Soc-Ace: POLECAT Data Analysis [V2]

Author

Gagan Atreya

Published

November 11, 2024

Section 1. POLECAT Events By Country: 2020 - 2023

1.1 Breakdown of Events by Country

Display code
## Gagan Atreya
## POLECAT Analysis

rm(list = ls())

pacman::p_load(data.table, tidyverse, lubridate, 
               vtable, stringi, stringr, ggcharts, plyr, 
               gridExtra, RgoogleMaps, ggmap, mapproj)

df_2020 <- as.data.table(read.delim("~/Desktop/soc_ace_2024/data/polecat/ngecEvents.DV.2020.txt"))
df_2021 <- as.data.table(read.delim("~/Desktop/soc_ace_2024/data/polecat/ngecEvents.DV.2021.txt"))
df_2022 <- as.data.table(read.delim("~/Desktop/soc_ace_2024/data/polecat/ngecEvents.DV.2022.txt"))
df_2023 <- as.data.table(read.delim("~/Desktop/soc_ace_2024/data/polecat/ngecEvents.DV.2023.txt"))

df <- rbindlist(list(df_2020, df_2021, df_2022, df_2023))

country_list <- c("BLR", "GEO", "KAZ", 
                  "POL", "RUS", "UKR")

df01 <- df[df$Country %in% country_list, ]
df <- df01
rm(list = setdiff(ls(), c("df")))

table(df$Country)

  BLR   GEO   KAZ   POL   RUS   UKR 
 9068  4162  3272  3910 28725 52712 
Display code
df$Year <- year(df$Event.Date)
table(df$Year)

 2019  2020  2021  2022  2023 
   60 13349 18928 42185 27327 
Display code
## Register stadiamaps api:
ggmap::register_stadiamaps(key = "ecb62ab3-c884-4be1-9e19-4a49f5f8bed0")

Section 2. Maps: Belarus

2.1. Belarus: arrests

Display code
dfblr <- df[df$Country == "BLR", ]
dfblr <- dfblr[dfblr$Event.Mode == "arrest", ]
dfblr$Latitude <- as.numeric(dfblr$Latitude)
dfblr$Longitude <- as.numeric(dfblr$Longitude)

dfblr$Event_count <- 1

df01 <- ddply(dfblr, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))


mapoutline <- get_map(location = c(left = 23.00, # lon min
                                   bottom = 51.00, # lat min
                                   right = 32.75, # lon max
                                   top = 56.00), # lat max
                      maptype = "outdoors", 
                      source = "stadia",
                      color="bw")

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = df01,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event mode tagged as arrests in Belarus, 2020 - 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2.2. Belarus: arrests per year

Table:

Display code
dfblr20 <- dfblr[dfblr$Year == "2020", ]
dfblr21 <- dfblr[dfblr$Year == "2021", ]
dfblr22 <- dfblr[dfblr$Year == "2022", ]
dfblr23 <- dfblr[dfblr$Year == "2023", ]

table(dfblr$Year)

2020 2021 2022 2023 
 271  290   59   80 

Maps:

Display code
dfblr20 <- ddply(dfblr20, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

dfblr21 <- ddply(dfblr21, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

dfblr22 <- ddply(dfblr22, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

dfblr23 <- ddply(dfblr23, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfblr20,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event mode tagged as arrests in Belarus, 2020"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

Display code
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfblr21,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event mode tagged as arrests in Belarus, 2021"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

Display code
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfblr22,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event mode tagged as arrests in Belarus, 2022"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

Display code
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfblr23,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event mode tagged as arrests in Belarus, 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2.3. Belarus: illegal drugs

Display code
dfblr <- df[df$Country == "BLR", ]
dfblr$drugs <- ifelse(str_detect(dfblr$Contexts, "illegal_drugs") == T, 1, 0)
dfblr <- dfblr[dfblr$drugs == 1, ]
dfblr$Longitude <- as.numeric(dfblr$Longitude)
dfblr$Latitude <- as.numeric(dfblr$Latitude)

dfblr$Event_count <- 1

df01 <- ddply(dfblr, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = df01,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event contexts tagged as illegal_drugs in Belarus, 2020 - 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

2.4. Belarus: illegal_drugs per year

Table:

Display code
dfblr20 <- dfblr[dfblr$Year == "2020", ]
dfblr21 <- dfblr[dfblr$Year == "2021", ]
dfblr22 <- dfblr[dfblr$Year == "2022", ]
dfblr23 <- dfblr[dfblr$Year == "2023", ]

table(dfblr$Year)

2020 2021 2022 2023 
   2    6    1    1 

Maps:

Display code
dfblr20 <- ddply(dfblr20, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

dfblr21 <- ddply(dfblr21, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

dfblr22 <- ddply(dfblr22, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

dfblr23 <- ddply(dfblr23, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfblr20,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event contexts tagged as illegal_drugs in Belarus, 2020"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

Display code
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfblr21,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("vent contexts tagged as illegal_drugs in Belarus, 2021"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

Display code
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfblr22,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("vent contexts tagged as illegal_drugs in Belarus, 2022"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

Display code
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfblr23,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("vent contexts tagged as illegal_drugs in Belarus, 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

Section 3. Maps: Georgia

3.1. Georgia: arrests

Display code
dfgeo <- df[df$Country == "GEO", ]
dfgeo <- dfgeo[dfgeo$Event.Mode == "arrest", ]
dfgeo$Latitude <- as.numeric(dfgeo$Latitude)
dfgeo$Longitude <- as.numeric(dfgeo$Longitude)

dfgeo$Event_count <- 1

df01 <- ddply(dfgeo, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))


mapoutline <- get_map(location = c(left = 40.00, # lon min
                                   bottom = 41.00, # lat min
                                   right = 46.50, # lon max
                                   top = 43.50), # lat max
                      maptype = "outdoors", 
                      source = "stadia",
                      color="bw")

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = df01,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event mode tagged as arrests in Georgia, 2020 - 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

3.2. Georgia: arrests per year

Table:

Display code
dfgeo20 <- dfgeo[dfgeo$Year == "2020", ]
dfgeo21 <- dfgeo[dfgeo$Year == "2021", ]
dfgeo22 <- dfgeo[dfgeo$Year == "2022", ]
dfgeo23 <- dfgeo[dfgeo$Year == "2023", ]

table(dfgeo$Year)

2020 2021 2022 2023 
  22  164   39   50 

Maps:

Display code
dfgeo20 <- ddply(dfgeo20, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

dfgeo21 <- ddply(dfgeo21, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

dfgeo22 <- ddply(dfgeo22, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

dfgeo23 <- ddply(dfgeo23, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfgeo20,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event mode tagged as arrests in Georgia, 2020"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

Display code
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfgeo21,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event mode tagged as arrests in Georgia, 2021"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

Display code
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfgeo22,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event mode tagged as arrests in Georgia, 2022"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

Display code
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfgeo23,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event mode tagged as arrests in Georgia, 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

3.3. Georgia: illegal drugs

Display code
dfgeo <- df[df$Country == "GEO", ]
dfgeo$drugs <- ifelse(str_detect(dfgeo$Contexts, "illegal_drugs") == T, 1, 0)
dfgeo <- dfgeo[dfgeo$drugs == 1, ]
dfgeo$Longitude <- as.numeric(dfgeo$Longitude)
dfgeo$Latitude <- as.numeric(dfgeo$Latitude)

dfgeo$Event_count <- 1

df01 <- ddply(dfgeo, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = df01,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event contexts tagged as illegal_drugs in Georgia, 2020 - 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

3.4. Georgia: illegal_drugs per year

Table:

Display code
dfgeo20 <- dfgeo[dfgeo$Year == "2020", ]
dfgeo21 <- dfgeo[dfgeo$Year == "2021", ]
dfgeo22 <- dfgeo[dfgeo$Year == "2022", ]
dfgeo23 <- dfgeo[dfgeo$Year == "2023", ]

table(dfgeo$Year)

2021 2022 2023 
   2    4    1 

Maps:

Display code
dfgeo20 <- ddply(dfgeo20, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

dfgeo21 <- ddply(dfgeo21, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

dfgeo22 <- ddply(dfgeo22, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

dfgeo23 <- ddply(dfgeo23, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfgeo20,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event contexts tagged as illegal_drugs in Georgia, 2020"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

Display code
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfgeo21,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("vent contexts tagged as illegal_drugs in Georgia, 2021"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

Display code
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfgeo22,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("vent contexts tagged as illegal_drugs in Georgia, 2022"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

Display code
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfgeo23,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("vent contexts tagged as illegal_drugs in Georgia, 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

Section 4. Maps: Kazakhstan

4.1. Kazakhstan: arrests

Display code
dfkaz <- df[df$Country == "KAZ", ]
dfkaz <- dfkaz[dfkaz$Event.Mode == "arrest", ]
dfkaz$Latitude <- as.numeric(dfkaz$Latitude)
dfkaz$Longitude <- as.numeric(dfkaz$Longitude)

dfkaz$Event_count <- 1

df01 <- ddply(dfkaz, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

mapoutline <- get_map(location = c(left = 47.00, # lon min
                                   bottom = 40.00, # lat min
                                   right = 85.350, # lon max
                                   top = 55.00), # lat max
                      maptype = "outdoors", 
                      source = "stadia",
                      color="bw")

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = df01,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event mode tagged as arrests in Kazakhstan, 2020 - 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

4.2. Kazakhstan: arrests per year

Table:

Display code
dfkaz20 <- dfkaz[dfkaz$Year == "2020", ]
dfkaz21 <- dfkaz[dfkaz$Year == "2021", ]
dfkaz22 <- dfkaz[dfkaz$Year == "2022", ]
dfkaz23 <- dfkaz[dfkaz$Year == "2023", ]

table(dfkaz$Year)

2020 2021 2022 2023 
  20   53   77   44 

Maps:

Display code
dfkaz20 <- ddply(dfkaz20, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

dfkaz21 <- ddply(dfkaz21, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

dfkaz22 <- ddply(dfkaz22, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

dfkaz23 <- ddply(dfkaz23, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfkaz20,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event mode tagged as arrests in Kazakhstan, 2020"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

Display code
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfkaz21,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event mode tagged as arrests in Kazakhstan, 2021"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

Display code
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfkaz22,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event mode tagged as arrests in Kazakhstan, 2022"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

Display code
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfkaz23,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event mode tagged as arrests in Kazakhstan, 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

4.3. Kazakhstan: illegal drugs

Display code
dfkaz <- df[df$Country == "KAZ", ]
dfkaz$drugs <- ifelse(str_detect(dfkaz$Contexts, "illegal_drugs") == T, 1, 0)
dfkaz <- dfkaz[dfkaz$drugs == 1, ]
dfkaz$Longitude <- as.numeric(dfkaz$Longitude)
dfkaz$Latitude <- as.numeric(dfkaz$Latitude)

dfkaz$Event_count <- 1

df01 <- ddply(dfkaz, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = df01,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event contexts tagged as illegal_drugs in Kazakhstan, 2020 - 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

4.4. Kazakhstan: illegal_drugs per year

Table:

Display code
dfkaz20 <- dfkaz[dfkaz$Year == "2020", ]
dfkaz21 <- dfkaz[dfkaz$Year == "2021", ]
dfkaz22 <- dfkaz[dfkaz$Year == "2022", ]
dfkaz23 <- dfkaz[dfkaz$Year == "2023", ]

table(dfkaz$Year)

2020 2021 2022 2023 
   3   16   11    5 

Maps:

Display code
dfkaz20 <- ddply(dfkaz20, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

dfkaz21 <- ddply(dfkaz21, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

dfkaz22 <- ddply(dfkaz22, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

dfkaz23 <- ddply(dfkaz23, 
            .(Latitude, Longitude), 
             summarize, 
             Event_count = sum(Event_count))

## Fill up the map with our data:
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfkaz20,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("Event contexts tagged as illegal_drugs in Kazakhstan, 2020"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

Display code
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfkaz21,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("vent contexts tagged as illegal_drugs in Kazakhstan, 2021"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

Display code
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfkaz22,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("vent contexts tagged as illegal_drugs in Kazakhstan, 2022"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())

Display code
map01 <- print(ggmap(mapoutline) + 
                 geom_point(data = dfkaz23,
                            aes(x = Longitude, 
                                y = Latitude,
                                size = Event_count), 
                            alpha = 0.5, 
                            colour="black")+
                 ggtitle("vent contexts tagged as illegal_drugs in Kazakhstan, 2023"))+
  theme_bw()+
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank(),
        axis.title.y=element_blank(),
        axis.text.y=element_blank(),
        axis.ticks.y=element_blank())