevention” is a manageable dataset now.
For your assignment, work with a cleaned dataset.
1. Once you run the above code, filter this dataset one more time for any particular subset with no more than 900 observations.
Filter chunk here
prevention2 <- latlong_clean |>
select(-DataSource,-Data_Value_Unit, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote, -UniqueID)
head(prevention)# A tibble: 6 × 18
Year StateAbbr StateDesc CityName GeographicLevel Category UniqueID Measure
<dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 AL Alabama Montgome… City Prevent… 151000 Choles…
2 2017 CA California Concord City Prevent… 616000 Visits…
3 2017 CA California Concord City Prevent… 616000 Choles…
4 2017 CA California Fontana City Prevent… 624680 Visits…
5 2017 CA California Richmond Census Tract Prevent… 0660620… Choles…
6 2017 FL Florida Davie Census Tract Prevent… 1216475… Choles…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
# PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
# MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
ATL <- prevention2 %>%
filter(CityName %in% c("Atlanta"))
head(ATL)# A tibble: 6 × 18
Year StateAbbr StateDesc CityName GeographicLevel Category Measure
<dbl> <chr> <chr> <chr> <chr> <chr> <chr>
1 2017 GA Georgia Atlanta Census Tract Prevention "Cholesterol sc…
2 2017 GA Georgia Atlanta Census Tract Prevention "Current lack o…
3 2017 GA Georgia Atlanta Census Tract Prevention "Current lack o…
4 2017 GA Georgia Atlanta Census Tract Prevention "Visits to doct…
5 2017 GA Georgia Atlanta Census Tract Prevention "Current lack o…
6 2017 GA Georgia Atlanta Census Tract Prevention "Cholesterol sc…
# ℹ 11 more variables: DataValueTypeID <chr>, Data_Value_Type <chr>,
# Data_Value <dbl>, PopulationCount <dbl>, lat <dbl>, long <dbl>,
# CategoryID <chr>, MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>,
# Short_Question_Text <chr>
2. Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.
First plot chunk here
ggplot(ATL, mapping = aes(x = Data_Value, fill = Short_Question_Text)) +
geom_density(alpha = 0.6) +
labs(
title = "Atlanta Short Question Responses",
x = "Data Percentage"
) +
scale_fill_manual(values = c(
"Taking BP Medication" = "hotpink",
"Annual Checkup" = "yellow",
"Cholesterol Screening" = "steelblue",
"Health Insurance" = "darkorange"
))Warning: Removed 4 rows containing non-finite outside the scale range
(`stat_density()`).
3. Now create a map of your subsetted dataset.
First map chunk here
library(leaflet)
leaflet(ATL) %>%
setView(lng = - 84.3885, lat = 33.7501, zoom =6) %>%
addProviderTiles("Esri.WorldStreetMap") %>%
addCircles(
data = ATL,
radius = ATL$Data_Value,
color = "red")Assuming "long" and "lat" are longitude and latitude, respectively
4. Refine your map to include a mouse-click tooltip
Refined map chunk here
popATL <- paste0(
"<b>Year: </b>", ATL$Year, "<br>",
"<b>Population: </b>", ATL$PopulationCount, "<br>",
"<b>Health Percentage: </b>", ATL$Data_Value, "<br>",
"<b>Short Response Text: </b>", ATL$Short_Question_Text, "<br>")leaflet(ATL) %>%
setView(lng = - 84.3885, lat = 33.7501, zoom =6) %>%
addProviderTiles("Esri.WorldStreetMap") %>%
addCircles(
data = ATL,
radius = ATL$Data_Value,
color = "red",
popup = popATL)Assuming "long" and "lat" are longitude and latitude, respectively
5. Write a paragraph
In a paragraph, describe the plots you created and what they show.
My first graph is a density plot showing the percentage of all the Short Question Text responses from the city of Atlanta.I used Data_Value as the X. Annual Checkup, Cholesterol Screening, and Taking BP Medication were all hovering around 75%, while Health Insurance hovered around the 25% range. I chose distinctive colors so they can have better distinctions. My second graph is mapping the city of Atlanta, Georgia. After looking up and plugging in the coordinates of the city, I then added my dataset which then displayed the areas in the city where the data was collected. I changed the color to red because I thought it stands out more. My Final graph is a continuation of the mapping one. In the previous chunk I created a popup and added the year, population, health percentage (data_value) and Short Response Text. I wanted to add in the “Measure” column but only an error message would come up. I also struggled to add color distinctions based on Short responses.