Números
Pseudo-aleatórios
Jonas Freire Ribeiro
matrícula 548254
glc <- function(seed, n, a=1664525, c=1013904223, m=2^32){
valores <- numeric(n) # Definir o vetor de tamanho n para receber os valores
valores[1] <- seed # O primeiro valor é a semente
for (i in 2:(n+1)){ # Os valores da posição de 2 até n+1 são obtidos pela fórmula do GLC
valores[i] <- ((a*valores[i-1]) + c) %% m
}
return(valores[2:(n+1)]/m)
}
Os valores de posição 2
até n+1
que serão
gerados pelo GLC são o resto da divisão entre
(a*valores[i-1] + c)
e m
.
m
, mais
longa será a sequência antes que os números comecem a se repetir. Dessa
forma, o valor do módulo deve ser grande.m
for uma potência de 2, para
garantir um bom período completo, uma escolha comum é selecionar um
a
tal que o resto da divião por 4 seja 1. Se essa condição
não for satisfeita, o gerador pode ter um período muito curto ou repetir
valores de forma previsível.c
deve ser relativamente primo ao
módulo m
.## [1] 0.713236355 0.980632693 0.868677132 0.038542491 0.175763572 0.095531088
## [7] 0.120820612 0.165946068 0.614533703 0.948180089 0.698333466 0.748882389
## [13] 0.694887411 0.703999511 0.022059056 0.085829820 0.117233870 0.943284202
## [19] 0.373013016 0.725865633 0.728439925 0.703013123 0.154651318 0.221900871
## [25] 0.782633319 0.961041240 0.406114904 0.646610523 0.617044971 0.015799235
## [31] 0.457075870 0.449184015 0.258515329 0.464626022 0.864810228 0.481021006
## [37] 0.726289781 0.733859082 0.024122217 0.268497506 0.046728122 0.363807606
## [43] 0.090745182 0.860927297 0.245553095 0.501733451 0.108844022 0.831843677
## [49] 0.833262985 0.305964913 0.483244184 0.261726507 0.549333280 0.214268305
## [55] 0.187012237 0.780299572 0.380832396 0.279602354 0.345012998 0.996523263
## [61] 0.121076457 0.026380408 0.084068223 0.894407562 0.983948150 0.530365452
## [67] 0.790341861 0.022770342 0.039504627 0.675322947 0.164576874 0.557065980
## [73] 0.486499484 0.789556468 0.715808609 0.561409286 0.027443793 0.115451164
## [79] 0.584179747 0.028919737 0.861831201 0.815150026 0.833481800 0.528511033
## [85] 0.063152088 0.465487973 0.604048182 0.536250954 0.355321794 0.245308740
## [91] 0.766623838 0.779416541 0.554147899 0.268289591 0.967836431 0.171369582
## [97] 0.189461575 0.764398836 0.207894102 0.165377412 0.073537993 0.063111161
## [103] 0.341134780 0.605504030 0.831430796 0.581505777 0.140052067 0.402696519
## [109] 0.658845637 0.270372375 0.813422675 0.614191789 0.823177775 0.221449893
## [115] 0.119160432 0.754368626 0.673338732 0.388923102 0.462521848 0.415170056
## [121] 0.173997022 0.628301999 0.620288243 0.524221020 0.229857929 0.505809012
## [127] 0.981549441 0.818766362 0.315607363 0.581399024 0.445714019 0.363554132
## [133] 0.177144760 0.118537200 0.368371130 0.190789194 0.619730066 0.423859635
## [139] 0.195628876 0.390282160 0.648669761 0.269841812 0.677554252 0.227918621
## [145] 0.478166965 0.103599865 0.801339652 0.120573700 0.173960595 0.994949670
## [151] 0.834820931 0.545596918 0.945378586 0.526848732 0.120972035 0.212992365
## [157] 0.352430180 0.081345896 0.514001197 0.078419193 0.943562270 0.224163868
## [163] 0.597673684 0.025137414 0.089704814 0.141039540 0.076486119 0.293024012
## [169] 0.030230302 0.328947144 0.980317356 0.982784374 0.396452297 0.995329200
## [175] 0.573180924 0.213484022 0.728288030 0.868460294 0.106704030 0.761525669
## [181] 0.749710059 0.372068652 0.808958125 0.259196577 0.418611995 0.367340541
## [187] 0.749266034 0.280911239 0.016713284 0.915432471 0.469610645 0.895274363
## [193] 0.795128056 0.763616219 0.523270167 0.511089173 0.941223035 0.508181659
## [199] 0.311304942 0.095436023 0.882389511 0.637222404 0.857520828 0.091946325
## [205] 0.192354378 0.906429267 0.412534135 0.617396783 0.615655226 0.751016531
## [211] 0.027563136 0.764748946 0.975904508 0.686906026 0.488571127 0.090759074
## [217] 0.983467757 0.904294027 0.251386059 0.616283307 0.208180875 0.506725962
## [223] 0.268421731 0.917403161 0.732731478 0.098803930 0.847625538 0.135496323
## [229] 0.252329307 0.675652032 0.934277796 0.984377766 0.636290702 0.017264517
## [235] 0.456267612 0.082636176 0.217162136 0.040861740 0.623470331 0.189290691
## [241] 0.323007812 0.814378928 0.321851540 0.170892947 0.818486324 0.184212768
## [247] 0.992922631 0.778199447 0.670341379 0.220350793 0.639172932 0.560539233
## [253] 0.802931585 0.932008597 0.846103399 0.496001876 0.759424293 0.956899852
## [259] 0.961486868 0.165570777 0.934278513 0.177264136 0.822479875 0.549326779
## [265] 0.392641883 0.465777585 0.671211028 0.772847092 0.542286705 0.014471344
## [271] 0.149470958 0.381924536 0.173710046 0.949782837 0.513128813 0.973732085
## [277] 0.634022890 0.186864854 0.456900333 0.262557735 0.150253370 0.726277439
## [283] 0.190092472 0.908234681 0.567689046 0.846187602 0.653949595 0.685391798
## [289] 0.018883259 0.893201835 0.021226227 0.821649451 0.288950535 0.624956449
## [295] 0.868611374 0.582885602 0.892776060 0.307590710 0.662629397 0.433697237
## [301] 0.129764218 0.021227806 0.449642460 0.351182106 0.631751185 0.876588609
## [307] 0.890579525 0.120165773 0.169706589 0.095863261 0.031016928 0.687998978
## [313] 0.734849236 0.160965567 0.447235500 0.907050314 0.159801893 0.482295203
## [319] 0.658879264 0.243019215 0.795410135 0.291132733 0.948840685 0.277194258
## [325] 0.008850256 0.708792445 0.980997489 0.080781774 0.518651243 0.195657993
## [331] 0.856426039 0.789429775 0.832255807 0.833225853 0.498716282 0.956072192
## [337] 0.301745487 0.142281596 0.509013247 0.510218427 0.563354803 0.390333966
## [343] 0.881410111 0.401813214 0.376399487 0.591431780 0.219317836 0.257791797
## [349] 0.127243757 0.651488627 0.343436352 0.629455417 0.513931678 0.362240396
## [355] 0.431952312 0.658792112 0.177107560 0.196960603 0.083588415 0.241867834
## [361] 0.292850438 0.111058535 0.944129275 0.017412870 0.393047605 0.800685211
## [367] 0.787048871 0.758728582 0.928932210 0.122472148 0.188864548 0.997039460
## [373] 0.343409917 0.627527946 0.189842579 0.954415483 0.667799629 0.412817677
## [379] 0.580680301 0.114389794 0.908613272 0.743050101 0.705789803 0.008396692
## [385] 0.739999646 0.146197677 0.923808180 0.046154928 0.267477328 0.935774398
## [391] 0.115959347 0.468121321 0.878581654 0.362996439 0.882892424 0.748139685
## [397] 0.446050745 0.851950607 0.320621672 0.024410065 0.399175612 0.020895619
## [403] 0.516192999 0.386903286 0.428939311 0.442821176 0.153702025 0.099345823
## [409] 0.842570170 0.348389862 0.871288715 0.083899970 0.833134070 0.724386851
## [415] 0.259733564 0.246664330 0.179790796 0.510802425 0.643280357 0.472119619
## [421] 0.144339444 0.849672307 0.033310481 0.364644775 0.579677898 0.588800805
## [427] 0.895493807 0.065228386 0.515801359 0.493491768 0.621041129 0.721500430
## [433] 0.738964950 0.869412359 0.842683170 0.439209320 0.129635370 0.549714633
## [439] 0.986001146 0.793269274 0.774856619 0.449539935 0.696733897 0.226502987
## [445] 0.120654784 0.141031104 0.034686579 0.914204619 0.680106887 0.151977494
## [451] 0.574865915 0.922648099 0.062698791 0.941217807 0.806467012 0.739665733
## [457] 0.340597178 0.753925735 0.470336744 0.505422136 0.017460581 0.809903420
## [463] 0.725538688 0.521508466 0.115414483 0.528007720 0.285644632 0.866481975
## [469] 0.145815475 0.739834295 0.915377636 0.195975875 0.979429483 0.095784498
## [475] 0.928231669 0.055504511 0.881649047 0.116640086 0.575692794 0.284088850
## [481] 0.228374676 0.593770735 0.468686923 0.336827282 0.668185251 0.291099374
## [487] 0.421879136 0.604536736 0.746422502 0.151950331 0.361449556 0.058589099
## [493] 0.256814543 0.463905289 0.186970795 0.799067962 0.836263468 0.684792053
## [499] 0.728011954 0.334370666 0.568422010 0.882931137 0.186094192 0.670380665
## [505] 0.611684270 0.994765153 0.702622851 0.537335204 0.117215492 0.352996024
## [511] 0.943421154 0.332513310 0.952645921 0.188354999 0.840490453 0.606869083
## [517] 0.997053707 0.058130485 0.881622047 0.173735322 0.022861879 0.404578695
## [523] 0.588485563 0.167722440 0.430274379 0.696342102 0.073818895 0.631937708
## [529] 0.349876163 0.856000710 0.818344708 0.461649806 0.879022358 0.926881135
## [535] 0.058038507 0.782523682 0.467641487 0.182248501 0.422373263 0.091550732
## [541] 0.719077751 0.130006145 0.714165604 0.738799288 0.121597381 0.116028138
## [547] 0.971648574 0.578110416 0.476184042 0.479249616 0.203395941 0.864864030
## [553] 0.036248314 0.461639928 0.436723085 0.728940322 0.624876220 0.326183586
## [559] 0.970189432 0.801001492 0.245241826 0.385994043 0.970827464 0.820218809
## [565] 0.949808901 0.897685268 0.806723279 0.301569966 0.983946643 0.022126144
## [571] 0.755573725 0.590831759 0.469584458 0.305702674 0.979845091 0.885393075
## [577] 0.144530812 0.385213003 0.909158356 0.049013194 0.923081139 0.869520244
## [583] 0.420526013 0.298650400 0.293539818 0.601088131 0.457065442 0.091485909
## [589] 0.818281200 0.750524468 0.975813853 0.790268104 0.251974714 0.447257403
## [595] 0.365269791 0.935102091 0.043599023 0.899469511 0.723286201 0.199809556
## [601] 0.237870245 0.206414683 0.635940058 0.360983948 0.041709244 0.316242839
## [607] 0.348003558 0.857865959 0.571372972 0.832457446 0.465641871 0.771164332
## [613] 0.545874881 0.622130846 0.581962459 0.298946971 0.942319396 0.429002406
## [619] 0.466040956 0.057727365 0.878775452 0.944584473 0.706048603 0.786871332
## [625] 0.240314086 0.040401142 0.947106261 0.284449064 0.813835105 0.114484840
## [631] 0.114489970 0.652657492 0.947307802 0.755255720 0.262813082 0.180937963
## [637] 0.999050744 0.175908866 0.941809951 0.444914229 0.092675620 0.122434318
## [643] 0.219346188 0.449275744 0.943320150 0.208394897 0.752280474 0.892731281
## [649] 0.770795058 0.879586855 0.545802945 0.883157855 0.565270107 0.461708329
## [655] 0.291875127 0.681069966 0.221124199 0.994160611 0.427396443 0.299534142
## [661] 0.304584531 0.803107233 0.302722280 0.038653811 0.470779821 0.016915856
## [667] 0.101158617 0.282749469 0.795832590 0.477107982 0.400058216 0.138359174
## [673] 0.539615513 0.747941472 0.514143377 0.741184343 0.104796829 0.177750875
## [679] 0.011680254 0.310105869 0.207799810 0.215170579 0.044129731 0.276395543
## [685] 0.527301301 0.433365761 0.379899869 0.066247794 0.345894312 0.965396162
## [691] 0.282824907 0.364756741 0.950539684 0.303837665 0.625995827 0.939463553
## [697] 0.807431809 0.667786693 0.881567484 0.351599129 0.776903413 0.390372413
## [703] 0.877167298 0.133147083 0.883994409 0.029901758 0.459530510 0.257852044
## [709] 0.410309801 0.157762256 0.455986992 0.984298275 0.322791661 0.026207680
## [715] 0.574424634 0.399183592 0.305030164 0.569151497 0.132354277 0.238913606
## [721] 0.906738681 0.439093146 0.755701225 0.817641274 0.577017946 0.033302114
## [727] 0.437948306 0.139876758 0.597034275 0.712384833 0.600255502 0.525792609
## [733] 0.177736849 0.664359386 0.043181143 0.327349245 0.238239066 0.117363028
## [739] 0.930629655 0.563365762 0.630488949 0.854117517 0.196650886 0.551661038
## [745] 0.825853619 0.231277259 0.015715973 0.866390167 0.329242829 0.156785264
## [751] 0.227094794 0.198701191 0.336396565 0.728361916 0.853959966 0.948837154
## [757] 0.399961701 0.486251556 0.107842413 0.627808464 0.119982726 0.483351877
## [763] 0.519063493 0.396760570 0.124431528 0.625851127 0.083768694 0.322161950
## [769] 0.855401241 0.987498134 0.568187885 0.174937409 0.926589156 0.050630135
## [775] 0.360747129 0.851671697 0.067693691 0.077083418 0.512657070 0.746008432
## [781] 0.921350431 0.062111787 0.857602867 0.648369338 0.208232221 0.974437822
## [787] 0.351160701 0.002118797 0.025938330 0.235561968 0.020565842 0.594298711
## [793] 0.297297671 0.641454427 0.165457276 0.009058679 0.633711085 0.179754863
## [799] 0.700223899 0.421906486 0.129157693 0.445604928 0.778577268 0.562903900
## [805] 0.850490304 0.609238585 0.090975919 0.926932791 0.039644885 0.138455259
## [811] 0.475526245 0.559156551 0.293389101 0.729100793 0.732984940 0.993801835
## [817] 0.236234908 0.146681216 0.786488000 0.174385615 0.452140218 0.932234325
## [823] 0.576631290 0.433512536 0.690624616 0.175584083 0.332527673 0.860367598
## [829] 0.612924151 0.809102821 0.109465702 0.634029142 0.593810180 0.125106260
## [835] 0.733794875 0.150727150 0.344697276 0.470006344 0.545662449 0.023171858
## [841] 0.373665209 0.318346882 0.580226818 0.280077687 0.548019972 0.179847009
## [847] 0.077972459 0.344007473 0.275018883 0.042577449 0.464751433 0.615662024
## [853] 0.066384746 0.305394606 0.192176451 0.742739981 0.502234071 0.402757449
## [859] 0.078990502 0.901492993 0.860044360 0.575052227 0.044038049 0.669101208
## [865] 0.924285458 0.487549983 0.371462777 0.314994071 0.742339956 0.651121889
## [871] 0.898756915 0.589241439 0.342337671 0.847837390 0.768287109 0.336140005
## [877] 0.678529177 0.014570161 0.632921870 0.511120040 0.319823404 0.287736874
## [883] 0.456385571 0.429097437 0.647114298 0.162293785 0.298964021 0.322396082
## [889] 0.575021542 0.968116125 0.729186585 0.536365526 0.063670345 0.116885307
## [895] 0.752109884 0.940818972 0.936135286 0.822608948 0.394828044 0.385416579
## [901] 0.767173225 0.248898697 0.339834512 0.277119072 0.858870278 0.286130885
## [907] 0.246860439 0.607836670 0.568827849 0.411614976 0.653814616 0.010398324
## [913] 0.506512729 0.335894842 0.597449984 0.670966268 0.363396256 0.388307841
## [919] 0.344381694 0.176020881 0.392507538 0.844926713 0.873081742 0.622040863
## [925] 0.803025738 0.652009289 0.997475154 0.566003724 0.585536422 0.248081006
## [931] 0.272762745 0.644831587 0.533576967 0.437775244 0.074095436 0.941907295
## [937] 0.477096039 0.520556467 0.488725127 0.428785844 0.993452121 0.127451180
## [943] 0.912257145 0.060226116 0.111576115 0.468911704 0.489629242 0.350667932
## [949] 0.774923003 0.946937748 0.791442168 0.510279415 0.078837565 0.334580814
## [955] 0.366266792 0.468699666 0.547959171 0.975956398 0.059552802 0.364601753
## [961] 0.969290623 0.709889010 0.239763953 0.329201010 0.546556065 0.470315007
## [967] 0.322364882 0.641833649 0.391472961 0.766568238 0.232284495 0.585730693
## [973] 0.617563125 0.496673501 0.695480901 0.582112204 0.552127821 0.796772812
## [979] 0.500232916 0.430726842 0.832011922 0.879809485 0.118783136 0.734961723
## [985] 0.398782133 0.066595031 0.329957558 0.839647601 0.658944279 0.462383862
## [991] 0.733386776 0.859684348 0.324824647 0.982080810 0.295953735 0.627611761
## [997] 0.701740401 0.677206461 0.321093046 0.638250673
seed <- 548254
n <- 1000
a1 <- 1664525
c1 <- 101390420 # c que não é relativamente primo ao m
m1 <- 2^10 # m pequeno
glc(seed, n, a1, c1, m1)
## [1] 0.337890625 0.474609375 0.251953125 0.357421875 0.728515625 0.552734375
## [7] 0.267578125 0.560546875 0.369140625 0.880859375 0.533203125 0.013671875
## [13] 0.259765625 0.458984375 0.048828125 0.716796875 0.400390625 0.287109375
## [19] 0.814453125 0.669921875 0.791015625 0.365234375 0.830078125 0.873046875
## [25] 0.431640625 0.693359375 0.095703125 0.326171875 0.322265625 0.271484375
## [31] 0.611328125 0.029296875 0.462890625 0.099609375 0.376953125 0.982421875
## [37] 0.853515625 0.177734375 0.392578125 0.185546875 0.494140625 0.505859375
## [43] 0.658203125 0.638671875 0.384765625 0.083984375 0.173828125 0.341796875
## [49] 0.525390625 0.912109375 0.939453125 0.294921875 0.916015625 0.990234375
## [55] 0.955078125 0.498046875 0.556640625 0.318359375 0.220703125 0.951171875
## [61] 0.447265625 0.896484375 0.736328125 0.654296875 0.587890625 0.724609375
## [67] 0.501953125 0.607421875 0.978515625 0.802734375 0.517578125 0.810546875
## [73] 0.619140625 0.130859375 0.783203125 0.263671875 0.509765625 0.708984375
## [79] 0.298828125 0.966796875 0.650390625 0.537109375 0.064453125 0.919921875
## [85] 0.041015625 0.615234375 0.080078125 0.123046875 0.681640625 0.943359375
## [91] 0.345703125 0.576171875 0.572265625 0.521484375 0.861328125 0.279296875
## [97] 0.712890625 0.349609375 0.626953125 0.232421875 0.103515625 0.427734375
## [103] 0.642578125 0.435546875 0.744140625 0.755859375 0.908203125 0.888671875
## [109] 0.634765625 0.333984375 0.423828125 0.591796875 0.775390625 0.162109375
## [115] 0.189453125 0.544921875 0.166015625 0.240234375 0.205078125 0.748046875
## [121] 0.806640625 0.568359375 0.470703125 0.201171875 0.697265625 0.146484375
## [127] 0.986328125 0.904296875 0.837890625 0.974609375 0.751953125 0.857421875
## [133] 0.228515625 0.052734375 0.767578125 0.060546875 0.869140625 0.380859375
## [139] 0.033203125 0.513671875 0.759765625 0.958984375 0.548828125 0.216796875
## [145] 0.900390625 0.787109375 0.314453125 0.169921875 0.291015625 0.865234375
## [151] 0.330078125 0.373046875 0.931640625 0.193359375 0.595703125 0.826171875
## [157] 0.822265625 0.771484375 0.111328125 0.529296875 0.962890625 0.599609375
## [163] 0.876953125 0.482421875 0.353515625 0.677734375 0.892578125 0.685546875
## [169] 0.994140625 0.005859375 0.158203125 0.138671875 0.884765625 0.583984375
## [175] 0.673828125 0.841796875 0.025390625 0.412109375 0.439453125 0.794921875
## [181] 0.416015625 0.490234375 0.455078125 0.998046875 0.056640625 0.818359375
## [187] 0.720703125 0.451171875 0.947265625 0.396484375 0.236328125 0.154296875
## [193] 0.087890625 0.224609375 0.001953125 0.107421875 0.478515625 0.302734375
## [199] 0.017578125 0.310546875 0.119140625 0.630859375 0.283203125 0.763671875
## [205] 0.009765625 0.208984375 0.798828125 0.466796875 0.150390625 0.037109375
## [211] 0.564453125 0.419921875 0.541015625 0.115234375 0.580078125 0.623046875
## [217] 0.181640625 0.443359375 0.845703125 0.076171875 0.072265625 0.021484375
## [223] 0.361328125 0.779296875 0.212890625 0.849609375 0.126953125 0.732421875
## [229] 0.603515625 0.927734375 0.142578125 0.935546875 0.244140625 0.255859375
## [235] 0.408203125 0.388671875 0.134765625 0.833984375 0.923828125 0.091796875
## [241] 0.275390625 0.662109375 0.689453125 0.044921875 0.666015625 0.740234375
## [247] 0.705078125 0.248046875 0.306640625 0.068359375 0.970703125 0.701171875
## [253] 0.197265625 0.646484375 0.486328125 0.404296875 0.337890625 0.474609375
## [259] 0.251953125 0.357421875 0.728515625 0.552734375 0.267578125 0.560546875
## [265] 0.369140625 0.880859375 0.533203125 0.013671875 0.259765625 0.458984375
## [271] 0.048828125 0.716796875 0.400390625 0.287109375 0.814453125 0.669921875
## [277] 0.791015625 0.365234375 0.830078125 0.873046875 0.431640625 0.693359375
## [283] 0.095703125 0.326171875 0.322265625 0.271484375 0.611328125 0.029296875
## [289] 0.462890625 0.099609375 0.376953125 0.982421875 0.853515625 0.177734375
## [295] 0.392578125 0.185546875 0.494140625 0.505859375 0.658203125 0.638671875
## [301] 0.384765625 0.083984375 0.173828125 0.341796875 0.525390625 0.912109375
## [307] 0.939453125 0.294921875 0.916015625 0.990234375 0.955078125 0.498046875
## [313] 0.556640625 0.318359375 0.220703125 0.951171875 0.447265625 0.896484375
## [319] 0.736328125 0.654296875 0.587890625 0.724609375 0.501953125 0.607421875
## [325] 0.978515625 0.802734375 0.517578125 0.810546875 0.619140625 0.130859375
## [331] 0.783203125 0.263671875 0.509765625 0.708984375 0.298828125 0.966796875
## [337] 0.650390625 0.537109375 0.064453125 0.919921875 0.041015625 0.615234375
## [343] 0.080078125 0.123046875 0.681640625 0.943359375 0.345703125 0.576171875
## [349] 0.572265625 0.521484375 0.861328125 0.279296875 0.712890625 0.349609375
## [355] 0.626953125 0.232421875 0.103515625 0.427734375 0.642578125 0.435546875
## [361] 0.744140625 0.755859375 0.908203125 0.888671875 0.634765625 0.333984375
## [367] 0.423828125 0.591796875 0.775390625 0.162109375 0.189453125 0.544921875
## [373] 0.166015625 0.240234375 0.205078125 0.748046875 0.806640625 0.568359375
## [379] 0.470703125 0.201171875 0.697265625 0.146484375 0.986328125 0.904296875
## [385] 0.837890625 0.974609375 0.751953125 0.857421875 0.228515625 0.052734375
## [391] 0.767578125 0.060546875 0.869140625 0.380859375 0.033203125 0.513671875
## [397] 0.759765625 0.958984375 0.548828125 0.216796875 0.900390625 0.787109375
## [403] 0.314453125 0.169921875 0.291015625 0.865234375 0.330078125 0.373046875
## [409] 0.931640625 0.193359375 0.595703125 0.826171875 0.822265625 0.771484375
## [415] 0.111328125 0.529296875 0.962890625 0.599609375 0.876953125 0.482421875
## [421] 0.353515625 0.677734375 0.892578125 0.685546875 0.994140625 0.005859375
## [427] 0.158203125 0.138671875 0.884765625 0.583984375 0.673828125 0.841796875
## [433] 0.025390625 0.412109375 0.439453125 0.794921875 0.416015625 0.490234375
## [439] 0.455078125 0.998046875 0.056640625 0.818359375 0.720703125 0.451171875
## [445] 0.947265625 0.396484375 0.236328125 0.154296875 0.087890625 0.224609375
## [451] 0.001953125 0.107421875 0.478515625 0.302734375 0.017578125 0.310546875
## [457] 0.119140625 0.630859375 0.283203125 0.763671875 0.009765625 0.208984375
## [463] 0.798828125 0.466796875 0.150390625 0.037109375 0.564453125 0.419921875
## [469] 0.541015625 0.115234375 0.580078125 0.623046875 0.181640625 0.443359375
## [475] 0.845703125 0.076171875 0.072265625 0.021484375 0.361328125 0.779296875
## [481] 0.212890625 0.849609375 0.126953125 0.732421875 0.603515625 0.927734375
## [487] 0.142578125 0.935546875 0.244140625 0.255859375 0.408203125 0.388671875
## [493] 0.134765625 0.833984375 0.923828125 0.091796875 0.275390625 0.662109375
## [499] 0.689453125 0.044921875 0.666015625 0.740234375 0.705078125 0.248046875
## [505] 0.306640625 0.068359375 0.970703125 0.701171875 0.197265625 0.646484375
## [511] 0.486328125 0.404296875 0.337890625 0.474609375 0.251953125 0.357421875
## [517] 0.728515625 0.552734375 0.267578125 0.560546875 0.369140625 0.880859375
## [523] 0.533203125 0.013671875 0.259765625 0.458984375 0.048828125 0.716796875
## [529] 0.400390625 0.287109375 0.814453125 0.669921875 0.791015625 0.365234375
## [535] 0.830078125 0.873046875 0.431640625 0.693359375 0.095703125 0.326171875
## [541] 0.322265625 0.271484375 0.611328125 0.029296875 0.462890625 0.099609375
## [547] 0.376953125 0.982421875 0.853515625 0.177734375 0.392578125 0.185546875
## [553] 0.494140625 0.505859375 0.658203125 0.638671875 0.384765625 0.083984375
## [559] 0.173828125 0.341796875 0.525390625 0.912109375 0.939453125 0.294921875
## [565] 0.916015625 0.990234375 0.955078125 0.498046875 0.556640625 0.318359375
## [571] 0.220703125 0.951171875 0.447265625 0.896484375 0.736328125 0.654296875
## [577] 0.587890625 0.724609375 0.501953125 0.607421875 0.978515625 0.802734375
## [583] 0.517578125 0.810546875 0.619140625 0.130859375 0.783203125 0.263671875
## [589] 0.509765625 0.708984375 0.298828125 0.966796875 0.650390625 0.537109375
## [595] 0.064453125 0.919921875 0.041015625 0.615234375 0.080078125 0.123046875
## [601] 0.681640625 0.943359375 0.345703125 0.576171875 0.572265625 0.521484375
## [607] 0.861328125 0.279296875 0.712890625 0.349609375 0.626953125 0.232421875
## [613] 0.103515625 0.427734375 0.642578125 0.435546875 0.744140625 0.755859375
## [619] 0.908203125 0.888671875 0.634765625 0.333984375 0.423828125 0.591796875
## [625] 0.775390625 0.162109375 0.189453125 0.544921875 0.166015625 0.240234375
## [631] 0.205078125 0.748046875 0.806640625 0.568359375 0.470703125 0.201171875
## [637] 0.697265625 0.146484375 0.986328125 0.904296875 0.837890625 0.974609375
## [643] 0.751953125 0.857421875 0.228515625 0.052734375 0.767578125 0.060546875
## [649] 0.869140625 0.380859375 0.033203125 0.513671875 0.759765625 0.958984375
## [655] 0.548828125 0.216796875 0.900390625 0.787109375 0.314453125 0.169921875
## [661] 0.291015625 0.865234375 0.330078125 0.373046875 0.931640625 0.193359375
## [667] 0.595703125 0.826171875 0.822265625 0.771484375 0.111328125 0.529296875
## [673] 0.962890625 0.599609375 0.876953125 0.482421875 0.353515625 0.677734375
## [679] 0.892578125 0.685546875 0.994140625 0.005859375 0.158203125 0.138671875
## [685] 0.884765625 0.583984375 0.673828125 0.841796875 0.025390625 0.412109375
## [691] 0.439453125 0.794921875 0.416015625 0.490234375 0.455078125 0.998046875
## [697] 0.056640625 0.818359375 0.720703125 0.451171875 0.947265625 0.396484375
## [703] 0.236328125 0.154296875 0.087890625 0.224609375 0.001953125 0.107421875
## [709] 0.478515625 0.302734375 0.017578125 0.310546875 0.119140625 0.630859375
## [715] 0.283203125 0.763671875 0.009765625 0.208984375 0.798828125 0.466796875
## [721] 0.150390625 0.037109375 0.564453125 0.419921875 0.541015625 0.115234375
## [727] 0.580078125 0.623046875 0.181640625 0.443359375 0.845703125 0.076171875
## [733] 0.072265625 0.021484375 0.361328125 0.779296875 0.212890625 0.849609375
## [739] 0.126953125 0.732421875 0.603515625 0.927734375 0.142578125 0.935546875
## [745] 0.244140625 0.255859375 0.408203125 0.388671875 0.134765625 0.833984375
## [751] 0.923828125 0.091796875 0.275390625 0.662109375 0.689453125 0.044921875
## [757] 0.666015625 0.740234375 0.705078125 0.248046875 0.306640625 0.068359375
## [763] 0.970703125 0.701171875 0.197265625 0.646484375 0.486328125 0.404296875
## [769] 0.337890625 0.474609375 0.251953125 0.357421875 0.728515625 0.552734375
## [775] 0.267578125 0.560546875 0.369140625 0.880859375 0.533203125 0.013671875
## [781] 0.259765625 0.458984375 0.048828125 0.716796875 0.400390625 0.287109375
## [787] 0.814453125 0.669921875 0.791015625 0.365234375 0.830078125 0.873046875
## [793] 0.431640625 0.693359375 0.095703125 0.326171875 0.322265625 0.271484375
## [799] 0.611328125 0.029296875 0.462890625 0.099609375 0.376953125 0.982421875
## [805] 0.853515625 0.177734375 0.392578125 0.185546875 0.494140625 0.505859375
## [811] 0.658203125 0.638671875 0.384765625 0.083984375 0.173828125 0.341796875
## [817] 0.525390625 0.912109375 0.939453125 0.294921875 0.916015625 0.990234375
## [823] 0.955078125 0.498046875 0.556640625 0.318359375 0.220703125 0.951171875
## [829] 0.447265625 0.896484375 0.736328125 0.654296875 0.587890625 0.724609375
## [835] 0.501953125 0.607421875 0.978515625 0.802734375 0.517578125 0.810546875
## [841] 0.619140625 0.130859375 0.783203125 0.263671875 0.509765625 0.708984375
## [847] 0.298828125 0.966796875 0.650390625 0.537109375 0.064453125 0.919921875
## [853] 0.041015625 0.615234375 0.080078125 0.123046875 0.681640625 0.943359375
## [859] 0.345703125 0.576171875 0.572265625 0.521484375 0.861328125 0.279296875
## [865] 0.712890625 0.349609375 0.626953125 0.232421875 0.103515625 0.427734375
## [871] 0.642578125 0.435546875 0.744140625 0.755859375 0.908203125 0.888671875
## [877] 0.634765625 0.333984375 0.423828125 0.591796875 0.775390625 0.162109375
## [883] 0.189453125 0.544921875 0.166015625 0.240234375 0.205078125 0.748046875
## [889] 0.806640625 0.568359375 0.470703125 0.201171875 0.697265625 0.146484375
## [895] 0.986328125 0.904296875 0.837890625 0.974609375 0.751953125 0.857421875
## [901] 0.228515625 0.052734375 0.767578125 0.060546875 0.869140625 0.380859375
## [907] 0.033203125 0.513671875 0.759765625 0.958984375 0.548828125 0.216796875
## [913] 0.900390625 0.787109375 0.314453125 0.169921875 0.291015625 0.865234375
## [919] 0.330078125 0.373046875 0.931640625 0.193359375 0.595703125 0.826171875
## [925] 0.822265625 0.771484375 0.111328125 0.529296875 0.962890625 0.599609375
## [931] 0.876953125 0.482421875 0.353515625 0.677734375 0.892578125 0.685546875
## [937] 0.994140625 0.005859375 0.158203125 0.138671875 0.884765625 0.583984375
## [943] 0.673828125 0.841796875 0.025390625 0.412109375 0.439453125 0.794921875
## [949] 0.416015625 0.490234375 0.455078125 0.998046875 0.056640625 0.818359375
## [955] 0.720703125 0.451171875 0.947265625 0.396484375 0.236328125 0.154296875
## [961] 0.087890625 0.224609375 0.001953125 0.107421875 0.478515625 0.302734375
## [967] 0.017578125 0.310546875 0.119140625 0.630859375 0.283203125 0.763671875
## [973] 0.009765625 0.208984375 0.798828125 0.466796875 0.150390625 0.037109375
## [979] 0.564453125 0.419921875 0.541015625 0.115234375 0.580078125 0.623046875
## [985] 0.181640625 0.443359375 0.845703125 0.076171875 0.072265625 0.021484375
## [991] 0.361328125 0.779296875 0.212890625 0.849609375 0.126953125 0.732421875
## [997] 0.603515625 0.927734375 0.142578125 0.935546875
## [1] 256
seed <- 548254
n <- 1000
a2 <- 1664520 # a que não tem resto na divisão por 4
c2 <- 1013904223
m2 <- 2^32
glc(seed, n, a2, c2, m2)
## [1] 0.71259810 0.03180026 0.40573288 0.72192371 0.69694603 0.84233940
## [7] 0.01720512 0.50988091 0.20128716 0.73253716 0.98253716 0.98253716
## [13] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [19] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [25] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [31] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [37] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [43] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [49] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [55] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [61] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [67] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [73] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [79] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [85] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [91] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [97] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [103] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [109] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [115] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [121] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [127] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [133] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [139] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [145] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [151] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [157] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [163] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [169] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [175] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [181] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [187] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [193] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [199] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [205] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [211] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [217] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [223] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [229] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [235] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [241] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [247] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [253] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [259] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [265] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [271] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [277] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [283] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [289] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [295] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [301] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [307] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [313] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [319] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [325] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [331] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [337] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [343] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [349] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [355] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [361] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [367] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [373] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [379] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [385] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [391] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [397] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [403] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [409] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [415] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [421] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [427] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [433] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [439] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [445] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [451] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [457] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [463] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [469] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [475] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [481] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [487] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [493] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [499] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [505] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [511] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [517] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [523] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [529] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [535] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [541] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [547] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [553] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [559] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [565] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [571] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [577] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [583] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [589] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [595] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [601] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [607] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [613] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [619] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [625] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [631] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [637] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [643] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [649] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [655] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [661] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [667] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [673] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [679] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [685] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [691] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [697] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [703] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [709] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [715] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [721] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [727] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [733] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [739] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [745] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [751] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [757] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [763] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [769] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [775] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [781] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [787] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [793] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [799] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [805] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [811] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [817] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [823] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [829] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [835] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [841] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [847] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [853] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [859] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [865] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [871] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [877] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [883] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [889] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [895] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [901] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [907] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [913] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [919] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [925] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [931] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [937] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [943] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [949] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [955] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [961] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [967] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [973] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [979] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [985] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [991] 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716 0.98253716
## [997] 0.98253716 0.98253716 0.98253716 0.98253716
seed <- 548254
n <- 1000
a3 <- 1664525
c3 <- 1013904223
m3 <- 2^4 # m pequeno
glc(seed, n, a3, c3, m3)
## [1] 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000
## [11] 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250
## [21] 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500
## [31] 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750
## [41] 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000
## [51] 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250
## [61] 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500
## [71] 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750
## [81] 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000
## [91] 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250
## [101] 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500
## [111] 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750
## [121] 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000
## [131] 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250
## [141] 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500
## [151] 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750
## [161] 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000
## [171] 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250
## [181] 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500
## [191] 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750
## [201] 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000
## [211] 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250
## [221] 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500
## [231] 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750
## [241] 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000
## [251] 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250
## [261] 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500
## [271] 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750
## [281] 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000
## [291] 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250
## [301] 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500
## [311] 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750
## [321] 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000
## [331] 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250
## [341] 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500
## [351] 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750
## [361] 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000
## [371] 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250
## [381] 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500
## [391] 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750
## [401] 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000
## [411] 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250
## [421] 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500
## [431] 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750
## [441] 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000
## [451] 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250
## [461] 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500
## [471] 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750
## [481] 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000
## [491] 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250
## [501] 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500
## [511] 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750
## [521] 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000
## [531] 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250
## [541] 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500
## [551] 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750
## [561] 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000
## [571] 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250
## [581] 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500
## [591] 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750
## [601] 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000
## [611] 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250
## [621] 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500
## [631] 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750
## [641] 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000
## [651] 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250
## [661] 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500
## [671] 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750
## [681] 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000
## [691] 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250
## [701] 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500
## [711] 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750
## [721] 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000
## [731] 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250
## [741] 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500
## [751] 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750
## [761] 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000
## [771] 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250
## [781] 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500
## [791] 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750
## [801] 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000
## [811] 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250
## [821] 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500
## [831] 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750
## [841] 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000
## [851] 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250
## [861] 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500
## [871] 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750
## [881] 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000
## [891] 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250
## [901] 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500
## [911] 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750
## [921] 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000
## [931] 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250
## [941] 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500
## [951] 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750
## [961] 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000
## [971] 0.4375 0.6250 0.0625 0.7500 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250
## [981] 0.5625 0.2500 0.1875 0.3750 0.8125 0.5000 0.4375 0.6250 0.0625 0.7500
## [991] 0.6875 0.8750 0.3125 0.0000 0.9375 0.1250 0.5625 0.2500 0.1875 0.3750
# Geração de n números pseudo-aleatórios
npa1 <- glc(seed, n, a0, c0, m0)
# Histograma dos números gerados
hist(npa1, probability = T,
main = "Histograma dos Números Pseudo-Aleatórios")
curve(dunif(x), add = T, col = "red") # curva da uniforme(0, 1) para comparar
Cálculo da média e da variância dos números gerados.
A distribuição teórica dos números gerados pelo GLC é Uniforme no
intervalo de 0
até m-1
, desde que os valores
de a
, c
, e m
sejam escolhidos
adequadamente. Como os números gerados foram dividos por m
,
então eles seguem a distribuição Uniforme no intervalo [0, 1].
O gráfico indica que os números pseudo-aleatórios gerados são independentes, já que os valores de autocorrelação estão próximos de 0.
Na questão 2 foram gerados diferentes conjuntos de números
pseudo-aleatórios. Os parâmetros a0
, c0
e
m0
foram os que demonstraram boas propriedades de
uniformidade, independência e período longo.
Os parâmetros c1
, a2
e m3
foram os que apresentaram propriedades ruins.
# parâmetros com propriedades ruins
c1 <- 101390420
a2 <- 1664520
m3 <- 2^4
glc(seed, n, a2, c1, m3)
## [1] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [15] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [29] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [43] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [57] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [71] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [85] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [99] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [113] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [127] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [141] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [155] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [169] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [183] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [197] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [211] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [225] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [239] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [253] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [267] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [281] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [295] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [309] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [323] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [337] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [351] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [365] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [379] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [393] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [407] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [421] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [435] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [449] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [463] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [477] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [491] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [505] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [519] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [533] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [547] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [561] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [575] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [589] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [603] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [617] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [631] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [645] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [659] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [673] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [687] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [701] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [715] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [729] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [743] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [757] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [771] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [785] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [799] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [813] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [827] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [841] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [855] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [869] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [883] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [897] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [911] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [925] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [939] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [953] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [967] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [981] 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
## [995] 0.25 0.25 0.25 0.25 0.25 0.25
Observe que mesmo aumentando o valor de m, os números continuam com período curto.
# parâmetros com propriedades ruins
c1 <- 101390420
a2 <- 1664520
m3 <- 2^32
glc(seed, n, a2, c1, m3)
## [1] 0.5001369 0.9425046 0.7008231 0.0331335 0.4036531 0.7515993 0.1054811
## [8] 0.4990358 0.1474733 0.3349733 0.8349733 0.8349733 0.8349733 0.8349733
## [15] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [22] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [29] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [36] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [43] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [50] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [57] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [64] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [71] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [78] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [85] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [92] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [99] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [106] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [113] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [120] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [127] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [134] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [141] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [148] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [155] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [162] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [169] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [176] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [183] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [190] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [197] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [204] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [211] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [218] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [225] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [232] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [239] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [246] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [253] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [260] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [267] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [274] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [281] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [288] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [295] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [302] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [309] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [316] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [323] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [330] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [337] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [344] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [351] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [358] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [365] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [372] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [379] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [386] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [393] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [400] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [407] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [414] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [421] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [428] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [435] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [442] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [449] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [456] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [463] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [470] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [477] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [484] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [491] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [498] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [505] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [512] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [519] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [526] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [533] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [540] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [547] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [554] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [561] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [568] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [575] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [582] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [589] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [596] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [603] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [610] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [617] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [624] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [631] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [638] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [645] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [652] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [659] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [666] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [673] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [680] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [687] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [694] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [701] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [708] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [715] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [722] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [729] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [736] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [743] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [750] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [757] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [764] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [771] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [778] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [785] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [792] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [799] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [806] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [813] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [820] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [827] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [834] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [841] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [848] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [855] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [862] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [869] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [876] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [883] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [890] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [897] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [904] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [911] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [918] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [925] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [932] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [939] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [946] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [953] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [960] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [967] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [974] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [981] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [988] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
## [995] 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733 0.8349733
O gerador foi baseado no polinômio primitivo \(x^p +x^r +1\).
Parâmetros utilizados na função:
library(compositions) # Necessário para a função unbinary()
g_tausworthe <- function(n, p=9, r=4, l=10){
q <- p-r
N <- l*n # Total de bits que serão gerados
lista0 <- rep(1, p) # p bits iguais a 1
# Loop para gerar os bits
for (i in 1:N){
nbit_i <- length(lista0) + 1
nbit <- ifelse(lista0[nbit_i - p] == lista0[nbit_i - p+q], 0, 1)
lista0 <- append(lista0, nbit)
}
lista0 <- lista0[(p+1):length(lista0)] # retirada dos primeiros p bits
# Divisão dos bits em grupos de l bits
lista_bits <- split(lista0, ceiling(seq_along(lista0) / l))
# Conversão dos bits em números pseudo-aleatórios
NPAs <- NULL
for (i in 1:length(lista_bits)){
# A função unbinary converte os bits em números decimais
# A divisão por 2^l normaliza os números gerados
NPA <- (unbinary(paste(lista_bits[[i]], collapse=""))) / 2^l
NPAs <- append(NPAs, NPA)
}
return(NPAs)
}
## [1] 0.059570312 0.760742188 0.213867188 0.815429688 0.594726562 0.134765625
## [7] 0.920898438 0.147460938 0.218750000 0.465820312 0.239257812 0.156250000
## [13] 0.333007812 0.958984375 0.512695312 0.856445312 0.376953125 0.935546875
## [19] 0.237304688 0.301757812 0.775390625 0.186523438 0.646484375 0.162109375
## [25] 0.187500000 0.399414062 0.347656250 0.990234375 0.571289062 0.746093750
## [31] 0.707031250 0.158203125 0.461914062 0.480468750 0.208007812 0.222656250
## [37] 0.191406250 0.125000000 0.266601562 0.569335938 0.338867188 0.110351562
## [43] 0.164062500 0.850585938 0.808593750 0.357421875 0.320312500 0.149414062
## [49] 0.819335938 0.867187500 0.249023438 0.529296875 0.879882812 0.606445312
## [55] 0.907226562 0.796875000 0.567382812 0.459960938 0.573242188 0.609375000
## [61] 0.232421875 0.619140625 0.578125000 0.166015625 0.979492188 0.255859375
## [67] 0.927734375 0.688476562 0.467773438 0.118164062 0.650390625 0.887695312
## [73] 0.092773438 0.823242188 0.081054688 0.093750000 0.199218750 0.673828125
## [79] 0.495117188 0.285156250 0.873046875 0.353515625 0.079101562 0.230468750
## [85] 0.740234375 0.103515625 0.611328125 0.095703125 0.062500000 0.132812500
## [91] 0.784179688 0.668945312 0.554687500 0.582031250 0.424804688 0.904296875
## [97] 0.178710938 0.160156250 0.074218750 0.909179688 0.933593750 0.124023438
## [103] 0.764648438 0.439453125 0.802734375 0.953125000 0.898437500 0.283203125
## [109] 0.729492188 0.786132812 0.804687500 0.116210938 0.309570312 0.289062500
## [115] 0.083007812 0.489257812 0.627929688 0.463867188 0.343750000 0.733398438
## [121] 0.558593750 0.825195312 0.443359375 0.545898438 0.911132812 0.540039062
## [127] 0.546875000 0.099609375 0.336914062 0.247070312 0.642578125 0.436523438
## [133] 0.176757812 0.039062500 0.615234375 0.370117188 0.051757812 0.305664062
## [139] 0.047851562 0.031250000 0.066406250 0.391601562 0.833984375 0.777343750
## [145] 0.291015625 0.211914062 0.952148438 0.088867188 0.580078125 0.037109375
## [151] 0.454101562 0.966796875 0.061523438 0.881835938 0.719726562 0.401367188
## [157] 0.476562500 0.449218750 0.141601562 0.364257812 0.892578125 0.902343750
## [163] 0.057617188 0.654296875 0.644531250 0.041015625 0.744140625 0.813476562
## [169] 0.731445312 0.671875000 0.366210938 0.779296875 0.412109375 0.721679688
## [175] 0.272460938 0.955078125 0.769531250 0.773437500 0.049804688 0.167968750
## [181] 0.623046875 0.821289062 0.217773438 0.587890625 0.519531250 0.307617188
## [187] 0.184570312 0.525390625 0.652343750 0.523437500 0.515625000 0.033203125
## [193] 0.195312500 0.916992188 0.388671875 0.145507812 0.105468750 0.975585938
## [199] 0.543945312 0.790039062 0.018554688 0.226562500 0.983398438 0.030273438
## [205] 0.940429688 0.859375000 0.700195312 0.738281250 0.224609375 0.070312500
## [211] 0.681640625 0.946289062 0.451171875 0.028320312 0.827148438 0.322265625
## [217] 0.020507812 0.372070312 0.406250000 0.865234375 0.835937500 0.182617188
## [223] 0.889648438 0.206054688 0.360351562 0.635742188 0.977539062 0.384765625
## [229] 0.386718750 0.024414062 0.583984375 0.311523438 0.410156250 0.608398438
## [235] 0.793945312 0.259765625 0.153320312 0.591796875 0.762695312 0.326171875
## [241] 0.261718750 0.257812500 0.016601562 0.097656250 0.458007812 0.694335938
## [247] 0.072265625 0.552734375 0.487304688 0.771484375 0.894531250 0.508789062
## [253] 0.613281250 0.491210938 0.514648438 0.969726562 0.929687500 0.349609375
## [259] 0.869140625 0.112304688 0.035156250 0.340820312 0.472656250 0.725585938
## [265] 0.013671875 0.913085938 0.661132812 0.009765625 0.685546875 0.703125000
## [271] 0.432617188 0.417968750 0.090820312 0.944335938 0.602539062 0.679687500
## [277] 0.817382812 0.988281250 0.692382812 0.193359375 0.011718750 0.791992188
## [283] 0.155273438 0.705078125 0.303710938 0.896484375 0.629882812 0.076171875
## [289] 0.795898438 0.380859375 0.663085938 0.130859375 0.128906250 0.007812500
## [295] 0.548828125 0.228515625 0.846679688 0.536132812 0.276367188 0.243164062
## [301] 0.885742188 0.447265625 0.253906250 0.806640625 0.245117188 0.756835938
## [307] 0.984375000 0.964843750 0.174804688 0.434570312 0.055664062 0.517578125
## [313] 0.169921875 0.736328125 0.362304688 0.506835938 0.456054688 0.830078125
## [319] 0.504882812 0.342773438 0.351562500 0.215820312 0.708984375 0.044921875
## [325] 0.971679688 0.800781250 0.839843750 0.408203125 0.994140625 0.345703125
## [331] 0.596679688 0.005859375 0.395507812 0.577148438 0.852539062 0.151367188
## [337] 0.948242188 0.314453125 0.538085938 0.397460938 0.690429688 0.331054688
## [343] 0.565429688 0.064453125 0.003906250 0.274414062 0.114257812 0.422851562
## [349] 0.767578125 0.637695312 0.621093750 0.942382812 0.723632812 0.126953125
## [355] 0.403320312 0.122070312 0.877929688 0.992187500 0.482421875 0.086914062
## [361] 0.716796875 0.527343750 0.758789062 0.084960938 0.368164062 0.180664062
## [367] 0.752929688 0.727539062 0.915039062 0.251953125 0.670898438 0.675781250
## [373] 0.107421875 0.854492188 0.022460938 0.485351562 0.900390625 0.419921875
## [379] 0.204101562 0.497070312 0.172851562 0.297851562 0.502929688 0.197265625
## [385] 0.788085938 0.925781250 0.575195312 0.973632812 0.657226562 0.268554688
## [391] 0.698242188 0.844726562 0.665039062 0.782226562 0.532226562 0.001953125
## [397] 0.136718750 0.556640625 0.710937500 0.883789062 0.318359375 0.810546875
## [403] 0.470703125 0.861328125 0.563476562 0.201171875 0.560546875 0.938476562
## [409] 0.996093750 0.241210938 0.042968750 0.858398438 0.263671875 0.378906250
## [415] 0.541992188 0.683593750 0.589843750 0.875976562 0.863281250 0.957031250
## [421] 0.625976562 0.334960938 0.837890625 0.053710938 0.426757812 0.510742188
## [427] 0.742187500 0.950195312 0.209960938 0.101562500 0.748046875 0.585937500
## [433] 0.648437500 0.750976562 0.598632812 0.393554688 0.962890625 0.287109375
## [439] 0.986328125 0.828125000 0.633789062 0.848632812 0.921875000 0.832031250
## [445] 0.890625000 0.765625000 0.500976562 0.068359375 0.278320312 0.355468750
## [451] 0.441406250 0.659179688 0.405273438 0.235351562 0.430664062 0.281250000
## [457] 0.600585938 0.280273438 0.468750000 0.998046875 0.120117188 0.521484375
## [463] 0.428710938 0.631835938 0.189453125 0.270507812 0.841796875 0.294921875
## [469] 0.437500000 0.931640625 0.478515625 0.312500000 0.666992188 0.918945312
## [475] 0.026367188 0.712890625 0.754882812 0.871093750 0.474609375 0.604492188
## [481] 0.550781250 0.374023438 0.292968750 0.324218750 0.375000000 0.798828125
## [487] 0.696289062 0.981445312 0.143554688 0.493164062 0.414062500 0.316406250
## [493] 0.923828125 0.960937500 0.416015625 0.445312500 0.382812500 0.250000000
## [499] 0.534179688 0.138671875 0.677734375 0.220703125 0.329101562 0.702148438
## [505] 0.617187500 0.714843750 0.640625000 0.299804688 0.639648438 0.734375000
## [511] 0.499023438 0.059570312 0.760742188 0.213867188 0.815429688 0.594726562
## [517] 0.134765625 0.920898438 0.147460938 0.218750000 0.465820312 0.239257812
## [523] 0.156250000 0.333007812 0.958984375 0.512695312 0.856445312 0.376953125
## [529] 0.935546875 0.237304688 0.301757812 0.775390625 0.186523438 0.646484375
## [535] 0.162109375 0.187500000 0.399414062 0.347656250 0.990234375 0.571289062
## [541] 0.746093750 0.707031250 0.158203125 0.461914062 0.480468750 0.208007812
## [547] 0.222656250 0.191406250 0.125000000 0.266601562 0.569335938 0.338867188
## [553] 0.110351562 0.164062500 0.850585938 0.808593750 0.357421875 0.320312500
## [559] 0.149414062 0.819335938 0.867187500 0.249023438 0.529296875 0.879882812
## [565] 0.606445312 0.907226562 0.796875000 0.567382812 0.459960938 0.573242188
## [571] 0.609375000 0.232421875 0.619140625 0.578125000 0.166015625 0.979492188
## [577] 0.255859375 0.927734375 0.688476562 0.467773438 0.118164062 0.650390625
## [583] 0.887695312 0.092773438 0.823242188 0.081054688 0.093750000 0.199218750
## [589] 0.673828125 0.495117188 0.285156250 0.873046875 0.353515625 0.079101562
## [595] 0.230468750 0.740234375 0.103515625 0.611328125 0.095703125 0.062500000
## [601] 0.132812500 0.784179688 0.668945312 0.554687500 0.582031250 0.424804688
## [607] 0.904296875 0.178710938 0.160156250 0.074218750 0.909179688 0.933593750
## [613] 0.124023438 0.764648438 0.439453125 0.802734375 0.953125000 0.898437500
## [619] 0.283203125 0.729492188 0.786132812 0.804687500 0.116210938 0.309570312
## [625] 0.289062500 0.083007812 0.489257812 0.627929688 0.463867188 0.343750000
## [631] 0.733398438 0.558593750 0.825195312 0.443359375 0.545898438 0.911132812
## [637] 0.540039062 0.546875000 0.099609375 0.336914062 0.247070312 0.642578125
## [643] 0.436523438 0.176757812 0.039062500 0.615234375 0.370117188 0.051757812
## [649] 0.305664062 0.047851562 0.031250000 0.066406250 0.391601562 0.833984375
## [655] 0.777343750 0.291015625 0.211914062 0.952148438 0.088867188 0.580078125
## [661] 0.037109375 0.454101562 0.966796875 0.061523438 0.881835938 0.719726562
## [667] 0.401367188 0.476562500 0.449218750 0.141601562 0.364257812 0.892578125
## [673] 0.902343750 0.057617188 0.654296875 0.644531250 0.041015625 0.744140625
## [679] 0.813476562 0.731445312 0.671875000 0.366210938 0.779296875 0.412109375
## [685] 0.721679688 0.272460938 0.955078125 0.769531250 0.773437500 0.049804688
## [691] 0.167968750 0.623046875 0.821289062 0.217773438 0.587890625 0.519531250
## [697] 0.307617188 0.184570312 0.525390625 0.652343750 0.523437500 0.515625000
## [703] 0.033203125 0.195312500 0.916992188 0.388671875 0.145507812 0.105468750
## [709] 0.975585938 0.543945312 0.790039062 0.018554688 0.226562500 0.983398438
## [715] 0.030273438 0.940429688 0.859375000 0.700195312 0.738281250 0.224609375
## [721] 0.070312500 0.681640625 0.946289062 0.451171875 0.028320312 0.827148438
## [727] 0.322265625 0.020507812 0.372070312 0.406250000 0.865234375 0.835937500
## [733] 0.182617188 0.889648438 0.206054688 0.360351562 0.635742188 0.977539062
## [739] 0.384765625 0.386718750 0.024414062 0.583984375 0.311523438 0.410156250
## [745] 0.608398438 0.793945312 0.259765625 0.153320312 0.591796875 0.762695312
## [751] 0.326171875 0.261718750 0.257812500 0.016601562 0.097656250 0.458007812
## [757] 0.694335938 0.072265625 0.552734375 0.487304688 0.771484375 0.894531250
## [763] 0.508789062 0.613281250 0.491210938 0.514648438 0.969726562 0.929687500
## [769] 0.349609375 0.869140625 0.112304688 0.035156250 0.340820312 0.472656250
## [775] 0.725585938 0.013671875 0.913085938 0.661132812 0.009765625 0.685546875
## [781] 0.703125000 0.432617188 0.417968750 0.090820312 0.944335938 0.602539062
## [787] 0.679687500 0.817382812 0.988281250 0.692382812 0.193359375 0.011718750
## [793] 0.791992188 0.155273438 0.705078125 0.303710938 0.896484375 0.629882812
## [799] 0.076171875 0.795898438 0.380859375 0.663085938 0.130859375 0.128906250
## [805] 0.007812500 0.548828125 0.228515625 0.846679688 0.536132812 0.276367188
## [811] 0.243164062 0.885742188 0.447265625 0.253906250 0.806640625 0.245117188
## [817] 0.756835938 0.984375000 0.964843750 0.174804688 0.434570312 0.055664062
## [823] 0.517578125 0.169921875 0.736328125 0.362304688 0.506835938 0.456054688
## [829] 0.830078125 0.504882812 0.342773438 0.351562500 0.215820312 0.708984375
## [835] 0.044921875 0.971679688 0.800781250 0.839843750 0.408203125 0.994140625
## [841] 0.345703125 0.596679688 0.005859375 0.395507812 0.577148438 0.852539062
## [847] 0.151367188 0.948242188 0.314453125 0.538085938 0.397460938 0.690429688
## [853] 0.331054688 0.565429688 0.064453125 0.003906250 0.274414062 0.114257812
## [859] 0.422851562 0.767578125 0.637695312 0.621093750 0.942382812 0.723632812
## [865] 0.126953125 0.403320312 0.122070312 0.877929688 0.992187500 0.482421875
## [871] 0.086914062 0.716796875 0.527343750 0.758789062 0.084960938 0.368164062
## [877] 0.180664062 0.752929688 0.727539062 0.915039062 0.251953125 0.670898438
## [883] 0.675781250 0.107421875 0.854492188 0.022460938 0.485351562 0.900390625
## [889] 0.419921875 0.204101562 0.497070312 0.172851562 0.297851562 0.502929688
## [895] 0.197265625 0.788085938 0.925781250 0.575195312 0.973632812 0.657226562
## [901] 0.268554688 0.698242188 0.844726562 0.665039062 0.782226562 0.532226562
## [907] 0.001953125 0.136718750 0.556640625 0.710937500 0.883789062 0.318359375
## [913] 0.810546875 0.470703125 0.861328125 0.563476562 0.201171875 0.560546875
## [919] 0.938476562 0.996093750 0.241210938 0.042968750 0.858398438 0.263671875
## [925] 0.378906250 0.541992188 0.683593750 0.589843750 0.875976562 0.863281250
## [931] 0.957031250 0.625976562 0.334960938 0.837890625 0.053710938 0.426757812
## [937] 0.510742188 0.742187500 0.950195312 0.209960938 0.101562500 0.748046875
## [943] 0.585937500 0.648437500 0.750976562 0.598632812 0.393554688 0.962890625
## [949] 0.287109375 0.986328125 0.828125000 0.633789062 0.848632812 0.921875000
## [955] 0.832031250 0.890625000 0.765625000 0.500976562 0.068359375 0.278320312
## [961] 0.355468750 0.441406250 0.659179688 0.405273438 0.235351562 0.430664062
## [967] 0.281250000 0.600585938 0.280273438 0.468750000 0.998046875 0.120117188
## [973] 0.521484375 0.428710938 0.631835938 0.189453125 0.270507812 0.841796875
## [979] 0.294921875 0.437500000 0.931640625 0.478515625 0.312500000 0.666992188
## [985] 0.918945312 0.026367188 0.712890625 0.754882812 0.871093750 0.474609375
## [991] 0.604492188 0.550781250 0.374023438 0.292968750 0.324218750 0.375000000
## [997] 0.798828125 0.696289062 0.981445312 0.143554688
# Verificação da uniformidade com histograma
hist(npa2, probability = TRUE)
curve(dunif(x), add = T, col = "red") # Comparação com a distribuição teórica
O histograma está muito próximo da curva teórica, o que indica que os números gerados seguem a distribuição uniforme(0, 1).
Para calcular o período dos números gerados foi feito a contagem dos números de forma única, o que resulta na quantidade total de números distintos.
## Período da sequência: 511 números únicos
Apesar de serem gerados 1000 números pseudo-aleatórios, o período
resultante foi 511. A função resultou em um período de \(2^p-1\).
Para aumentar o período é necessário escolher um valor de
p
grande (o polinômio deve continuar sendo primitivo) e um
valor de l
que seja relativamente primo a \(2^p-1\) e que seja maior do que
p
.
Vamos usar o polinômio primitivo \(x^{31}
+x^{13} +1\). O valor p
igual a 31 tem um período
máximo de \(2^{31}-1=2147483647\).
## [1] 0.0001220556 0.9921884246 0.5004291476 0.9962124790 0.7558824976
## [6] 0.6113264635 0.1015477013 0.0556410856 0.9077719511 0.1253431158
## [11] 0.6408973637 0.5163508949 0.6079708263 0.9697295278 0.4941954380
## [16] 0.2574024240 0.5127922336 0.8359682679 0.5531065846 0.2424503418
## [21] 0.6960431924 0.4520926536 0.1549309175 0.1428565013 0.7271984550
## [26] 0.0942932367 0.8759797812 0.4395127369 0.6327342934 0.7371879856
## [31] 0.6640317319 0.5532166597 0.7502626334 0.1961057845 0.5497379254
## [36] 0.8990487212 0.7223793420 0.6399942762 0.0863936252 0.0317921699
## [41] 0.3147824164 0.0231174473 0.2210660237 0.1967469556 0.4604441312
## [46] 0.7444249312 0.4524973058 0.0624660240 0.1881415034 0.2088279065
## [51] 0.6163265684 0.6413883267 0.4829072952 0.4657608196 0.1307559034
## [56] 0.5107177421 0.1659789188 0.5844667342 0.8049512955 0.8209840588
## [61] 0.7002811383 0.6009512786 0.7223227918 0.3665565078 0.5859677428
## [66] 0.9653978299 0.5667128244 0.5999280382 0.1305055520 0.2358472755
## [71] 0.6161511389 0.6192148535 0.8428805198 0.5461783123 0.6700737039
## [76] 0.8015984979 0.8877566110 0.8978141802 0.9720693866 0.6298540726
## [81] 0.6753137514 0.7370507794 0.5950085409 0.8989832846 0.9129755928
## [86] 0.9638402765 0.0368072030 0.5076357964 0.3463451564 0.1770828762
## [91] 0.2186758847 0.2953504310 0.2223194081 0.0783000693 0.8807674395
## [96] 0.0559617104 0.0665213661 0.4713871363 0.4342478984 0.1563261568
## [101] 0.7405409680 0.7698673753 0.7024164766 0.8759174361 0.7511941490
## [106] 0.5756855009 0.8486169595 0.0087584255 0.9199929149 0.9135437768
## [111] 0.8498963185 0.7648240568 0.5807438833 0.1475589925 0.1375391185
## [116] 0.3531696969 0.0879228422 0.7856817306 0.0725777501 0.5061782319
## [121] 0.1851911743 0.8613206947 0.6338208166 0.8807851463 0.8427884155
## [126] 0.4602408423 0.1702564142 0.1960797803 0.1358265588 0.4752313080
## [131] 0.8794945276 0.6835996695 0.2676221558 0.6121998220 0.2354070733
## [136] 0.3830007762 0.4457281439 0.0585640226 0.4685004933 0.7502638979
## [141] 0.8590742091 0.9818006514 0.7280769444 0.4591853756 0.5420845912
## [146] 0.4051380882 0.7766182972 0.1670188804 0.6686729700 0.3771864059
## [151] 0.5602250570 0.3458112283 0.1110653984 0.4753168332 0.1022402791
## [156] 0.4282796017 0.0014565133 0.6301862532 0.3340669803 0.8909599427
## [161] 0.3258284095 0.2891947895 0.8107782970 0.7965094142 0.7665742063
## [166] 0.1256930528 0.1079413849 0.4070943831 0.3881486731 0.4675417999
## [171] 0.3799234398 0.5562916067 0.1221119727 0.9103125152 0.2481312323
## [176] 0.2706473379 0.6733271652 0.0114480196 0.0426762500 0.6896389248
## [181] 0.0340595040 0.9227198910 0.1844446901 0.4889584600 0.9678877210
## [186] 0.0212222221 0.5182117710 0.2494346772 0.8910335444 0.9759866393
## [191] 0.9022780987 0.3496957535 0.9785846637 0.7781861550 0.1557515017
## [196] 0.9181204666 0.3632971523 0.9234232125 0.4271473680 0.9060698114
## [201] 0.2828694994 0.5208806768 0.4675809655 0.9754796324 0.6896908588
## [206] 0.7695465719 0.5097361763 0.5449294960 0.9136915514 0.3434733390
## [211] 0.3629357531 0.3979735374 0.0459507767 0.4037765770 0.9705208584
## [216] 0.5017718987 0.9876686151 0.2037059260 0.9799186275 0.3999762428
## [221] 0.4466894541 0.0590211176 0.0562815273 0.6501139256 0.6360882050
## [226] 0.1723057360 0.5481581527 0.6463168187 0.4221406702 0.5685786067
## [231] 0.8274251600 0.6980257507 0.8876452711 0.0230922508 0.9634558235
## [236] 0.7457258599 0.3883798602 0.1275747328 0.6547282527 0.3972725419
## [241] 0.9476448728 0.1912872016 0.9548305331 0.8440139724 0.8356355471
## [246] 0.1065782534 0.5219307041 0.0408146242 0.5420218422 0.6004513921
## [251] 0.2765566732 0.8350596512 0.4167426352 0.9880474764 0.5882253316
## [256] 0.3387667646 0.9533304097 0.3504658735 0.7431289400 0.9122949308
## [261] 0.6093224206 0.3479587520 0.1680754719 0.6482059641 0.8132195198
## [266] 0.6095380336 0.2581681148 0.9608337721 0.4612097717 0.3264343378
## [271] 0.2345508686 0.2993989007 0.8494279196 0.4358413080 0.5039462813
## [276] 0.9957700029 0.7450011428 0.3347534917 0.5877759764 0.7845268091
## [281] 0.4230669159 0.1908834570 0.5247695001 0.3384420655 0.6888087934
## [286] 0.3120415725 0.2232990812 0.4572740591 0.6536089042 0.0020422726
## [291] 0.7353257386 0.0528097956 0.5694187041 0.2784559408 0.5827245424
## [296] 0.3377750393 0.7917259268 0.9463279143 0.7269405948 0.3095087477
## [301] 0.1508614300 0.6068334174 0.2973747032 0.3956654705 0.3831745752
## [306] 0.0655509841 0.7251307429 0.1702429419 0.0148017053 0.3626547100
## [311] 0.2288239261 0.8372627741 0.4996077940 0.6280756921 0.8046463097
## [316] 0.9861675669 0.1666813970 0.3564087427 0.3975845976 0.1208612244
## [321] 0.1682260768 0.7498210573 0.3176575447 0.6692100146 0.5668674181
## [326] 0.9171622032 0.9636534019 0.0286216778 0.0555411342 0.5652374430
## [331] 0.0782230746 0.2630424723 0.5221203296 0.4030820492 0.8544626699
## [336] 0.2002827905 0.7327678171 0.1591197262 0.7553433757 0.9589227545
## [341] 0.3575010572 0.2056239815 0.2769430142 0.4213890161 0.8891497806
## [346] 0.2825451784 0.6065230861 0.9378309869 0.4080830712 0.8686323981
## [351] 0.2121096165 0.9152672146 0.2912552340 0.0423460777 0.6247957356
## [356] 0.8436816845 0.5045625528 0.0827434461 0.3087025543 0.5837846566
## [361] 0.3775458126 0.4863021816 0.6134100701 0.7027204833 0.5527125208
## [366] 0.5632574107 0.2248923127 0.1421541537 0.9971861762 0.2517879063
## [371] 0.8763023925 0.0801096619 0.6320980033 0.1494662396 0.0922609691
## [376] 0.4944935336 0.9831788640 0.0868459665 0.3755504014 0.3199870132
## [381] 0.9774555971 0.7853283298 0.6649761100 0.6674028328 0.1184864233
## [386] 0.2427321521 0.9442280959 0.5887055905 0.4207999986 0.7059133807
## [391] 0.5128384088 0.0019954187 0.1780533500 0.4031213860 0.4801975682
## [396] 0.1534012882 0.2301527415 0.1553904249 0.1026539388 0.0585857274
## [401] 0.8388712883 0.5465826385 0.6258037309 0.1351363952 0.1513928736
## [406] 0.2267235345 0.1001867210 0.5053657573 0.1933407201 0.3547263420
## [411] 0.4616242358 0.8769074010 0.7810706128 0.4882142004 0.1297340097
## [416] 0.7436759507 0.1122435185 0.8416938952 0.6748031033 0.4457451240
## [421] 0.2105881711 0.6961617330 0.3527468378 0.3583053367 0.5285638832
## [426] 0.7386782283 0.3583806502 0.1088479615 0.6001915163 0.0272900199
## [431] 0.8497043359 0.4785100000 0.9763267504 0.5854143729 0.5651843385
## [436] 0.4865142752 0.3816439922 0.6207599756 0.2354375294 0.4169932944
## [441] 0.2541836326 0.9357170579 0.9004131812 0.1189274369 0.0254551603
## [446] 0.8467819258 0.1708409444 0.5471815157 0.6717140293 0.8009728708
## [451] 0.9256359357 0.0377918158 0.8475297294 0.1069288442 0.7038994555
## [456] 0.3820579122 0.6383058720 0.3641805158 0.7621425700 0.6957110080
## [461] 0.5426090332 0.4470716980 0.7166013410 0.0821375137 0.6111000830
## [466] 0.2825984312 0.4055711785 0.8340097973 0.9966533286 0.6217900040
## [471] 0.2186735717 0.5079638474 0.3654972857 0.4234785200 0.4218948628
## [476] 0.6951764685 0.8037150821 0.7179749892 0.7667889947 0.7974691447
## [481] 0.0959036557 0.0774358595 0.5879073294 0.9337964600 0.5989739525
## [486] 0.9126584446 0.0533386776 0.8102005876 0.9250180069 0.0580369858
## [491] 0.0228143113 0.3071921102 0.7434956082 0.6874701467 0.0266743253
## [496] 0.0427259407 0.6536420595 0.9942298022 0.2348986473 0.9473146591
## [501] 0.3135518709 0.8563084209 0.5500855586 0.3448192049 0.1359435900
## [506] 0.8216089802 0.1173266694 0.7932799687 0.7392141325 0.3871058566
## [511] 0.1978020810 0.1433022621 0.8801555960 0.7764582164 0.2040147628
## [516] 0.0840484716 0.6949144350 0.1852212243 0.1142230683 0.9483168144
## [521] 0.7727035540 0.7223212451 0.1786724890 0.5506373846 0.5442122305
## [526] 0.9043846370 0.7976971492 0.5759178239 0.9179980438 0.5538287638
## [531] 0.8668460150 0.3026327118 0.1638776881 0.2856072378 0.8776260477
## [536] 0.0603070278 0.3696654446 0.5833797911 0.1740973603 0.4415399013
## [541] 0.9393009639 0.8501398128 0.6617554307 0.2371901481 0.5458470187
## [546] 0.1163585710 0.3617208635 0.3175344656 0.1254101072 0.2641580151
## [551] 0.4047320364 0.9115945946 0.7886167618 0.8663862851 0.3333178204
## [556] 0.1336929745 0.8564108755 0.2794380314 0.5572350831 0.7171682396
## [561] 0.8615460761 0.9919966832 0.0582052739 0.3063873991 0.6260345711
## [566] 0.1613588342 0.8231691010 0.0467255155 0.7163364396 0.9674698848
## [571] 0.2129136608 0.4953757792 0.4305814025 0.4605487175 0.7550507172
## [576] 0.5209071119 0.3267638353 0.9877081043 0.4688587387 0.9477818992
## [581] 0.2828660023 0.8163657116 0.1208853908 0.9976088840 0.6371393006
## [586] 0.2321589068 0.3432497217 0.1033744083 0.7610384868 0.8632849548
## [591] 0.2939781102 0.6427216996 0.0598551643 0.2756253744 0.6194181708
## [596] 0.7448972112 0.8366334287 0.4438587714 0.1898336525 0.8779128538
## [601] 0.9291175595 0.9543901342 0.6399047587 0.1463730007 0.8181141373
## [606] 0.8050792208 0.7649732425 0.8015896678 0.2594588620 0.6803395697
## [611] 0.5117406766 0.4724288108 0.1885329757 0.9498442216 0.0437261362
## [616] 0.0031015836 0.1175303056 0.5261361080 0.8298199910 0.0039998458
## [621] 0.0633052085 0.0357934902 0.0415622671 0.5481532130 0.2441173953
## [626] 0.6828843371 0.3031220895 0.8637119182 0.4430538143 0.1818623175
## [631] 0.3986548607 0.2254286276 0.9583250976 0.7026983171 0.1731176630
## [636] 0.8585852818 0.2589482756 0.9908935479 0.3902202265 0.0622948171
## [641] 0.4500505030 0.9469388921 0.3378848634 0.3371208161 0.7914627444
## [646] 0.9937349549 0.6999403543 0.1963963057 0.3651870254 0.5865093535
## [651] 0.9870158026 0.4524190535 0.0267838547 0.4749346753 0.4930621716
## [656] 0.4062789127 0.9711312519 0.5274070310 0.1385698668 0.7588607688
## [661] 0.1124496674 0.2322213161 0.6858031068 0.0389687102 0.7508195257
## [666] 0.1661719626 0.6341771539 0.2361334360 0.5846380007 0.6073222011
## [671] 0.5350136878 0.3137179664 0.1882041313 0.2918414497 0.4267477947
## [676] 0.3947377019 0.9672348211 0.4496307296 0.0968814993 0.9966665811
## [681] 0.6653790299 0.4102749424 0.9088256320 0.5553878956 0.1634905161
## [686] 0.3050455942 0.1356197654 0.5845237470 0.8829594920 0.8316327971
## [691] 0.6928451562 0.0156970944 0.7669573829 0.0225609201 0.3788774712
## [696] 0.1586531817 0.6431861131 0.5449817581 0.4468428181 0.7152888840
## [701] 0.0580167121 0.4179540970 0.5182219157 0.5056215250 0.3074134889
## [706] 0.6617435373 0.3780981819 0.5913495217 0.3575364007 0.7360058757
## [711] 0.4556640496 0.8445137625 0.8675982524 0.9001906528 0.8938434483
## [716] 0.6775008850 0.8101672141 0.4219568130 0.2374782213 0.5107827634
## [721] 0.2637833194 0.9173859197 0.7204337132 0.6911806767 0.8670120614
## [726] 0.7456811899 0.8083436314 0.2517884232 0.1521509951 0.7383320413
## [731] 0.8558416674 0.1955786652 0.9071904966 0.7780378307 0.4205572719
## [736] 0.9643096039 0.0999938103 0.7392508087 0.1622062204 0.5836197643
## [741] 0.9848607362 0.3216128468 0.3952842904 0.0195710538 0.8296444726
## [746] 0.0505265258 0.4154938492 0.6437794212 0.6048833197 0.1457890670
## [751] 0.2499562947 0.4140790380 0.4988073935 0.2673576642 0.8853158767
## [756] 0.7217689336 0.7339848075 0.1036996357 0.2992321670 0.2995386166
## [761] 0.1007985051 0.2568637487 0.0908679459 0.8427810867 0.6764589418
## [766] 0.0784980848 0.6979591725 0.9814032577 0.0233509061 0.5717805261
## [771] 0.5620740599 0.6895399089 0.1210274773 0.4882311614 0.2686048346
## [776] 0.7622153566 0.8561982003 0.7790779932 0.6907773751 0.1580325253
## [781] 0.8688860449 0.2266760797 0.9702320141 0.9388085927 0.9568502135
## [786] 0.9858345725 0.7665013620 0.9966605296 0.8502886661 0.5926163546
## [791] 0.5463747876 0.6605705880 0.4129182864 0.7858324021 0.9288321640
## [796] 0.3332105787 0.8918105271 0.2748003886 0.0288482830 0.7568854000
## [801] 0.4268351551 0.3370448025 0.1530778054 0.5825901006 0.8355646634
## [806] 0.1775862044 0.0392573099 0.2144813531 0.5712422198 0.3304973177
## [811] 0.4303818145 0.8478666085 0.9834640224 0.5825835192 0.6488850114
## [816] 0.8272129218 0.4120364424 0.0698088550 0.8215855882 0.8266640163
## [821] 0.6303336273 0.1011329759 0.9902400717 0.0296709468 0.0630115736
## [826] 0.0859945745 0.7516093440 0.2590466829 0.5844331170 0.4300785970
## [831] 0.8129541811 0.7464370411 0.5230837890 0.5251092918 0.5499156856
## [836] 0.1578340093 0.1677061315 0.1022531143 0.1285935901 0.3216184555
## [841] 0.0890442589 0.9831681284 0.7151551689 0.1712884717 0.1648301450
## [846] 0.1404649187 0.3346201100 0.8974074330 0.2254820748 0.9716438721
## [851] 0.7873078783 0.5066838923 0.2957505891 0.9191249216 0.9849917842
## [856] 0.6531666792 0.2416106605 0.9154543062 0.3814296981 0.7508049889
## [861] 0.5454997935 0.9126731521 0.2799659013 0.2984287669 0.0306945499
## [866] 0.7790685727 0.7623907372 0.8389684004 0.7386577651 0.1140394390
## [871] 0.7189732152 0.4665371578 0.2324853817 0.2370867364 0.7597273095
## [876] 0.4281248199 0.4357958832 0.3220549088 0.1359476971 0.9788396009
## [881] 0.1815646319 0.4554089729 0.6114459834 0.9520406374 0.6099433890
## [886] 0.7799722317 0.6074882199 0.9986466805 0.5303135044 0.0554991823
## [891] 0.5713950237 0.6617531916 0.0749784685 0.4133432754 0.2224195802
## [896] 0.6068744841 0.2062057748 0.3712342938 0.0680370650 0.1508325313
## [901] 0.8851165390 0.2492065933 0.4740569252 0.6631293769 0.5853442771
## [906] 0.8175766976 0.0167434211 0.3413112753 0.7858591403 0.0860071895
## [911] 0.6469124865 0.2463668298 0.3204552680 0.4924510741 0.7986593065
## [916] 0.8964684349 0.4313751645 0.0561107569 0.1832883235 0.5138537753
## [921] 0.3489549886 0.3570690879 0.7477450999 0.7135891586 0.3388858398
## [926] 0.4178642088 0.8957122723 0.9716344702 0.7283898287 0.4961621074
## [931] 0.1592056600 0.7987826222 0.7354723848 0.1252263985 0.9479099503
## [936] 0.1668266247 0.4057838714 0.3223945538 0.2406164953 0.1733927017
## [941] 0.9325194552 0.1246919613 0.2503299331 0.4796281455 0.6969644197
## [946] 0.4382784744 0.7712423066 0.6123754783 0.1441707674 0.2853169669
## [951] 0.8164611368 0.3937392128 0.4650206547 0.3196659901 0.6612248744
## [956] 0.0891823589 0.0632600132 0.3403494863 0.5334175683 0.4962141349
## [961] 0.8896613989 0.0475132251 0.5213554476 0.4268257490 0.2685967395
## [966] 0.5219982872 0.4819416432 0.8072430571 0.2670414825 0.1783564095
## [971] 0.4814807228 0.3992856480 0.3786037120 0.6399730539 0.4643742654
## [976] 0.2152680401 0.1151041638 0.5066358596 0.0991982017 0.3731827193
## [981] 0.5299980193 0.5834853936 0.2866947539 0.0480006891 0.2182953835
## [986] 0.7877524369 0.7070599557 0.4016259729 0.3758989985 0.5858379994
## [991] 0.9949493988 0.9790928878 0.3266785562 0.0111465279 0.9691657838
## [996] 0.0533153014 0.5387027212 0.2988693567 0.0275478307 0.9428284895
observado <- hist(npa1, breaks = 10, plot = FALSE)$counts
esperado <- rep(100, 10)
# Teste Qui-Quadrado
chisq.test(x = observado, p = esperado / sum(esperado))
##
## Chi-squared test for given probabilities
##
## data: observado
## X-squared = 6.5, df = 9, p-value = 0.689
Como o p-value
foi maior do que 0.05, então não há
evidências suficientes para rejeitar a hipótese de que os números
gerados seguem a distribuição uniforme no intervalo (0, 1).
observado <- hist(npa2_1, breaks = 10, plot = FALSE)$counts
esperado <- rep(100, 10)
# Teste Qui-Quadrado
chisq.test(x = observado, p = esperado / sum(esperado))
##
## Chi-squared test for given probabilities
##
## data: observado
## X-squared = 3.92, df = 9, p-value = 0.9166
Como o p-value
foi maior do que 0.05, então não há
evidências suficientes para rejeitar a hipótese de que os números
gerados seguem a distribuição uniforme no intervalo (0, 1).
Como os valores de autocorrelação estão próximos de zero, então há evidências de que os números gerados pelo Gerador Linear Congruente são independentes.
# u é uma uniforme(0, 1)
u <- glc(seed=548254, n=1000)
# u1 é uma uniforme(10, 50)
u1 <- (u*40)+10; u1
## [1] 38.52945 49.22531 44.74709 11.54170 17.03054 13.82124 14.83282 16.63784
## [9] 34.58135 47.92720 37.93334 39.95530 37.79550 38.15998 10.88236 13.43319
## [17] 14.68935 47.73137 24.92052 39.03463 39.13760 38.12052 16.18605 18.87603
## [25] 41.30533 48.44165 26.24460 35.86442 34.68180 10.63197 28.28303 27.96736
## [33] 20.34061 28.58504 44.59241 29.24084 39.05159 39.35436 10.96489 20.73990
## [41] 11.86912 24.55230 13.62981 44.43709 19.82212 30.06934 14.35376 43.27375
## [49] 43.33052 22.23860 29.32977 20.46906 31.97333 18.57073 17.48049 41.21198
## [57] 25.23330 21.18409 23.80052 49.86093 14.84306 11.05522 13.36273 45.77630
## [65] 49.35793 31.21462 41.61367 10.91081 11.58019 37.01292 16.58307 32.28264
## [73] 29.45998 41.58226 38.63234 32.45637 11.09775 14.61805 33.36719 11.15679
## [81] 44.47325 42.60600 43.33927 31.14044 12.52608 28.61952 34.16193 31.45004
## [89] 24.21287 19.81235 40.66495 41.17666 32.16592 20.73158 48.71346 16.85478
## [97] 17.57846 40.57595 18.31576 16.61510 12.94152 12.52445 23.64539 34.22016
## [105] 43.25723 33.26023 15.60208 26.10786 36.35383 20.81489 42.53691 34.56767
## [113] 42.92711 18.85800 14.76642 40.17475 36.93355 25.55692 28.50087 26.60680
## [121] 16.95988 35.13208 34.81153 30.96884 19.19432 30.23236 49.26198 42.75065
## [129] 22.62429 33.25596 27.82856 24.54217 17.08579 14.74149 24.73485 17.63157
## [137] 34.78920 26.95439 17.82516 25.61129 35.94679 20.79367 37.10217 19.11674
## [145] 29.12668 14.14399 42.05359 14.82295 16.95842 49.79799 43.39284 31.82388
## [153] 47.81514 31.07395 14.83888 18.51969 24.09721 13.25384 30.56005 13.13677
## [161] 47.74249 18.96655 33.90695 11.00550 13.58819 15.64158 13.05944 21.72096
## [169] 11.20921 23.15789 49.21269 49.31137 25.85809 49.81317 32.92724 18.53936
## [177] 39.13152 44.73841 14.26816 40.46103 39.98840 24.88275 42.35833 20.36786
## [185] 26.74448 24.69362 39.97064 21.23645 10.66853 46.61730 28.78443 45.81097
## [193] 41.80512 40.54465 30.93081 30.44357 47.64892 30.32727 22.45220 13.81744
## [201] 45.29558 35.48890 44.30083 13.67785 17.69418 46.25717 26.50137 34.69587
## [209] 34.62621 40.04066 11.10253 40.58996 49.03618 37.47624 29.54285 13.63036
## [217] 49.33871 46.17176 20.05544 34.65133 18.32723 30.26904 20.73687 46.69613
## [225] 39.30926 13.95216 43.90502 15.41985 20.09317 37.02608 47.37111 49.37511
## [233] 35.45163 10.69058 28.25070 13.30545 18.68649 11.63447 34.93881 17.57163
## [241] 22.92031 42.57516 22.87406 16.83572 42.73945 17.36851 49.71691 41.12798
## [249] 36.81366 18.81403 35.56692 32.42157 42.11726 47.28034 43.84414 29.84008
## [257] 40.37697 48.27599 48.45947 16.62283 47.37114 17.09057 42.89919 31.97307
## [265] 25.70568 28.63110 36.84844 40.91388 31.69147 10.57885 15.97884 25.27698
## [273] 16.94840 47.99131 30.52515 48.94928 35.36092 17.47459 28.27601 20.50231
## [281] 16.01013 39.05110 17.60370 46.32939 32.70756 43.84750 36.15798 37.41567
## [289] 10.75533 45.72807 10.84905 42.86598 21.55802 34.99826 44.74445 33.31542
## [297] 45.71104 22.30363 36.50518 27.34789 15.19057 10.84911 27.98570 24.04728
## [305] 35.27005 45.06354 45.62318 14.80663 16.78826 13.83453 11.24068 37.51996
## [313] 39.39397 16.43862 27.88942 46.28201 16.39208 29.29181 36.35517 19.72077
## [321] 41.81641 21.64531 47.95363 21.08777 10.35401 38.35170 49.23990 13.23127
## [329] 30.74605 17.82632 44.25704 41.57719 43.29023 43.32903 29.94865 48.24289
## [337] 22.06982 15.69126 30.36053 30.40874 32.53419 25.61336 45.25640 26.07253
## [345] 25.05598 33.65727 18.77271 20.31167 15.08975 36.05955 23.73745 35.17822
## [353] 30.55727 24.48962 27.27809 36.35168 17.08430 17.87842 13.34354 19.67471
## [361] 21.71402 14.44234 47.76517 10.69651 25.72190 42.02741 41.48195 40.34914
## [369] 47.15729 14.89889 17.55458 49.88158 23.73640 35.10112 17.59370 48.17662
## [377] 36.71199 26.51271 33.22721 14.57559 46.34453 39.72200 38.23159 10.33587
## [385] 39.59999 15.84791 46.95233 11.84620 20.69909 47.43098 14.63837 28.72485
## [393] 45.14327 24.51986 45.31570 39.92559 27.84203 44.07802 22.82487 10.97640
## [401] 25.96702 10.83582 30.64772 25.47613 27.15757 27.71285 16.14808 13.97383
## [409] 43.70281 23.93559 44.85155 13.35600 43.32536 38.97547 20.38934 19.86657
## [417] 17.19163 30.43210 35.73121 28.88478 15.77358 43.98689 11.33242 24.58579
## [425] 33.18712 33.55203 45.81975 12.60914 30.63205 29.73967 34.84165 38.86002
## [433] 39.55860 44.77649 43.70733 27.56837 15.18541 31.98859 49.44005 41.73077
## [441] 40.99426 27.98160 37.86936 19.06012 14.82619 15.64124 11.38746 46.56818
## [449] 37.20428 16.07910 32.99464 46.90592 12.50795 47.64871 42.25868 39.58663
## [457] 23.62389 40.15703 28.81347 30.21689 10.69842 42.39614 39.02155 30.86034
## [465] 14.61658 31.12031 21.42579 44.65928 15.83262 39.59337 46.61511 17.83904
## [473] 49.17718 13.83138 47.12927 12.22018 45.26596 14.66560 33.02771 21.36355
## [481] 19.13499 33.75083 28.74748 23.47309 36.72741 21.64397 26.87517 34.18147
## [489] 39.85690 16.07801 24.45798 12.34356 20.27258 28.55621 17.47883 41.96272
## [497] 43.45054 37.39168 39.12048 23.37483 32.73688 45.31725 17.44377 36.81523
## [505] 34.46737 49.79061 38.10491 31.49341 14.68862 24.11984 47.73685 23.30053
## [513] 48.10584 17.53420 43.61962 34.27476 49.88215 12.32522 45.26488 16.94941
## [521] 10.91448 26.18315 33.53942 16.70890 27.21098 37.85368 12.95276 35.27751
## [529] 23.99505 44.24003 42.73379 28.46599 45.16089 47.07525 12.32154 41.30095
## [537] 28.70566 17.28994 26.89493 13.66203 38.76311 15.20025 38.56662 39.55197
## [545] 14.86390 14.64113 48.86594 33.12442 29.04736 29.16998 18.13584 44.59456
## [553] 11.44993 28.46560 27.46892 39.15761 34.99505 23.04734 48.80758 42.04006
## [561] 19.80967 25.43976 48.83310 42.80875 47.99236 45.90741 42.26893 22.06280
## [569] 49.35787 10.88505 40.22295 33.63327 28.78338 22.22811 49.19380 45.41572
## [577] 15.78123 25.40852 46.36633 11.96053 46.92325 44.78081 26.82104 21.94602
## [585] 21.74159 34.04353 28.28262 13.65944 42.73125 40.02098 49.03255 41.61072
## [593] 20.07899 27.89030 24.61079 47.40408 11.74396 45.97878 38.93145 17.99238
## [601] 19.51481 18.25659 35.43760 24.43936 11.66837 22.64971 23.92014 44.31464
## [609] 32.85492 43.29830 28.62567 40.84657 31.83500 34.88523 33.27850 21.95788
## [617] 47.69278 27.16010 28.64164 12.30909 45.15102 47.78338 38.24194 41.47485
## [625] 19.61256 11.61605 47.88425 21.37796 42.55340 14.57939 14.57960 36.10630
## [633] 47.89231 40.21023 20.51252 17.23752 49.96203 17.03635 47.67240 27.79657
## [641] 13.70702 14.89737 18.77385 27.97103 47.73281 18.33580 40.09122 45.70925
## [649] 40.83180 45.18347 31.83212 45.32631 32.61080 28.46833 21.67501 37.24280
## [657] 18.84497 49.76642 27.09586 21.98137 22.18338 42.12429 22.10889 11.54615
## [665] 28.83119 10.67663 14.04634 21.30998 41.83330 29.08432 26.00233 15.53437
## [673] 31.58462 39.91766 30.56574 39.64737 14.19187 17.11004 10.46721 22.40423
## [681] 18.31199 18.60682 11.76519 21.05582 31.09205 27.33463 25.19599 12.64991
## [689] 23.83577 48.61585 21.31300 24.59027 48.02159 22.15351 35.03983 47.57854
## [697] 42.29727 36.71147 45.26270 24.06397 41.07614 25.61490 45.08669 15.32588
## [705] 45.35978 11.19607 28.38122 20.31408 26.41239 16.31049 28.23948 49.37193
## [713] 22.91167 11.04831 32.97699 25.96734 22.20121 32.76606 15.29417 19.55654
## [721] 46.26955 27.56373 40.22805 42.70565 33.08072 11.33208 27.51793 15.59507
## [729] 33.88137 38.49539 34.01022 31.03170 17.10947 36.57438 11.72725 23.09397
## [737] 19.52956 14.69452 47.22519 32.53463 35.21956 44.16470 17.86604 32.06644
## [745] 43.03414 19.25109 10.62864 44.65561 23.16971 16.27141 19.08379 17.94805
## [753] 23.45586 39.13448 44.15840 47.95349 25.99847 29.45006 14.31370 35.11234
## [761] 14.79931 29.33408 30.76254 25.87042 14.97726 35.03405 13.35075 22.88648
## [769] 44.21605 49.49993 32.72752 16.99750 47.06357 12.02521 24.42989 44.06687
## [777] 12.70775 13.08334 30.50628 39.84034 46.85402 12.48447 44.30411 35.93477
## [785] 18.32929 48.97751 24.04643 10.08475 11.03753 19.42248 10.82263 33.77195
## [793] 21.89191 35.65818 16.61829 10.36235 35.34844 17.19019 38.00896 26.87626
## [801] 15.16631 27.82420 41.14309 32.51616 44.01961 34.36954 13.63904 47.07731
## [809] 11.58580 15.53821 29.02105 32.36626 21.73556 39.16403 39.31940 49.75207
## [817] 19.44940 15.86725 41.45952 16.97542 28.08561 47.28937 33.06525 27.34050
## [825] 37.62498 17.02336 23.30111 44.41470 34.51697 42.36411 14.37863 35.36117
## [833] 33.75241 15.00425 39.35180 16.02909 23.78789 28.80025 31.82650 10.92687
## [841] 24.94661 22.73388 33.20907 21.20311 31.92080 17.19388 13.11890 23.76030
## [849] 21.00076 11.70310 28.59006 34.62648 12.65539 22.21578 17.68706 39.70960
## [857] 30.08936 26.11030 13.15962 46.05972 44.40177 33.00209 11.76152 36.76405
## [865] 46.97142 29.50200 24.85851 22.59976 39.69360 36.04488 45.95028 33.56966
## [873] 23.69351 43.91350 40.73148 23.44560 37.14117 10.58281 35.31687 30.44480
## [881] 22.79294 21.50947 28.25542 27.16390 35.88457 16.49175 21.95856 22.89584
## [889] 33.00086 48.72465 39.16746 31.45462 12.54681 14.67541 40.08440 47.63276
## [897] 47.44541 42.90436 25.79312 25.41666 40.68693 19.95595 23.59338 21.08476
## [905] 44.35481 21.44524 19.87442 34.31347 32.75311 26.46460 36.15258 10.41593
## [913] 30.26051 23.43579 33.89800 36.83865 24.53585 25.53231 23.77527 17.04084
## [921] 25.70030 43.79707 44.92327 34.88163 42.12103 36.08037 49.89901 32.64015
## [929] 33.42146 19.92324 20.91051 35.79326 31.34308 27.51101 12.96382 47.67629
## [937] 29.08384 30.82226 29.54901 27.15143 49.73808 15.09805 46.49029 12.40904
## [945] 14.46304 28.75647 29.58517 24.02672 40.99692 47.87751 41.65769 30.41118
## [953] 13.15350 23.38323 24.65067 28.74799 31.91837 49.03826 12.38211 24.58407
## [961] 48.77162 38.39556 19.59056 23.16804 31.86224 28.81260 22.89460 35.67335
## [969] 25.65892 40.66273 19.29138 33.42923 34.70252 29.86694 37.81924 33.28449
## [977] 32.08511 41.87091 30.00932 27.22907 43.28048 45.19238 14.75133 39.39847
## [985] 25.95129 12.66380 23.19830 43.58590 36.35777 28.49535 39.33547 44.38737
## [993] 22.99299 49.28323 21.83815 35.10447 38.06962 37.08826 22.84372 35.53003
g_bern <- function(n, p=0.5){
x <- numeric(n) # Vetor para amazenar os números
for (i in 1:n){
u <- runif(1) # gera um valor diferente entre 0 e 1 a cada ciclo
# se u<=p então retorna 1, caso contrário retorna 0
x[i] <- ifelse(u <= p, 1, 0)
}
return(x)
}
Geração de 1000 bernoullis com p=0.5
.
## [1] 0 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 1 1 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 1
## [38] 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0 0 0 0 1 0 1 1
## [75] 0 0 1 0 1 1 1 0 1 1 1 1 0 1 0 0 0 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0
## [112] 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 1 0 1
## [149] 1 1 0 1 1 0 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0 1
## [186] 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 0 0 1 0 0 1 0 0 1
## [223] 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1
## [260] 0 0 1 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 1 0 0 1 0 1 1
## [297] 1 1 1 1 0 0 0 1 1 1 0 1 0 1 1 0 1 0 0 0 0 1 1 1 1 0 1 0 0 1 0 1 0 0 1 1 0
## [334] 0 0 1 1 1 1 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 0 1
## [371] 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 1 0 0 0 1 1 1 0 1 1 1 1 0 0
## [408] 0 1 1 1 1 0 1 0 0 0 1 1 0 1 1 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1
## [445] 1 0 0 0 1 1 1 0 1 0 0 1 0 0 1 0 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 1 1 1
## [482] 1 1 1 0 1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0
## [519] 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1 1 1 1 0 0 1 0 1 0 0 1 1
## [556] 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 0
## [593] 1 1 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 1 1 1 0 1 1 0 0 1
## [630] 1 0 1 0 1 0 1 0 1 1 1 0 1 1 0 1 0 0 0 0 1 0 1 0 1 1 1 1 0 1 1 0 1 1 0 0 1
## [667] 1 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 1 1
## [704] 0 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0
## [741] 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 0 0 0 1 1 1 1 0 1 1 1 1
## [778] 1 0 0 1 0 0 1 1 1 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 1 1 1 0 1 0 1 0 0 1 1 1
## [815] 1 0 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1
## [852] 1 0 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1
## [889] 1 1 1 0 0 0 1 0 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1 1 1 1 1 1 0 0
## [926] 0 1 1 1 0 1 0 0 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 1 1 0 1
## [963] 0 1 1 1 0 0 0 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1
## [1000] 0
# Matriz com 2 colunas de 1000 bernoullis
matriz_ber <- matrix(g_bern(2*1000, 3/4), ncol = 2)
# Soma, linha por linha, de cada coluna
rowSums(matriz_ber)
## [1] 1 2 2 2 0 1 1 1 2 1 2 0 1 1 1 2 2 2 2 1 1 1 2 1 2 1 1 1 2 2 2 2 2 2 1 2 2
## [38] 1 2 2 2 1 2 1 2 2 1 1 2 1 0 2 2 1 1 1 2 2 1 1 1 2 1 0 2 1 1 2 2 2 2 1 0 1
## [75] 1 2 1 1 0 2 2 1 2 0 1 1 1 1 1 1 2 1 1 2 2 1 1 1 2 2 2 2 2 1 1 1 1 2 1 1 2
## [112] 1 1 1 2 1 1 0 1 2 2 2 2 1 1 1 2 1 1 2 2 1 1 2 1 1 1 1 1 2 2 2 2 2 2 1 1 1
## [149] 2 1 2 1 2 0 0 1 1 1 1 2 2 2 0 2 1 1 1 2 1 1 2 1 2 1 1 2 1 2 0 1 2 2 1 2 1
## [186] 2 2 2 2 1 2 2 1 2 2 2 1 1 2 1 1 2 2 1 1 1 1 1 2 1 0 1 2 1 2 2 1 2 0 1 2 2
## [223] 1 2 0 2 2 2 2 1 1 1 2 2 1 2 2 2 2 2 2 1 1 1 2 1 2 2 1 2 2 2 2 2 2 0 1 2 1
## [260] 2 1 1 2 2 1 2 2 0 2 1 1 2 2 2 2 2 2 1 2 1 2 1 1 2 2 2 2 1 2 1 2 2 1 2 1 2
## [297] 2 1 1 2 0 1 2 2 2 0 1 1 1 2 2 2 1 1 1 1 2 2 2 2 0 2 1 2 2 2 0 2 1 2 2 1 2
## [334] 2 2 2 2 2 2 0 2 1 1 0 2 1 2 1 1 1 2 1 2 2 2 1 1 2 2 2 1 2 2 2 1 1 2 2 2 1
## [371] 1 1 2 1 2 2 1 2 2 0 1 2 1 1 1 2 2 1 1 1 1 2 1 1 2 1 1 2 1 1 2 0 2 1 2 2 2
## [408] 2 1 2 1 2 0 1 2 2 2 2 1 2 0 1 1 0 2 1 2 1 1 1 2 2 1 1 2 1 0 2 2 2 1 1 2 2
## [445] 1 2 0 2 2 1 2 2 1 1 2 0 2 2 2 1 1 2 2 1 1 0 1 1 2 2 2 2 2 1 1 2 2 2 2 1 0
## [482] 2 1 1 2 2 2 2 1 2 2 1 1 2 1 2 2 1 2 2 2 2 2 2 2 1 2 1 0 1 1 2 2 1 2 2 1 2
## [519] 2 1 0 2 2 1 2 1 2 2 0 1 1 2 2 2 2 1 2 2 2 2 2 2 1 1 0 2 1 2 1 2 0 2 0 2 1
## [556] 0 1 2 2 2 2 1 0 2 1 1 1 2 1 2 2 2 2 1 2 1 2 1 1 1 0 2 2 1 1 1 2 2 2 1 1 1
## [593] 2 2 2 2 1 0 1 2 2 1 2 2 1 1 2 1 1 1 2 1 1 1 1 2 2 1 1 2 1 1 2 2 1 2 2 2 2
## [630] 2 2 1 0 1 2 1 2 2 2 1 0 1 2 1 2 2 2 1 2 2 2 2 0 2 1 0 2 2 1 1 1 2 1 1 1 2
## [667] 1 1 1 1 0 2 1 1 1 2 1 1 2 2 2 2 2 0 1 1 2 2 0 2 0 2 1 1 2 1 1 1 1 2 1 1 2
## [704] 2 2 2 1 1 2 2 1 2 1 2 1 1 2 2 1 2 2 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1 2 1 1 1
## [741] 0 1 1 2 2 2 2 1 2 2 2 2 1 2 1 2 2 2 2 1 2 2 2 1 2 2 2 2 2 1 1 2 2 1 2 2 2
## [778] 1 2 2 2 1 1 2 1 1 2 2 2 1 2 2 2 2 2 2 1 1 2 2 2 2 1 2 2 2 2 2 2 2 2 1 2 1
## [815] 1 1 0 2 2 2 1 2 1 1 2 2 1 0 2 1 1 2 2 1 2 1 2 2 1 2 1 1 1 1 1 2 2 1 1 1 1
## [852] 1 2 1 2 2 2 2 2 2 2 1 2 1 2 1 1 0 1 0 1 2 1 2 2 2 2 1 1 2 2 2 2 2 1 2 1 2
## [889] 1 2 2 1 2 1 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 1 1 1 1 1 2 2 2 2 1 2 2 2 2 1 2
## [926] 2 1 2 2 2 2 0 2 2 1 2 1 1 2 2 2 2 1 2 1 2 1 0 2 2 1 1 2 1 1 0 0 2 2 2 2 1
## [963] 2 2 1 0 2 1 2 1 2 2 1 2 2 1 2 2 1 2 2 0 0 2 0 2 2 2 1 1 2 2 2 2 2 1 2 2 2
## [1000] 1
# Função que gera, a partir da soma de n bernnoulis(p), uma binomial(n, p).
g_binomial <- function(N, n, p){
matriz_ber <- matrix(g_bern(n*N, p), ncol = n)
return(rowSums(matriz_ber))
}
# Geração de uma amostra de 1000 números da Binomial(n =2, p = 3/4)
npa6 <- g_binomial(N=1000, n=2, p=3/4); npa6
## [1] 2 2 1 2 2 1 2 1 2 2 2 2 1 2 1 1 1 2 2 1 2 1 2 1 2 2 0 2 2 2 2 2 1 1 2 0 1
## [38] 2 2 2 2 2 2 2 1 2 2 1 1 1 1 2 1 0 1 1 2 2 2 1 2 1 1 2 2 2 2 1 1 2 2 2 1 1
## [75] 1 2 0 2 1 2 2 2 2 1 2 1 2 2 2 1 1 1 2 2 2 2 1 2 2 1 2 2 1 1 1 2 1 2 2 2 2
## [112] 2 1 1 2 2 0 2 1 1 1 1 2 2 2 1 1 1 1 2 2 2 1 2 0 1 1 1 2 2 2 2 2 1 2 2 0 2
## [149] 1 2 2 1 2 0 1 2 1 2 1 2 1 2 1 2 2 2 2 2 1 2 2 2 2 1 2 0 2 1 1 1 1 1 2 2 2
## [186] 2 2 2 1 1 2 2 1 2 2 0 2 2 2 1 2 1 2 2 2 2 1 1 2 1 2 1 0 2 2 1 1 1 1 1 2 1
## [223] 2 2 2 1 1 0 1 2 2 1 2 2 1 2 2 0 2 1 2 1 1 1 2 1 2 2 1 1 1 1 1 1 2 1 2 2 1
## [260] 2 1 1 1 0 2 2 2 1 2 2 1 2 0 2 2 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 0 1 2 2 2 2
## [297] 2 1 2 2 2 2 1 2 2 1 2 2 2 1 2 2 1 1 1 2 1 2 0 2 2 2 1 1 1 1 2 2 2 2 1 1 2
## [334] 0 1 2 1 2 2 2 2 2 2 2 2 1 2 1 2 1 2 2 1 2 1 0 2 2 1 0 1 1 2 2 2 1 2 2 2 2
## [371] 2 2 1 2 1 1 2 1 1 2 2 2 2 1 2 2 2 1 1 2 2 2 0 2 2 2 2 2 2 1 2 1 2 1 0 1 2
## [408] 2 2 2 2 1 1 2 2 2 2 2 2 1 1 1 2 2 1 1 2 1 1 0 2 2 2 2 0 1 1 2 1 0 2 1 1 2
## [445] 0 2 1 2 2 2 0 2 1 2 2 1 2 1 1 1 2 1 1 2 2 1 1 1 2 2 1 2 2 1 2 2 2 1 1 1 1
## [482] 2 1 2 2 2 1 2 0 2 1 1 2 0 0 1 0 2 2 0 2 2 2 1 2 1 2 1 1 1 2 1 1 0 1 1 2 1
## [519] 1 2 1 1 2 2 2 0 2 1 2 2 2 0 1 2 2 2 2 2 1 1 1 2 2 2 0 1 2 1 2 2 1 1 2 1 1
## [556] 0 1 1 2 1 1 2 1 2 1 2 2 1 1 2 2 2 2 2 1 2 2 2 0 2 2 2 2 1 1 2 2 1 1 2 1 2
## [593] 1 0 2 2 1 2 1 2 1 2 2 1 1 1 1 2 2 1 2 2 2 1 1 1 1 1 1 2 1 1 2 2 1 2 1 2 2
## [630] 0 1 2 1 2 2 1 1 2 1 2 2 2 2 2 2 2 1 1 2 2 2 0 1 2 2 2 1 2 1 2 2 2 2 1 1 2
## [667] 1 2 2 2 1 1 0 2 2 2 0 2 2 1 1 1 2 2 1 2 1 1 2 2 2 2 1 0 0 1 1 1 2 1 2 1 2
## [704] 2 2 1 2 2 2 2 2 0 2 1 1 1 1 2 1 2 2 1 2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 2 2
## [741] 2 2 1 1 1 2 2 1 0 2 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 1 2 2 2 1 1 1
## [778] 1 2 0 1 2 2 2 2 1 1 1 2 0 2 1 1 2 2 2 2 2 2 1 2 1 0 2 2 0 2 2 2 1 2 1 1 2
## [815] 2 1 2 2 2 2 2 2 2 1 2 2 2 1 2 0 1 2 1 1 1 2 2 2 1 2 2 1 2 1 2 2 2 2 1 2 2
## [852] 1 1 2 1 2 1 2 2 2 2 2 1 1 2 0 2 1 1 2 1 2 1 0 1 1 2 2 2 1 2 2 1 2 2 1 2 2
## [889] 2 2 2 2 1 1 2 1 2 1 2 2 1 1 2 2 0 2 2 1 2 1 1 1 1 1 2 2 1 1 1 2 2 1 2 1 2
## [926] 1 1 2 2 2 2 2 2 2 1 1 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 1 2 0 1 2 2 1 1 1 2 0
## [963] 2 2 2 1 1 2 2 2 2 2 2 2 2 2 0 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 1 1 1 2 2 1 2
## [1000] 2
g_geom <- function(n, pfalha){
x <- numeric(n) # vetor que vai armazenar a quantidade de sucessos até a primeira falha
for (i in 1: n){
repeat{
u <- runif(1) # Um valor aleatório entre 0 e 1
if (u<pfalha) # Se o valor aleatório entre 0 e 1 for menor que a probabilidade de falha,
# então encerra o processo pois houve falha
break
else
x[i] <- x[i] + 1 # Caso contrário, conta o sucesso
}
}
return(x)
}
Simulação de 1000 contagens de sucessos até a primeira falha.
# Geração de 1000 contagens de sucessos até a primeira falha com probabilidade de falha de 0.05.
set.seed(548254)
npa7 <- g_geom(1000, p); npa7
## [1] 4 52 5 1 39 3 44 4 11 12 3 1 1 3 40 12 1 4
## [19] 39 42 14 2 2 11 11 6 68 6 13 53 1 61 58 21 12 4
## [37] 26 27 1 3 32 7 4 7 21 18 12 1 16 2 9 2 17 41
## [55] 29 9 34 1 53 3 1 18 28 9 17 35 7 36 1 75 25 16
## [73] 13 1 1 103 81 23 29 23 19 0 9 45 12 3 3 3 7 20
## [91] 9 35 0 8 9 15 32 9 46 7 5 5 5 28 33 2 70 13
## [109] 9 13 85 32 23 3 37 47 4 5 48 6 81 4 24 7 9 67
## [127] 3 28 47 6 26 22 33 8 13 1 18 4 57 12 14 17 23 7
## [145] 25 54 28 43 0 29 17 6 6 10 14 7 29 0 1 75 5 4
## [163] 45 30 3 31 12 7 17 15 13 11 9 4 1 9 0 9 75 37
## [181] 57 18 28 2 11 76 16 37 6 10 15 4 14 21 4 0 0 6
## [199] 72 7 4 5 20 0 26 15 18 19 34 18 32 50 1 41 27 24
## [217] 75 17 3 16 2 4 11 13 2 27 56 26 3 30 2 4 34 1
## [235] 5 13 21 32 20 49 4 4 9 14 30 0 33 22 3 1 5 0
## [253] 8 5 75 82 18 0 6 0 14 2 5 1 3 17 5 13 35 51
## [271] 43 8 3 10 79 10 28 14 15 26 6 25 7 59 5 9 7 0
## [289] 28 35 13 54 5 64 11 37 22 29 31 0 3 8 50 10 18 25
## [307] 8 5 6 2 28 9 9 9 0 31 5 6 9 31 5 2 61 19
## [325] 1 4 14 5 31 41 3 13 42 3 15 26 34 23 0 19 53 16
## [343] 35 100 2 14 3 1 5 10 30 6 16 5 26 2 10 8 34 2
## [361] 7 49 13 21 25 2 1 19 49 12 1 29 10 3 21 17 13 32
## [379] 7 18 3 4 39 46 63 8 23 52 43 13 4 28 96 4 4 3
## [397] 30 17 9 3 6 9 28 2 12 15 82 4 19 13 0 43 20 15
## [415] 3 3 32 51 49 8 3 7 2 24 13 34 54 7 36 15 2 62
## [433] 5 0 27 13 15 5 19 8 8 3 3 35 19 4 1 4 12 37
## [451] 24 3 3 1 9 9 82 26 2 32 16 8 16 3 13 13 5 10
## [469] 22 1 11 3 0 6 2 3 3 15 3 4 6 19 2 9 18 26
## [487] 77 34 44 20 5 1 46 6 15 34 5 5 15 47 7 10 6 7
## [505] 5 27 2 2 5 79 3 26 7 4 67 8 0 23 12 20 2 71
## [523] 16 2 9 0 14 10 39 5 3 6 3 8 30 3 16 11 1 28
## [541] 8 3 0 23 18 5 30 1 2 68 25 15 89 23 2 28 30 8
## [559] 12 7 21 7 4 2 32 33 6 3 6 53 0 26 6 7 43 3
## [577] 15 83 13 0 5 2 2 8 50 9 45 24 1 23 3 3 10 6
## [595] 10 15 5 38 0 6 20 1 71 4 3 60 35 30 20 43 19 4
## [613] 29 23 4 13 5 42 43 2 15 13 22 19 33 37 9 24 21 63
## [631] 10 2 3 33 19 4 17 3 25 22 21 18 26 13 4 7 7 4
## [649] 1 0 10 75 5 18 12 4 18 19 19 8 0 6 17 41 0 5
## [667] 7 3 16 5 15 23 2 34 44 3 9 2 8 6 15 1 4 17
## [685] 13 20 24 25 58 40 1 53 47 14 37 28 14 7 2 16 6 0
## [703] 2 14 24 22 36 9 2 15 3 12 9 0 5 6 71 32 14 41
## [721] 5 5 21 3 11 25 42 13 24 15 29 16 7 11 0 34 36 5
## [739] 5 1 12 40 0 74 2 23 5 21 83 16 6 20 38 14 1 17
## [757] 3 4 5 5 0 11 43 17 4 7 9 39 32 0 13 39 11 16
## [775] 1 3 42 20 14 9 40 31 31 2 0 32 1 8 27 29 50 24
## [793] 20 14 12 7 5 2 3 8 60 16 10 6 22 7 17 15 78 32
## [811] 4 11 20 29 6 1 5 24 17 23 12 0 1 52 11 60 14 15
## [829] 1 76 33 36 14 1 13 35 26 5 4 13 1 4 9 52 21 12
## [847] 40 9 21 12 4 13 14 8 16 28 3 2 10 39 25 10 26 7
## [865] 5 3 28 51 4 11 2 39 25 16 14 66 31 11 34 39 31 1
## [883] 18 5 28 7 22 42 8 19 13 4 3 38 18 2 42 40 37 28
## [901] 8 94 5 22 46 6 2 49 3 0 39 40 22 6 25 2 30 22
## [919] 12 0 7 1 1 49 41 15 30 0 4 6 12 8 18 3 111 55
## [937] 22 3 27 14 28 2 37 21 9 1 3 89 35 7 30 1 2 6
## [955] 11 2 1 5 0 30 3 0 22 3 3 4 2 27 30 20 4 24
## [973] 35 14 1 22 25 43 4 15 79 12 8 9 10 10 7 39 63 26
## [991] 16 13 12 24 0 1 39 13 20 9
Média e a variância dos resultados das simulações feitas.
A distribuição teórica dos dados é uma Geométrica(0.05).