Healthy Cities GIS Assignment

Author

Hannah L

Load the libraries and set the working directory

library(tidyverse)
library(tidyr)
library(leaflet)
setwd("/Users/itshannahuc/Desktop/Data 110")
cities500 <- read_csv("500CitiesLocalHealthIndicators.cdc.csv")
data(cities500)
unique(cities500$Data_Value_Unit)
[1] "%"

The GeoLocation variable has (lat, long) format

Split GeoLocation (lat, long) into two columns: lat and long

latlong <- cities500|>
  mutate(GeoLocation = str_replace_all(GeoLocation, "[()]", ""))|>
  separate(GeoLocation, into = c("lat", "long"), sep = ",", convert = TRUE)
head(latlong)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName  GeographicLevel DataSource Category      
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>      <chr>         
1  2017 CA        California Hawthorne Census Tract    BRFSS      Health Outcom…
2  2017 CA        California Hawthorne City            BRFSS      Unhealthy Beh…
3  2017 CA        California Hayward   City            BRFSS      Health Outcom…
4  2017 CA        California Hayward   City            BRFSS      Unhealthy Beh…
5  2017 CA        California Hemet     City            BRFSS      Prevention    
6  2017 CA        California Indio     Census Tract    BRFSS      Health Outcom…
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

Filter the dataset

Remove the StateDesc that includes the United Sates, select Prevention as the category (of interest), filter for only measuring crude prevalence and select only 2017.

latlong_clean <- latlong |>
  filter(StateDesc != "United States") |>
  filter(Category == "Prevention") |>
  filter(Data_Value_Type == "Crude prevalence") |>
  filter(Year == 2017)
head(latlong_clean)
# A tibble: 6 × 25
   Year StateAbbr StateDesc  CityName   GeographicLevel DataSource Category  
  <dbl> <chr>     <chr>      <chr>      <chr>           <chr>      <chr>     
1  2017 AL        Alabama    Montgomery City            BRFSS      Prevention
2  2017 CA        California Concord    City            BRFSS      Prevention
3  2017 CA        California Concord    City            BRFSS      Prevention
4  2017 CA        California Fontana    City            BRFSS      Prevention
5  2017 CA        California Richmond   Census Tract    BRFSS      Prevention
6  2017 FL        Florida    Davie      Census Tract    BRFSS      Prevention
# ℹ 18 more variables: UniqueID <chr>, Measure <chr>, Data_Value_Unit <chr>,
#   DataValueTypeID <chr>, Data_Value_Type <chr>, Data_Value <dbl>,
#   Low_Confidence_Limit <dbl>, High_Confidence_Limit <dbl>,
#   Data_Value_Footnote_Symbol <chr>, Data_Value_Footnote <chr>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>

What variables are included? (can any of them be removed?)

names(latlong_clean)
 [1] "Year"                       "StateAbbr"                 
 [3] "StateDesc"                  "CityName"                  
 [5] "GeographicLevel"            "DataSource"                
 [7] "Category"                   "UniqueID"                  
 [9] "Measure"                    "Data_Value_Unit"           
[11] "DataValueTypeID"            "Data_Value_Type"           
[13] "Data_Value"                 "Low_Confidence_Limit"      
[15] "High_Confidence_Limit"      "Data_Value_Footnote_Symbol"
[17] "Data_Value_Footnote"        "PopulationCount"           
[19] "lat"                        "long"                      
[21] "CategoryID"                 "MeasureId"                 
[23] "CityFIPS"                   "TractFIPS"                 
[25] "Short_Question_Text"       

Remove the variables that will not be used in the assignment

prevention <- latlong_clean |>
  select(-DataSource,-Data_Value_Unit, -DataValueTypeID, -Low_Confidence_Limit, -High_Confidence_Limit, -Data_Value_Footnote_Symbol, -Data_Value_Footnote)
head(prevention)
# A tibble: 6 × 18
   Year StateAbbr StateDesc  CityName  GeographicLevel Category UniqueID Measure
  <dbl> <chr>     <chr>      <chr>     <chr>           <chr>    <chr>    <chr>  
1  2017 AL        Alabama    Montgome… City            Prevent… 151000   Choles…
2  2017 CA        California Concord   City            Prevent… 616000   Visits…
3  2017 CA        California Concord   City            Prevent… 616000   Choles…
4  2017 CA        California Fontana   City            Prevent… 624680   Visits…
5  2017 CA        California Richmond  Census Tract    Prevent… 0660620… Choles…
6  2017 FL        Florida    Davie     Census Tract    Prevent… 1216475… Choles…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
md <- prevention |>
  filter(StateAbbr=="MD")
head(md)
# A tibble: 6 × 18
   Year StateAbbr StateDesc CityName  GeographicLevel Category  UniqueID Measure
  <dbl> <chr>     <chr>     <chr>     <chr>           <chr>     <chr>    <chr>  
1  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Chole…
2  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Visit…
3  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Visit…
4  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Curre…
5  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Curre…
6  2017 MD        Maryland  Baltimore Census Tract    Preventi… 2404000… "Visit…
# ℹ 10 more variables: Data_Value_Type <chr>, Data_Value <dbl>,
#   PopulationCount <dbl>, lat <dbl>, long <dbl>, CategoryID <chr>,
#   MeasureId <chr>, CityFIPS <dbl>, TractFIPS <dbl>, Short_Question_Text <chr>
unique(md$CityName)
[1] "Baltimore"

The new dataset “Prevention” is a manageable dataset now.

For your assignment, work with a cleaned dataset.

1. Once you run the above code, filter this dataset one more time for any particular subset with no more than 900 observations.

Filter chunk here

prevention_subset <- prevention[sample(nrow(prevention), 900), ]
filtered_ca <- prevention_subset |>
  filter(PopulationCount > 500) |>
  filter(StateAbbr == "CA")

2. Based on the GIS tutorial (Japan earthquakes), create one plot about something in your subsetted dataset.

First plot chunk here

ggplot(filtered_ca, aes(Short_Question_Text, lat, color = Short_Question_Text)) +
  geom_jitter() +
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
  labs(x = "Type of Measurement",
       color = "Measurement")

3. Now create a map of your subsetted dataset.

First map chunk here

leaflet(filtered_ca) %>%
  addTiles() %>%
  addCircleMarkers(lng = ~long, lat = ~lat, color = "red", fillOpacity = 0.1)
radius = filtered_ca$PopulationCount/500

4. Refine your map to include a mouse-click tooltip

Refined map chunk here

leaflet(filtered_ca) %>%
  addTiles() %>%
  addCircleMarkers(
    lng = ~long, lat = ~lat,
    popup = ~paste(
      "<strong>City:</strong>", CityName, "<br>",
      "<strong>Population:</strong>", PopulationCount, "<br>",
      "<strong>Data Value:</strong>", Data_Value
    ),
    color = "blue",
    fillOpacity = 0.2
  )

5. Write a paragraph

In a paragraph, describe the plots you created and what they show.

  1. This randomly selects 900 observations from the prevention dataset to create a subset called prevention_subset. This subset will be used in the following phases to reduce the amount of data, making it easier to see and evaluate.
  2. In this plot: The x-axis, which is marked “Type of Measurement,” shows various indicators or measurements related to health. To aid in visual differentiation, each distinct measurement type is represented by a different hue. These measures’ geographic distribution throughout the state, from south to north, is displayed on the y-axis, which stands for latitude. This visualization makes it possible to investigate the locations of certain health measures in California, revealing any geographic trends or clustering related to those data. Certain health issues may be more prevalent in some areas (such as northern vs southern California) if, for example, certain measurements cluster around particular latitudes.
  3. In the first map of the subsetted dataset, cities in California are shown with blue circle markers, each of which represents a site where health-related data was gathered, using leaflets. The basis for comprehending the concentrations of population and health metrics in California is established by this map, which shows the spatial distribution of the cities in the subset. 4.This plot builds on the original map by including interactive tooltips that, when markers are clicked, show particular statistics for each city. The name, population, and supplementary health data value of each city are displayed in the tooltip, facilitating a more thorough examination of individual places and providing a convenient means of seeing particular health metrics in relation to one another.