# Load packages
# Core
library(tidyverse)
library(tidyquant)
Visualize and examine changes in the underlying trend in the performance of your portfolio in terms of Sharpe Ratio.
Choose your stocks.
from 2012-12-31 to present
symbols <- c("IVV", "VOO", "VTSAX", "FBGRX", "VSMPX")
prices <- tq_get(x = symbols,
get = "stock.prices",
from = "2012-12-31",
to = "2017-12-31")
asset_returns_tbl <- prices %>%
group_by(symbol) %>%
tq_transmute(select = adjusted,
mutate_fun = periodReturn,
period = "monthly",
type = "log") %>%
slice(-1) %>%
ungroup() %>%
set_names(c("asset", "date", "returns"))
# symbols
symbols <- asset_returns_tbl %>% distinct(asset) %>% pull()
symbols
## [1] "FBGRX" "IVV" "VOO" "VSMPX" "VTSAX"
# weights
weights <- c(0.2, 0.2, 0.2, 0.2, 0.2)
weights
## [1] 0.2 0.2 0.2 0.2 0.2
w_tbl <- tibble(symbols, weights)
w_tbl
## # A tibble: 5 × 2
## symbols weights
## <chr> <dbl>
## 1 FBGRX 0.2
## 2 IVV 0.2
## 3 VOO 0.2
## 4 VSMPX 0.2
## 5 VTSAX 0.2
# ?tq_portfolio
portfolio_returns_tbl <- asset_returns_tbl %>%
tq_portfolio(assets_col = asset,
returns_col = returns,
weights = w_tbl,
rebalance_on = "months",
col_rename = "returns")
portfolio_returns_tbl
## # A tibble: 60 × 2
## date returns
## <date> <dbl>
## 1 2013-01-31 0.0395
## 2 2013-02-28 0.0103
## 3 2013-03-28 0.0282
## 4 2013-04-30 0.0143
## 5 2013-05-31 0.0230
## 6 2013-06-28 -0.0126
## 7 2013-07-31 0.0452
## 8 2013-08-30 -0.0204
## 9 2013-09-30 0.0297
## 10 2013-10-31 0.0345
## # ℹ 50 more rows
# Define Risk Free Rate
rFr <- 0.0003
portfolio_SharpeRatio_tbl <- portfolio_returns_tbl %>%
tq_performance(Ra = returns, performance_fun = SharpeRatio, Rf = rFr, FUN = "StdDev")
portfolio_SharpeRatio_tbl
## # A tibble: 1 × 1
## `StdDevSharpe(Rf=0%,p=95%)`
## <dbl>
## 1 0.422
# Create Custom function to calculate rolling SR
calculate_rolling_sharpeRatio <- function(data) {
rolling_SR <- SharpeRatio(R = data,
Rf = rFr,
FUN = "StdDev")
return(rolling_SR)
}
# Define Window
window <- 24
# Transform data: calculate rolling sharpe ratio
rolling_sr_tbl <-portfolio_returns_tbl %>%
tq_mutate(select = returns,
mutate_fun = rollapply,
width = window,
FUN = calculate_rolling_sharpeRatio,
col_rename = "rolling_sr") %>%
select(-returns) %>%
na.omit()
rolling_sr_tbl
## # A tibble: 37 × 2
## date rolling_sr
## <date> <dbl>
## 1 2014-12-31 0.675
## 2 2015-01-30 0.547
## 3 2015-02-27 0.586
## 4 2015-03-31 0.511
## 5 2015-04-30 0.489
## 6 2015-05-29 0.477
## 7 2015-06-30 0.464
## 8 2015-07-31 0.443
## 9 2015-08-31 0.301
## 10 2015-09-30 0.197
## # ℹ 27 more rows
rolling_sr_tbl %>%
ggplot(aes(x = date, y = rolling_sr)) +
geom_line(color = "cornflowerblue") +
# LAbeling
labs(x = NULL, y = "rolling sharpe ratio") +
annotate(geom = "text",
x = as.Date("2016-06-01"), y = 0.5,
label = "This portfolio has done pretty bad since 2015", color = "red", size = 5)
How has your portfolio performed over time? Provide dates of the structural breaks, if any. The Code Along Assignment 9 had one structural break in November 2016. What do you think the reason is?
My portfolio started very well in 2015 then started to crash hard up until late 2016 when it started to return to where it was in 2015.The Code Along 9 assignment had a structural break in Nov 2016 due to the election.