setwd("C:/Users/VIP/Documents/JKL")
library(dplyr)
## 
## Adjuntando el paquete: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

Vitamina C

df=read.csv("vitaminaC.csv",sep=",")
df
##        CODIGO   CONC ESPECIE
## 1       L1MC1 10.147  CAPURI
## 2       L1MC1 10.869  CAPURI
## 3       L1MC1 10.704  CAPURI
## 4       L2MC2 10.674  CAPURI
## 5       L2MC2 10.548  CAPURI
## 6       L2MC2 10.506  CAPURI
## 7       L3MC3 10.638  CAPURI
## 8       L3MC3 10.579  CAPURI
## 9       L3MC3 10.566  CAPURI
## 10      L1MP1 10.055  PAPAYO
## 11      L1MP1  9.924  PAPAYO
## 12      L1MP1 10.059  PAPAYO
## 13      L2MP2 10.043  PAPAYO
## 14      L2MP2 10.155  PAPAYO
## 15      L2MP2 10.550  PAPAYO
## 16      L3MP3 10.677  PAPAYO
## 17      L3MP3 10.570  PAPAYO
## 18      L3MP3 10.462  PAPAYO
## 19    L1MHDT1  9.883   BTORO
## 20    L1MHDT1  9.648   BTORO
## 21    L1MHDT1  9.891   BTORO
## 22    L2MHDT2 10.604   BTORO
## 23    L2MHDT2 10.510   BTORO
## 24    L2MHDT2 10.190   BTORO
## 25 25.L3MHDT3 10.449   BTORO
## 26 26.L3MDHT3 10.578   BTORO
## 27 27.L3MDHT3 10.417   BTORO
boxplot(CONC~ESPECIE,data=df,col=c("orange","red","lightblue"))

modelo<-aov(CONC~ESPECIE,data=df)
summary(modelo)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## ESPECIE      2 0.6282 0.31409    3.87 0.0349 *
## Residuals   24 1.9478 0.08116                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

De acuerdo al p-valor=0.0359<0.05 hay diferencias significativas en las concentraciones de Vitamina C entre las especies estudiadas

df=read.csv("macroElementos.csv",sep=",")
df$ESPECIE<-factor(df$ESPECIE)
df
##       K   Ca   Mg    Na ESPECIE
## 1  0.51 0.20 1.38 37.97  CAPURI
## 2  0.49 0.20 1.36 32.83  CAPURI
## 3  0.51 0.21 1.32 31.36  CAPURI
## 4  0.52 0.25 1.46 15.62  CAPURI
## 5  0.48 0.23 1.42 12.99  CAPURI
## 6  0.54 0.30 1.51 19.51  CAPURI
## 7  0.60 0.26 1.78 26.89  CAPURI
## 8  0.67 0.25 1.76 28.45  CAPURI
## 9  0.61 0.23 1.70 23.45  CAPURI
## 10 0.54 0.38 2.27 15.10  PAPAYO
## 11 0.50 0.40 2.37 20.53  PAPAYO
## 12 0.50 0.37 2.25 19.89  PAPAYO
## 13 0.50 0.44 2.22  5.30  PAPAYO
## 14 0.80 0.40 2.30  5.75  PAPAYO
## 15 0.51 0.42 2.20  6.18  PAPAYO
## 16 0.57 0.29 2.12  1.11  PAPAYO
## 17 0.60 0.31 2.08  1.73  PAPAYO
## 18 0.58 0.31 2.09  1.39  PAPAYO
## 19 0.86 0.35 2.40 33.42   BTORO
## 20 0.87 0.34 2.44 37.41   BTORO
## 21 0.87 0.31 2.36 31.05   BTORO
## 22 0.85 0.27 2.38 33.54   BTORO
## 23 0.83 0.30 2.41 30.84   BTORO
## 24 0.84 0.30 2.37 32.31   BTORO
## 25 0.92 0.29 2.35 24.13   BTORO
## 26 0.90 0.27 2.33 21.78   BTORO
## 27 0.90 0.27 2.29 22.72   BTORO

Potasio K

boxplot(K~ESPECIE,data=df,col=c("orange","red","lightblue"))

modelo<-aov(K~ESPECIE,data=df)
summary(modelo)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## ESPECIE      2 0.5928 0.29638    62.7 2.95e-10 ***
## Residuals   24 0.1134 0.00473                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Existe diferencia significativa entre los niveles de K p-valor=2.95e-10

Calcio Ca

boxplot(Ca~ESPECIE,data=df,col=c("orange","red","lightblue"))

modelo<-aov(Ca~ESPECIE,data=df)
summary(modelo)
##             Df  Sum Sq Mean Sq F value   Pr(>F)    
## ESPECIE      2 0.07872 0.03936   24.67 1.51e-06 ***
## Residuals   24 0.03829 0.00160                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Existe diferencia significativa entre los niveles de K p-valor=1.51e-06

Magnesio Mg

boxplot(Mg~ESPECIE,data=df,col=c("orange","red","lightblue"))

modelo<-aov(Mg~ESPECIE,data=df)
summary(modelo)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## ESPECIE      2  3.666  1.8329   125.3 1.98e-13 ***
## Residuals   24  0.351  0.0146                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Existe diferencia significativa entre los niveles de K p-valor=1.98e-13

Sodio

boxplot(Na~ESPECIE,data=df,col=c("orange","red","lightblue"))

modelo<-aov(Na~ESPECIE,data=df)
summary(modelo)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## ESPECIE      2   2251  1125.4   21.08 5.18e-06 ***
## Residuals   24   1281    53.4                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Existe diferencia significativa entre los niveles de K p-valor=5.18e-06

Micro Elements , P y Acidez

df=read.csv("microElementos.csv",sep=",")
df$ESPECIE<-factor(df$ESPECIE)
df
##       Fe   Cu    Mn Zn    P Acidez ESPECIE
## 1   2.30 0.71  1.09  0 3.93   0.29  CAPURI
## 2   2.25 0.64  1.06  0 4.15   0.29  CAPURI
## 3   2.33 0.59  1.22  0 4.15   0.30  CAPURI
## 4   1.17 0.48  3.65  0 3.82   0.30  CAPURI
## 5   1.23 0.61  3.46  0 3.72   0.28  CAPURI
## 6   1.54 0.58  4.15  0 3.66   0.22  CAPURI
## 7   4.46 0.92  3.93  0 3.50   0.25  CAPURI
## 8   4.13 1.06  4.50  0 3.56   0.22  CAPURI
## 9   4.01 1.03  3.39  0 3.39   0.26  CAPURI
## 10  1.76 0.67 65.66  0 3.02   0.59  PAPAYO
## 11  1.59 0.65 63.01  0 3.23   0.47  PAPAYO
## 12  1.58 0.68 62.16  0 3.39   0.54  PAPAYO
## 13  2.80 0.30 89.23  0 2.97   0.44  PAPAYO
## 14  3.31 0.29 78.82  0 3.34   0.44  PAPAYO
## 15  2.47 0.32 83.48  0 3.45   0.46  PAPAYO
## 16  9.63 1.01 38.85  0 3.34   0.37  PAPAYO
## 17 10.24 0.96 34.31  0 3.45   0.37  PAPAYO
## 18  8.61 0.95 36.75  0 3.39   0.37  PAPAYO
## 19 17.24 0.31 24.83  0 3.02   0.44   BTORO
## 20 17.46 0.39 25.79  0 2.97   0.46   BTORO
## 21 13.03 0.30 23.48  0 2.80   0.45   BTORO
## 22 45.16 0.66 26.74  0 2.75   0.44   BTORO
## 23 41.28 0.65 26.31  0 2.70   0.44   BTORO
## 24 38.91 0.67 26.01  0 2.64   0.45   BTORO
## 25  9.31 0.37 31.40  0 2.59   0.44   BTORO
## 26  7.20 0.43 29.96  0 2.59   0.44   BTORO
## 27  8.48 0.34 30.76  0 2.48   0.47   BTORO

Hierro

boxplot(Fe~ESPECIE,data=df,col=c("orange","red","lightblue"))

modelo<-aov(Fe~ESPECIE,data=df)
summary(modelo)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## ESPECIE      2   2045  1022.4   12.25 0.000215 ***
## Residuals   24   2003    83.4                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Cobre

boxplot(Cu~ESPECIE,data=df,col=c("orange","red","lightblue"))

modelo<-aov(Cu~ESPECIE,data=df)
summary(modelo)
##             Df Sum Sq Mean Sq F value Pr(>F)  
## ESPECIE      2 0.3629 0.18145   3.521 0.0456 *
## Residuals   24 1.2367 0.05153                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Manganeso

boxplot(Mn~ESPECIE,data=df,col=c("orange","red","lightblue"))

modelo<-aov(Mn~ESPECIE,data=df)
summary(modelo)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## ESPECIE      2  15504    7752   52.94 1.58e-09 ***
## Residuals   24   3514     146                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Fósforo

boxplot(P~ESPECIE,data=df,col=c("orange","red","lightblue"))

modelo<-aov(P~ESPECIE,data=df)
summary(modelo)
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## ESPECIE      2  4.857  2.4283   52.73 1.65e-09 ***
## Residuals   24  1.105  0.0461                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Acidez

boxplot(Acidez~ESPECIE,data=df,col=c("orange","red","lightblue"))

modelo<-aov(Acidez~ESPECIE,data=df)
summary(modelo)
##             Df  Sum Sq Mean Sq F value   Pr(>F)    
## ESPECIE      2 0.19683 0.09841   41.65 1.57e-08 ***
## Residuals   24 0.05671 0.00236                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
df2<- df %>% group_by(ESPECIE) %>% summarise(n=n(),promFe=mean(Fe),stdFe=sd(Fe),promMn=mean(Mn),stdMn=sd(Mn),promCu=mean(Cu),stdCu=sd(Cu))
df2
## # A tibble: 3 × 8
##   ESPECIE     n promFe stdFe promMn stdMn promCu stdCu
##   <fct>   <int>  <dbl> <dbl>  <dbl> <dbl>  <dbl> <dbl>
## 1 BTORO       9  22.0  15.3   27.3   2.78  0.458 0.157
## 2 CAPURI      9   2.60  1.28   2.94  1.40  0.736 0.213
## 3 PAPAYO      9   4.67  3.69  61.4  20.7   0.648 0.291
df2<- df %>% group_by(ESPECIE) %>% summarise(n=n(),promP=mean(P),stdP=sd(P),promAcidez=mean(Acidez),stdAcidez=sd(Acidez))
df2
## # A tibble: 3 × 6
##   ESPECIE     n promP  stdP promAcidez stdAcidez
##   <fct>   <int> <dbl> <dbl>      <dbl>     <dbl>
## 1 BTORO       9  2.73 0.179      0.448    0.0109
## 2 CAPURI      9  3.76 0.272      0.268    0.0319
## 3 PAPAYO      9  3.29 0.179      0.45     0.0771